Cite this: DOI: 10.1039/c1cc10293a

www.rsc.org/chemcomm

COMMUNICATION

A multipurpose gold(1) precatalyst[†]

Mihai Raducan,^{*a*} Carles Rodríguez-Escrich,^{*a*} Xacobe C. Cambeiro,^{*a*} Eduardo C. Escudero-Adán,^{*a*} Miquel A. Pericàs^{**ab*} and Antonio M. Echavarren^{**ac*}

Received 16th January 2011, Accepted 2nd March 2011 DOI: 10.1039/c1cc10293a

 $[Au(tmbn)_2](SbF_6)$ is the first gold(1) complex supported by two nitrile ligands that is indefinitely stable at room temperature. This is a highly versatile precatalyst that can be used for the preparation of active and robust solid-supported gold(1) catalysts.

Screening different gold(I) catalysts for the development of new methods or in total synthesis requires the time-consuming preparation of a series of gold(I) complexes with different electrophilicities.^{1–7} Therefore, it would be highly desirable to develop a gold(I) precatalyst that could play a role similar to that of Pd₂(dba)₃ in palladium chemistry. For this purpose bis-nitrile complexes $[Au(RCN)_2]^+X^-$ appear as the best candidates.⁸ Unfortunately, these complexes have been prepared in low yields and none are stable under ordinary conditions.^{9–11} From a different perspective, $[Au(RCN)_2]^+X^-$ could play a fundamental role in supporting Au(I) complexes on properly functionalized resins. This much less explored area^{12,13} holds great potential for the development of gold-catalyzed transformations with improved economic characteristics suitable for process intensification and medium scale production.

In a first attempt to fill the gap, we prepared $[Au(NCPh)_2](SbF_6)$ in 59% yield by treatment of AuCl with AgSbF₆ (1 equivalent) and PhCN in CH₂Cl₂ at room temperature for 43 h. However, this complex is unstable to air and moisture and readily decomposes to form 2,4,6-triphenyl-1,3,5-triazine when treated with moist MeNO₂ or PPh₃. We reasoned that a robust Au(1) complex could be formed by using more electron-donating 2,4,6-trimethoxybenzonitrile (tmbn) as the ligand. Here we report that complex [Au(tmbn)₂](SbF₆) (1) (Fig. 1) is stable for months when stored under ambient conditions and can be used as a multipurpose precursor for the ready preparation of gold(1) complexes [AuL(tmbn)](SbF₆). This complex has also been used to prepare solid-supported catalysts that show excellent reactivity and stability.

Fig. 1 Gold(I) complex [Au(tmbn)₂](SbF₆) (1).

Gold(1) complex 1 was prepared as a white crystalline solid by reaction of AuCl and tmbn (7 equivalents) with 1 equivalent of AgSbF₆ in CH₂Cl₂ in 75–83% yield (1–2 gram scale). The reaction was complete in only 20 min, whereas almost 2 days were required for the preparation of $[Au(NCPh)_2](SbF_6)$. Complex 1 can easily be separated from more soluble $[Ag(tmbn)_2](SbF_6)$ (2a) by crystallization.¹⁴ Both linear complexes were characterized by X-ray diffraction.

Complex 1 reacts within time of mixing with 1 equivalent of the donor ligand. Thus, reaction of 1 with tris(pentafluorophenyl)-phosphine, (2-biphenyl)di-*tert*-butylphosphine (JohnPhos),¹⁵ and tris(2,4-di-*tert*-butylphenyl)phosphite gave cleanly **3–5** in good yields (Scheme 1). The straightforward synthesis of **4** illustrates the potential of this method for the ready preparation of a variety of cationic gold(i) complexes with bulky dialkylbiarylphosphane ligands.^{16,17} Importantly, transmetalation

Scheme 1 Synthesis of cationic $[AuL(tmbn)]SbF_6$ and $[Au_2(L-L)-(tmbn)_2](SbF_6)_2$ complexes.

^a Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain. E-mail: mapericas@icia.es, aechavarren@icia.es

^b Departament de Química Orgànica, Universitat de Barcelona, 08028 Barcelona, Spain

^c Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain

[†] Electronic supplementary information (ESI) available: Synthesis of starting substrates, characterization and X-ray crystallographic data. CCDC 805890 (1), 805790 (2a), 805794 (2b), and 805792 (9). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c1cc10293a

with NHC–AgCl complexes provided cationic NHC–gold(1) complexes **6** and **7** in good yields.^{2*a*,3} Mixing complex **1** with 0.5 equivalents of bidentate ligands led to complexes $[Au_2(L-L)(tmbn)_2](SbF_6)_2$ **8** and **9**, whose structure was confirmed by X-ray diffraction.¹⁸

Complexes [AuL(tmbn)]SbF₆ **4** and **5** formed *in situ* from **1** led to almost identical site-selectivities in the addition of dibenzoylmethane to enyne **10** to those obtained with the isolated complexes bearing different nitrile ligands as catalysts^{2 α} (Table 1, entries 1–4). Results with the preformed or prepared *in situ* catalyst **6** were almost identical (Table 1, entries 5 and 6). Importantly, enantioselectivities¹⁹ obtained in [4+2]-cyclo-additions of aryl-substituted enynes¹⁶ and intermolecular cyclo-propanation of alkenes with propargylic carboxylates²⁰ using preformed complexes **8** or **9** were the same as those obtained with catalysts formed *in situ* from **1** and (*R*)-DTBM–MeO–BIPHEP or (*R*)-DTBM–SEGPHOS.^{20,21}

Supported cationic Au¹ complexes PS_{1-3} –PAu were readily prepared by simple treatment of P-functionalized polystyrene resins PS_{1-3} –P with $[Au(tmbn)_2]SbF_6$ (1) (Scheme 2). The catalytic performance of PS_{1-3} –PAu was probed in the skeletal rearrangement of enyne 12a, a reaction that can give rise to 1,3-dienes 13a and 14a (Table 2).²² Although the three supported catalysts PS_{1-3} –PAu were active, the most satisfactory results were obtained using PS_2 –PAu bearing a pinacolyl phosphite ligand. The same results were obtained with PS_2 –PAu

Table 1 Addition of dibenzoylmethane to ensure 10 with isolated orin situ generated Au(1) catalysts^a

Entry Catalyst (mol%) Time/n	nin $(11a/11b \text{ ratio})$
1^{b} 1 (6) + JohnPhos (7) 30	30 53 (35 : 65)
2 $[Au(JohnPhos)(NCMe)](SbF_6)$ (5) 30	$85(33:67)^{2a}$
3^c 1 (6) + (ArO) ₃ P ^d (7) 15	69 (75 : 25)
4 $[Au((ArO)_{3}P)(NCPh)](SbF_{6})^{d}(5) = 20$	83 $(77:23)^{2a}$
5 1 (6) + ImesAgCl (7) 20	$84^{e}(2:98)$
6 6 (5) 20	$86 (<1:99)^{2a}$

^{*a*} Reactions with 5 equiv. of NuH. Reactions in entries 2, 4, and 5 were carried out with a slight excess of L ligand to form 5 mol% of [AuL(tmbn)]SbF₆ + 1 mol% of inactive [AuL₂]SbF₆. ^{*b*} Reaction in the presence of **2b** (6 mol%). ^{*c*} Reaction with AgNTf₂ (12 mol%). ^{*d*} Ar = 2,4-*t*-Bu₂C₆H₃. ^{*e*} Yield determined by ¹H NMR.

Scheme 2 Synthesis of supported PS_{1-3} -PAu catalysts.

Table 2 Skeletal rearrangement of 12a with PS_{1-3} -PAu and reference catalysts

Entry	12	Catalyst (mol%)	Time/min	Yield (%) (13/14 ratio)
1	12a	$[AuCl(PPh_3)] (2) + AgSbF_6 (2)$	25	91 $(100:0)^{22}$
2	12a	PS_1 -PAu (5)	30	100 (85 : 15)
3	12a	PS_2 -PAu (2)	5	85 (100 : 0)
4	12a	PS_3 -PAu (2)	60	53 (100 : 0)
5	12b	$[AuCl(PPh_3)] (2) + AgSbF_6 (2)$	5	91 $(1:1.1)^{22}$
6	12b	PS_2 -PAu (2)	30	69 (1.6 : 1)
7	12c	$[AuCl(PPh_3)] (2) + AgSbF_6 (2)$	20	$82(1:2)^{22}$
8	12c	PS_2 -PAu (4)	480	81 (1:9.3)

using non-dry, reagent grade CH₂Cl₂. Remarkably, the skeletal rearrangement of **12a** to **13a** could be repeatedly performed with the same sample of **PS₂-PAu**. In this series of experiments, symptoms of partial catalyst deactivation only started to appear after the 8th recycling (Fig. 2), but full conversion can still be achieved by slightly extending the reaction time. It is interesting to note that the supported phosphite Au(1) catalyst **PS₂-PAu** provided the *endo*-type rearranged product **14c** from 1,6-enyne **12c** with a better selectivity than that obtained with [AuCl(PPh₃)] and AgSbF₆²² (Table 2, entry 7). Excellent results were also obtained using **PS₂-PAu** in the methoxycyclization of 1,6-enynes **12a** and **12d** (Scheme 3).²²

In summary, a variety of catalytically active $[AuL(tmbn)](SbF_6)$ and $[Au_2(L-L)(tmbn)_2](SbF_6)_2$ complexes can be readily prepared from air-stable $[Au(tmbn)_2](SbF_6)$ (1). Catalysts prepared *in situ* from 1 show almost identical selectivities to those of isolated complexes, which could allow for the rapid screening

Fig. 2 Recycling of the supported catalyst PS_2 -PAu in the skeletal rearrangement of 12a to 13a. All reactions were run with 5 mol% catalyst in CH₂Cl₂ for 10 min. The catalyst was recovered by filtration, washed with CH₂Cl₂ and used for the following run.

Scheme 3 Methoxycyclization of 12a and 12b with PS_2 -PAu as the catalyst.

of the optimal catalyst to achieve the desired chemo- or enantioselectivity in new transformations. Complex 1 can also be used for the straightforward preparation of supported catalysts, as demonstrated in the case of PS_2 -PAu, which shows an excellent recyclability.

We thank the MICINN (CTQ2010-16088/BQU, CTQ2008-00947/BQU, and Consolider Ingenio 2010, Grant CSD2006-0003), the AGAUR (2009SGR47 and 2009SGR623), and the ICIQ Foundation for financial support.

Notes and references

- (a) E. Jiménez-Núñez and A. M. Echavarren, *Chem. Rev.*, 2008, 108, 3326–3350; (b) D. J. Gorin, B. D. Sherry and F. D. Toste, *Chem. Rev.*, 2008, 108, 3351–3378; (c) V. Michelet, P. Y. Toullec and J. P. Genêt, *Angew. Chem., Int. Ed.*, 2008, 47, 4268–4315; (d) A. S. K. Hashmi, *Chem. Rev.*, 2007, 107, 3180–3211; (e) A. Fürstner, *Chem. Soc. Rev.*, 2009, 38, 3208–3221.
- 2 (a) C. H. M. Amijs, V. López-Carrillo, M. Raducan, P. Pérez-Galán, C. Ferrer and A. M. Echavarren, J. Org. Chem., 2008, 73, 7721–7730; (b) D. Benitez, N. D. Shapiro, E. Tkatchouk, Y. Wang, W. A. Goddard III and F. D. Toste, Nat. Chem., 2009, 1, 482–486; (c) G. C. Fortman and S. P. Nolan, Organometallics, 2010, 29, 4579–4583.
- 3 (a) S. P. Nolan, Acc. Chem. Res., 2010, 44, 91–100; (b) S. Gaillard, P. Nun, A. M. Z. Slawin and S. P. Nolan, Organometallics, 2010, 29, 5402–5408.
- 4 (a) N. Mézailles, L. Ricard and F. Gagosz, Org. Lett., 2005, 7, 4133–4136; (b) A. S. K. Hashmi, M. C. Blanco, E. Kurpejovic, W. Frey and J. W. Bats, Adv. Synth. Catal., 2006, 348, 709–713; (c) A. S. K. Hashmi, A. Loos, A. Littmann, I. Braun, J. Knight, S. Doherty and F. Rominger, Adv. Synth. Catal., 2009, 351, 576–582; (d) H. Ito, H. Ohmiya and M. Sawamura, Org. Lett., 2010, 12, 4380–4383; (e) M. Alcarazo, T. Stork, A. Anoop, W. Thiel and A. Fürstner, Angew. Chem., Int. Ed., 2010, 49, 2542–2546; (f) M. Pazicky, A. Loos, M. J. Ferreira, D. Serra, N. Vinokurov, F. Rominger, C. Jäkel, A. S. K. Hashmi and M. Limbach, Organometallics, 2010, 29, 4448–4458.
- C. Bartolomé, M. Carrasco-Rando, S. Coco, C. Cordovilla, J. M. Martín-Alvarez and P. Espinet, *Inorg. Chem.*, 2008, 47, 1616–1624; (b) C. Bartolomé, Z. Ramiro, P. Pérez-Galán, C. Bour, M. Raducan, A. M. Echavarren and P. Espinet, *Inorg. Chem.*, 2008, 47, 11391–11397; (c) C. Bartolomé, Z. Ramiro, D. García-Cuadrado, P. Pérez-Galán, M. Raducan, C. Bour, A. M. Echavarren and P. Espinet, *Organometallics*, 2010, 29, 951–956; (d) C. Bartolomé, D. García-Cuadrado, Z. Ramiro and P. Espinet, *Inorg. Chem.*, 2010, 49, 9758–9764; (e) A. S. K. Hashmi, T. H. C. Lothschütz and F. Rominger, *Adv. Synth. Catal.*, 2010, 352, 1315–1337.
- 6 (a) V. Lavallo, G. D. Frey, S. Kousar, B. Donnadieu and G. Bertrand, *Proc. Natl. Acad. Sci. U. S. A.*, 2007, 104, 13569–13573; (b) G. D. Frey, R. D. Dewhurst, S. Kousar, B. Donnadieu and G. Bertrand, *J. Organomet. Chem.*, 2008, 693, 1674–1682; (c) X. Zeng, M. Soleilhavoup and G. Bertrand, *Org. Lett.*, 2009, 11, 3166–3199; (d) X. Zeng, G. D. Frey, S. Kousar and G. Bertrand, *Chem.-Eur. J.*, 2009, 15, 3056–3060.
- 7 (a) K. J. Kilpin, U. S. D. Paul, A.-L. Lee and J. D. Crowley, *Chem. Commun.*, 2010, **47**, 328–330; (b) H. Teller, S. Flügge, R. Goddard and A. Fürstner, *Angew. Chem., Int. Ed.*, 2010, **49**, 1949–1953.
- 8 For the use of benzotriazole as weak ligand in Au(1)-catalyzed reactions: (a) H. Duan, S. Sengupta, J. L. Petersen, N. G. Akhmedov and X. Shi, J. Am. Chem. Soc., 2009, 131, 12100–12102; (b) Y. Chen, W. Yan, N. G. Akhmedov and X. Shi, Org. Lett., 2010, 12, 344–347.
- 9 (a) [Au(NCMe)₂](ClO₄) was obtained in low yield by treating gold powder with NOClO₄ in MeCN: G. Bergerhoff, Z. Anorg. Allg. Chem., 1964, **327**, 139; (b) [Au(NCMe)₂](SbF₆) was isolated and characterized by the solvolysis of [Au(CO)₂](Sb₂F₁): H. Willner,

J. Schaebs, G. Hwang, F. Mistry, R. Jones, J. Trotter and F. Aubke, J. Am. Chem. Soc., 1992, **114**, 8972–8980; (c) $[Au(NCMe)_2](SbCl_6)$ was prepared from AuCl with SbCl₅ in acetonitrile: A. P. Zuur and W. L. Groeneveld, Recl. Trav. Chim. Pays-Bas, 1967, **86**, 1089–1102; (d) Acetonitrile solutions of Au⁺ with weakly coordinating anions have been obtained by electrochemical methods: R. Kissner, P. Latal and G. Geier, Chem. Commun., 1993, 136–137, and references therein.

- 10 Salts containing the [Au(NCMe)₂]⁺ cation were used for the synthesis of other bis-nitrile gold(1) complexes: (a) F. Farha and R. T. Iwamoto, *Inorg. Chem.*, 1965, **4**, 844–848; (b) K. D. Shimizu and J. Rebek, *Proc. Natl. Acad. Sci. U. S. A.*, 1996, **93**, 4257–4260.
- 11 The oxidation of Au metal with nitrosonium salts gave $[Au(NCPh)_2]^+A^-$ (A = BF₄ and SbF₆) in low yield. Contrary to that stated, yields based on gold for the preparation of $[Au(NCPh)_2]^+A^-$ with NOBF₄ or NO₂SbF₆ were 40% (A = BF₄) and 15% (A = SbF₆) since excess gold metal (1.9–4.3 equiv.) was used: Y. J. Yau and D. M. P. Mingos, *J. Chem. Soc., Dalton Trans.*, 1997, 1103–1111. Similarly, $[Au(NCtBu)_2]^+BF_4^-$ was prepared in 25% yield based on gold.
- 12 Heterogenized Au(i) catalysts: (a) A. Corma, E. Gutierrez-Puebla, M. Iglesias, A. Monge, S. Perez-Ferreras and F. Sanchez, Adv. Synth. Catal., 2006, 348, 1899–1907; (b) A. Corma, C. Gonzalez-Arellano, M. Iglesias, S. Perez-Ferreras and F. Sanchez, Synlett, 2007, 1771–1774; (c) Y. Yang, B. Beele and J. Blümel, J. Am. Chem. Soc., 2008, 130, 3771–3773.
- Lead references on heterogenized Au(III) catalysts: (a) J. Guzman and B. C. Gates, Angew. Chem., Int. Ed., 2003, 42, 690–693;
 (b) J. C. Fierro-Gonzalez, V. A. Bhirud and B. C. Gates, Chem. Commun., 2005, 5275–5277; (c) V. Aguilar-Guerrero and B. C. Gates, Chem. Commun., 2007, 3210–3212; (d) C. del Pozo, A. Corma, M. Iglesias and F. Sanchez, Organometallics, 2010, 29, 4491–4498; (e) A. K. Ganai, R. Bhardwaj, S. Hotha, S. S. Gupta and B. L. V. Prasad, New J. Chem., 2010, 34, 2662–2670.
- 14 A new complex [Ag(MeCN)₂](SbF₆) (**2b**) was also prepared as a non-hygroscopic and relatively light stable silver(1) complex. See ESI† for details.
- 15 (a) R. Martin and S. L. Buchwald, Acc. Chem. Res., 2008, 41, 1461–1473; (b) D. S. Surry and S. L. Buchwald, Angew. Chem., Int. Ed., 2008, 47, 6338–6361.
- 16 (a) C. Nieto-Oberhuber, S. López and A. M. Echavarren, J. Am. Chem. Soc., 2005, 127, 6178–6179; (b) C. Nieto-Oberhuber, P. Pérez-Galán, E. Herrero-Gómez, T. Lauterbach, C. Rodríguez, S. López, C. Bour, A. Rosellón, D. J. Cárdenas and A. M. Echavarren, J. Am. Chem. Soc., 2008, 130, 269–279.
- 17 (a) E. Herrero-Gómez, C. Nieto-Oberhuber, S. López, J. Benet-Buchholz and A. M. Echavarren, Angew. Chem., Int. Ed., 2006, 45, 5455–5459; (b) P. Pérez-Galán, N. Delpont, E. Herrero-Gómez, F. Maseras and A. M. Echavarren, Chem.-Eur. J., 2010, 16, 5324–5332.
- 18 The Au–Au distance in 9 is 3.75 Å, outside the range (2.5–3.5 Å) considered significant for aurophilic interactions. See: (a) H. Schmidbaur and A. Schier, *Chem. Soc. Rev.*, 2008, 37, 1931–1951. The Au–Au in the related complex (S)-BIPHEP(AuCl)₂ is 3.099 Å: (b) K. Aikawa, M. Kojima and K. Mikami, *Angew. Chem., Int. Ed.*, 2009, 48, 6073–6077.
- 19 Recent review on asymmetric gold catalysis: S. Sengupta and X. Shi, *ChemCatChem*, 2010, **2**, 609–619.
- 20 M. J. Johansson, D. J. Gorin, S. T. Staben and F. D. Toste, J. Am. Chem. Soc., 2005, 127, 18002–18003.
- 21 Details on the enantioselective gold(1)-catalyzed cycloadditions will be reported separately.
- 22 (a) C. Nieto-Oberhuber, M. P. Muñoz, S. López, E. Jiménez-Núñez, C. Nevado, E. Herrero-Gómez, M. Raducan and A. M. Echavarren, *Chem.-Eur. J.*, 2006, **12**, 1677–1693; (b) C. Nieto-Oberhuber, M. P. Muñoz, S. López, E. Jiménez-Núñez, C. Nevado, E. Herrero-Gómez, M. Raducan and A. M. Echavarren, *Eur. J. Org. Chem.*, 2006, 1677–1693; (c) C. Ferrer, M. Raducan, C. Nevado, C. K. Claverie and A. M. Echavarren, *Tetrahedron*, 2007, **63**, 6306–6316.