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Abstract

An overlap dependent formula for evaluating the charge penetration energy between non-orthogonal molecular orbitals is
derived using the Spherical Gaussian Overlap approximation. When combined with an accurate multipole representation of
the electrostatic energy, such as in the effective fragment potential method, ab initio electrostatic energies are generally
reproduced to within 0.2 kcalrmol for a variety of molecular dimers and basis sets. The only larger error is for the DMSO
dimer, where the electrostatic energy is overestimated by 0.7 kcalrmol. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

The multipole expansion is a powerful tool for the
analysis and modeling of intermolecular interactions
w x1 . Converged expansions can now routinely be
obtained even for relatively large molecules by using

w xdistributed expansions 1,2 . However, the multipole
expansion is not valid inside a charge distribution.
As a result, the interaction energy of two molecules
with overlapping charge distributions calculated us-
ing multipoles will be in error even if the multipole
expansions are converged. At the equilibrium separa-
tion of relatively strongly interacting molecules this
error can be substantial. For example, at the equilib-
rium geometry of the formamide–formaldehyde
dimer charge penetration contributes roughly 1.80

Ž .kcalrmol 0.2388 kcalrmols1 kJrmol to the
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w x10.16 kcalrmol electrostatic interaction energy 3 .
ŽThis error is generally referred to as the electrostatic

. Ž pen.or Coulombic charge penetration energy E .
Charge penetration can have similar effects on the
multipole expansions of the induction and dispersion
energies, and here the effect is generally referred to
as ‘damping’. Several damping functions have been

w xexplored for the induction 4 and, especially, disper-
w xsion 1 energy, but the electrostatic charge penetra-

tion energy has received relatively little attention.
In general, it is known that E pen decays exponen-

w xtially with distance 5 . Furthermore, Murrell and
w x penTeixeira-Dias 6 have shown that E and the

Ž XR .exchange repulsion energy E behave similarly,
and suggested the following relation

EXR syE pen aqbR ,Ž .

where a and b are empirical parameters and R is the
intermolecular separation.
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w x penStone 1 has suggested a E -damping function
based on a functional form derived for the hydrogen
atom. A similar damping form is used in the effec-

Ž .tive fragment potential EFP method, a hybrid
QMrMM method in which part of a system is

w xtreated ab initio and the rest with EFPs 7,8 . Cur-
rently, the E pen correction is done for the ab
initiorEFP interaction energy. Work on a similar
correction for the EFPrEFP interaction is ongoing
w x9 .

In this Letter we present a different, overlap
dependent, approximation to E pen, which contains no
adjustable parameters. The Letter is organized as
follows. First, we demonstrate the origin of E pen for
a simple system consisting of two spherical Gauss-
ians. Second, we relate the resulting expression to
molecular systems using the Spherical Gaussian

w xOverlap approximation 10 . Finally, we demonstrate
the utility of this new approach for molecular dimers

Ž .of H O, CH OH, CH Cl , CH CN, CH CO, and2 3 2 2 3 3 2
Ž .CH SO.3 2

2. Theory

Ž .The electron–electron e–e repulsion energy be-
tween two identical spherical Gaussians,

3r42a
2< <x r s exp ya ryR 1aŽ . Ž .Ž .i iž /p

and
3r42a

2< <x r s exp ya ryR , 1bŽ . Ž .ž /j jž /p

Ž . w xis assuming double occupancy 11
4 '² < :E s4 x x x x s erf a R , 2Ž .ž /e – e i i j j i jRi j

where R is the distance between the Gaussiani j

centers. For this simple case, a charge penetration
w xcontribution can easily be isolated by expanding 12

the error function and truncating after the second
term,

4 1
2E s 1y exp yaRŽ .e – e i jž /'R 2 a Ri j i j

4 2
2 class pens y S sE qE , 3Ž .i j e – e e – e2'R a Ri j i j

where S is the Gaussian overlap integral,i j
1 2Ž .exp y aR .i j2

A similar analysis can be performed for the charge
Ž .penetration contribution to the electron–nuclear e–n

attraction energy. In order to facilitate a direct com-
Ž .parison to Eq. 3 , two q2 nuclear charges are

placed at each of the Gaussian centers, so that

2 8 'E sy4 c c sy erf 2a R . 4Ž .ž /e – n i i i j¦ ;R Ri j i j

Again, a charge penetration term is easily isolated,

8 4
4 class penE sy q S sE qE . 5Ž .e – n i j e – n e – n2'R 2a Ri j i j

As expected, the magnitude of the charge penetration
energy is significantly larger for the e–e repulsion,
leading to a net negative charge penetration energy.
Furthermore, for relatively small values of S ,i j

2
pen pen 2E sE sy S 6Ž .e – e i j2'a Ri j

is a reasonable approximation.
Ž .Though derived for a very simple system, Eq. 6

can be used to estimate the charge penetration en-
ergy for pairs of non-orthogonal molecular orbitals
Ž .MOs through the Spherical Gaussian Overlap
Ž . w xSGO approximation 10 . In the SGO approxima-

Ž .tion each non-orthogonal MO-pair c and c isi j

approximated by a pair of identical spherical Gauss-
ians centered at the respective MO centroids of
charge,

c r fx r and c r fx r . 7Ž . Ž . Ž . Ž . Ž .i i i j

The exponent a is obtained by requiring that the
Gaussian overlap is equal to the MO overlap S si j
² < :c c ,i j

1 2S sexp y aR 8aŽ .Ž .i j i j2

and hence

2
asy ln S , 8bŽ .i j2Ri j

so that
1r2 21 Si jpenE sy2 . 9Ž .i j ž /y2 ln S Ri j i j
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Fig. 1. Dimer geometries used in Tables 1–3. See text for explanations on how they were obtained.

This is done for each MO-pair to yield the total
charge penetration energy,

E pen s E pen . 10Ž .Ý i j
i , j

We note that the SGO charge penetration energy is
very similar to the SGO exchange energy derived

w xearlier 10 ,
1r2 2y2 ln S Si j i j² < :2 c c c c s4 . 11Ž .i j i j ž /p Ri j

Since the exchange energy scales similarly to the
exchange repulsion energy this observation is consis-
tent with the previous empirical observations that the
charge penetration energy and exchange repulsion
energy scale similarly with respect to intermolecular

w x Ž . Ž .separation 6 . The utility of both Eqs. 9 and 11
depends on the extent to which the overlap region

w xcan be described by a spherical Gaussian 10 . Previ-
w x Ž .ous studies 10,13 of Eq. 11 indicate that reliable

results can be obtained for several different molecu-
lar dimers as long as localized molecular orbitals are

used. Next we present a similar investigation for Eq.
Ž .9 .

3. Methodology

To test how the addition of the charge penetration
Ž Ž . Ž ..term Eqs. 9 and 10 improves the EFP electro-

static interaction energies, a set of ab initio and
electrostatic calculations are performed on six differ-

Ž . w xent dimers Fig. 1 using the GAMESS package 14 .
Ž . 1Three different basis sets are used: 6-31qG d,p ,

Ž . 26-31qqG 2d,2p and Sadlej’s polarized valence
Ž . w xtriple zeta pVTZ 16 basis set. In the latter basis

Ž .set 14s10p4dr10s6p4dr6s4p primitive Gaussians

1 The following diffuse sp-shell exponents were used: Cs
w x0.0438, Ns0.0639, Os0.0845, Ss0.0405, Cls0.0483 15 .

2 The diffuse hydrogen exponent used was 0.0360. The two d
exponents on the non-hydrogen atoms were obtained by multiply-

Ž .ing the standard d exponent from the 6-31G d,p basis set by 2.0
and 0.5. Likewise for the two p exponent on the hydrogen atoms.
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Table 1
Ž .Electrostatic interaction energies in kcalrmol obtained from ab initio and distributed multipole calculations and the charge penetration

Ž pen . Ž .correction E calculated using Eq. 9

Ab initio EFP

ES ES Localized MOs Canonical MOs
pen pen pen penE ESqE E ESqE

Water dimer y8.21 y7.12 y1.04 y8.16 y0.33 y7.45
Methanol dimer y8.12 y6.89 y1.04 y7.93 y0.62 y7.51
Dichloromethane dimer y1.73 y1.47 y0.14 y1.61 y0.10 y1.57
Acetonitrile dimer y5.12 y4.53 y0.35 y4.88 y0.33 y4.86
Acetone dimer y3.33 y2.66 y0.49 y3.15 y0.26 y2.92
DMSO dimer y10.88 y8.42 y1.75 y10.17 y0.99 y9.41

Ž . Ž .All energies are given in kcalrmol and calculated at the RHFr6-31qG d,p rr6-31qG d,p level of theory.

w xare contracted to 7s5p2dr5s3p2dr3s2p for the
thirdrsecondrfirst row elements. The dimer geome-
tries were obtained by first fully optimizing the

Ž .dimer geometry at the RHFr6-31qG d,p level of
theory, and then superimposing the free RHFr6-31

Ž .qG d,p monomer geometries on the dimer struc-
ture. This was done to allow a fair comparison
between the ab initio and the multipole calculations
since the latter utilizes the free monomer geometries.

The ab initio electrostatic energies are evaluated
using the Morokuma–Kitaura energy decomposition

w xscheme 17 . The classical electrostatic energy is the
interaction energy between two distributed multipole

Ž 3expansions charges through octupoles at each
.atomic center and bond midpoint . The multipoles

w xare obtained by a distributed multipole analysis 2 of
the ab initio charge density of each monomer. The
LMOs were obtained using the Edmiston–Rueden-

w xberg localization scheme 18 .

4. Results with conclusions

Table 1 lists the ab initio and multipole electro-
static energies for a series of dimers depicted in Fig.

Ž .1. Both canonical molecular orbitals CMOs and
LMOs are tested.

The data in Table 1 indicates that the charge
w Ž . Ž .xpenetration correction term Eqs. 9 and 10 evalu-

3 In the current implementation only the charge-octupole term
is included.

ated using the LMOs clearly decreases the error in
the electrostatic interaction energy calculated using
multipoles. In most cases, the error is better than
y0.2 kcalrmol compared to the ab initio values,
except for the DMSO dimer, which is in error by
y0.7 kcalrmol. In general, the SGO approximation
underestimates the charge penetration correction.

The results in Table 1 quite clearly show that
LMOs are a better choice of orbitals than CMOs
when evaluating E pen within the SGO approxima-
tion. The CMO-errors range from y0.16 kcalrmol

Ž .for CH Cl to y1.47 kcalrmol for the DMSO2 2 2

dimer. The discrepancy between the LMO and CMO
results becomes more significant when the charge
penetration and thus the overlap is large, presumably
since this constitutes a more severe test on the
underlying assumptions of the SGO approximation.
For this reason, in the remainder of this Letter we
will be utilizing only the LMOs to calculate E pen.

Table 2
Ab initio and multipole electrostatic energies as well as the charge
penetration correction calculated using LMOs for various inter-
molecular separations of the water dimer

Ab initio EFP
pen penES ES E ESq E

Water dimer y8.21 y7.12 y1.04 y8.16
˚Water dimerq0.5 A y4.07 y3.92 y0.14 y4.06
˚Water dimery0.5 A y21.26 y15.17 y7.82 y22.99

All energies are given in kcalrmol and calculated at the RHFr6-
Ž . Ž .31qG d,p rr6-31qG d,p level of theory.
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Table 3
Ab initio and multipole electrostatic energies as well as the charge
penetration correction calculated using LMOs calculated for the
water dimer at various levels of theory

Ab initio EFP
pen penES ES E ESq E

Ž .6-31qG d,p y8.21 y7.12 y1.04 y8.16
Ž .6-31qqG 2d,2p y7.35 y6.18 y1.04 y7.22

pVTZ y6.86 y5.69 y1.02 y6.71

All energies are given in kcalrmol.

Next we consider the effect of intermolecular
separation on E pen for the water dimer by increasing
and decreasing the intermolecular separation of the

˚equilibrium water dimer geometry by 0.5 A. The
results are shown in Table 2. As the distance be-
tween the water molecules is increased, the agree-
ment between the ab initio and the E pen corrected
electrostatic energies becomes better. At the shorter

Žwater–water separation the error is larger q1.7
. penkcalrmol , but the E correction significantly im-

proves the electrostatic energy compared to the un-
corrected multipole energy which is in error by
y6.09 kcalrmol.

Table 3 lists results for the water dimer at the
Ž .6-31qG d,p equilibrium distance using more ex-

tensive basis sets. As more basis functions are added,
the agreement between the ab initio and E pen cor-
rected multipole energies is essentially unaffected.
The largest discrepancy is 0.15 kcalrmol for the
pVTZ basis set. Interestingly, the charge penetration
energy is nearly constant in all three cases while
ECoul increases with basis set size. This seems to
indicate that the addition of more basis functions
does not significantly change the intermolecular
overlap, but rather the density distribution near the
nuclei of the monomer.

5. Conclusion

We have derived an expression relating the over-
lap of non-orthogonal molecular orbitals to the charge
penetration energy. When combined with an accurate
multipole representation of the electrostatic energy,
such as in the effective fragment potential method,
our method is capable of reproducing the ab initio

electrostatic energies that are within 0.2 kcalrmol
for a variety of molecular dimers and basis sets.
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