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The nickel complexes 1+–3+ exhibit a delocalized radical

character, the extent of which depends on the electronic

properties of the phenolate para-substituent.

Phenoxyl radicals coordinated to divalent or trivalent metal ions

are the focus of considerable interest since the discovery of a CuII-

tyrosyl radical entity in the active site of galactose oxidase.1 Several

CuII-coordinated phenoxyl radicals have been characterized during

the last decade in order to mimic the enzyme active site.2 Recently,

nickel complexes of pro-radical,3 and more specifically pro-

phenoxyl,4–7 ligands (the phenolate moiety is substituted by

electron-donating groups) have emerged in the literature.

Compared to CuII-phenoxyl complexes, they exhibit ligand and

metal redox active orbitals that are closer in energy. Consequently,

either NiII-phenoxyl or NiIII-phenolate redox state are expected to

be reached upon one-electron oxidation, making these compounds

particularly interesting. A more striking feature has been recently

reported for some nickel-salen complexes in non coordinating

solvents: The ligand SOMO is found to be delocalized over the

metal, affording a ‘‘delocalized radical’’.5–7 We present herein a

series of nickel-radical salen complexes 1+–3+ that exhibit this

delocalized radical character. For the first time we show that the

degree of delocalization could be modulated by the electron-

donating properties of phenolate para-substituent R (Fig. 1). In

addition, we found that it greatly influences the affinity of

exogenous ligands for the metal, and thus the ability of

the complexes to exhibit valence tautomerism properties

(tetracoordinated NiII-phenoxyl « octahedral NiIII-phenolate

transformation). The tautomerism being accompanied by a

thermochromism, such compounds are of growing interest in the

development of molecular memories and switches.8

1 has been previously reported,5 while the low spin NiII

complexes 2 and 3H2
2+ were obtained by in situ synthesis.{ 3H2

2+

was deprotonated into 3 in situ by adding NEt3. The X-Ray crystal

structures of 15 and 3H2
2+{ shows a square planar geometry

around the nickel atom that confirms its low spin nature. The UV-

Vis spectra of 1, 2 and 3 (Fig. 2a) exhibit intense absorption bands

at 494 (10 500 M21 cm21), 517 (9970 M21 cm21) and 542 nm

(8050 M21 cm21) respectively that correspond to CT transitions.9

As expected, the more electron-donating NMe2 substituent gives

rise to the longest wavelength absorption.
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Fig. 1 Complexes used in this study.

Fig. 2 Electronic spectra of CH2Cl2 solutions of: (a) 1 (4 6 1025 M,

solid lines), 2 (5.3 6 1025 M, dashed lines) and 3 (5.7 6 1025 M, dotted

lines) at 298 K. (b) The electrogenerated 1+ (5 6 1025 M, solid lines), 2+

(3.3 6 1025 M, dashed lines) and 3+ (5 6 1025 M, dotted lines) at 233 K.

The electrolytic solutions contain 0.005 M TBAP. l = 1.000 cm.
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The cyclic voltammetry curves of 1 and 3 are characterized by

two reversible one-electron-redox waves at E1/2
1 = 582 mV, E1/2

1 =

802 mV, and E1/2
1 = 2144 mV, E1/2

2 = 3 mV (vs. Fc/Fc+)

respectively, while a single one-electron oxidation wave is observed

at E1/2
1 = 356 mV for 2.10 The shift in E1/2

1 according to the

electronic properties of the phenolate para-substituent suggests a

participation of the ligand in the oxidation locus.

The one-electron oxidized species 1+, 2+ and 3+ were generated

electrochemically in CH2Cl2 containing 0.1 M TBAP as support-

ing electrolyte. The UV-Vis spectra of the corresponding cations

1+, 2+ and 3+ (Fig. 2b) are characterized by intense transitions in

the whole spectrum.9 The bands observed in the NIR region are

attributed to intervalence CT transitions,7 while those in the 400–

650 nm region may correspond to a combination of p–p*

transitions of phenoxyl radicals11 and phenolate-Ni CT transitions.

The 233 K EPR spectrum of 1+ in CH2Cl2 (Fig. 3) is

characterized by an isotropic signal at a giso value of 2.034, i.e.

value intermediate between that of the phenoxyl radical complex

of the zinc analogue of 1, namely 1Zn
+,12 and those of NiIII

complexes.13 1+ has thus a radical character with partial

delocalization onto the orbital of the nickel ion. At 100 K in

anhydrous CH2Cl2 the EPR spectrum consists of a rhombic signal

at g1 = 2.06 (broad), g2 = 2.014, g3 = 1.991 (see ESI{)14 that again

argues in favour of a delocalized radical with a contribution from

the nickel orbital. This assumption is confirmed by DFT

calculations at the B3LYP level (Fig. 4), showing a 6.6%

Mulliken contribution of a nickel orbital (mainly dyz) to the total

spin density. In addition, the ligand SOMO (Fig. 4) is found to be

equally developed on both phenoxyl moieties pointing out

stabilization of the radical by resonance.

In the presence of two molar equivalents of pyridine the 100 K

EPRspectrum dramatically changesandbecomes typical fora NiIII

ion, with hyperfine coupling in each of the three g-components

(gxx = 2.200, gyy = 2.168, gzz = 2.027, Axx = Ayy = 1.65 mT, Azz =

2.14 mT).5 The well-resolvedquintuplet in thehigh fieldcomponent

is the signature of a six-coordinate NiIII adduct 1Py
+ with two

pyridines axially bonded. Upon pyridine ligation, the metal

geometry is converted from square planar to octahedral, thus

changing the energy of the nickel orbitals. As has been recently

suggested,5,7 an intramolecularelectrontransfer (valence tautomer-

ism) occurs, shifting the electronic hole from the ligand to the metal.

The 233 K EPR spectrum of 2+ in CH2Cl2 is dominated by an

isotropic signal at giso = 2.017 (Fig. 3). This giso value is again

higher than that of 1Zn
+, but significantly lower than that of 1+

and previously reported nickel-delocalized phenoxyl radicals.5–7 In

addition, the signal is much sharper than that of 1+. 2+ is thus

again a delocalized radical, but the contribution of nickel orbitals

is less pronounced than in recently reported systems that are

apparently similar. This fact is further confirmed by the nearly

isotropic nature of the EPR signal at 100 K. In agreement with

these findings, DFT calculations reveal that the nickel contribution

to the total spin density is only 4.7% (Fig. 4), while a significant

spin density is delocalized onto the methoxyl oxygen. Similarly to

1+, the ligand SOMO of 2+ is equally developed on both phenoxyl

moieties. Addition of pyridine to 2+ promotes valence tautomer-

ism, as it does for 1Py
+, affording the NiIII species 2Py

+. The spin

Hamiltonian parameters obtained from simulation of the EPR

spectrum of 2Py
+ were found virtually similar to those of 1Py

+: In

the presence of pyridine, the nickel orbitals are thus poorly affected

by the electronic properties of the phenolate para-substituent. In

contrast, the affinity of pyridine for 2+ was found to be 30-times

lower than for 1+ at 263 K.15 This lower affinity is correlated to the

degree of delocalization of the spin density on the metal. Pyridine

is known to bind strongly to NiIII ions (its affinity for

tetracoordinated NiII ions is much lower), thus the weaker

electronic hole on the nickel atom of 2+ (more marked NiII

character) lowers its affinity for pyridine.

The EPR spectrum of 3+ at 233 K was found to be dramatically

different than those of 1+ and 2+. 3+ exhibits an isotropic signal at

giso = 2.006 with hyperfine splitting (interaction of the electron spin

Fig. 3 X-Band EPR spectra of CH2Cl2 solutions (anhydrous + 0.1 M

TBAP) of 1+ (1 mM), 2+ (0.5 mM) and 3+ (1 mM) at 233 K. Microwave

Freq.: 9.42 GHz, power: 20 mW, Mod. Freq.:100 KHz, Amp. 0.4 mT (1+),

0.05 mT (2+, 3+).

Fig. 4 Optimized structures and calculated SOMO for 1+, 2+ and 3+;

The Mulliken contribution of the nickel orbitals (mainly the dyz) to the

total spin density is indicated.
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with NMe2 nitrogen and hydrogen atoms). The giso value is very

close to that reported for 1Zn
+ showing that, among the series, 3+

has the strongest radical character. The very limited contribution

of the nickel orbitals to the total spin density is also apparent from

DFT calculations (Fig. 4). It is only 1.8% for 3+, while a significant

spin density is delocalized on the NMe2 nitrogen. This delocaliza-

tion could be also visualized through the planarity between the

NMe2 group and the phenoxyl ring. Addition of pyridine to 3+ in

CH2Cl2 results in a total loss of the EPR signal, suggesting that

the pyridine adduct decomposes quickly. The chemical stability of

the pyridine adduct thus appears correlated to the nature of the

phenolate para-substituent. Increasing its electron-donating prop-

erties results in a lower chemical stability of the corresponding NiIII

complexes.

In conclusion, in one-electron oxidized NiII bis-salicylidene

phenylenediamine complexes the electronic hole could be shifted

by modifying the electronic properties of the phenolate para-

substituent. The affinity of exogenous ligands for the complex, and

thus its potentiality to exhibit valence tautomerism, is greatly

influenced by the degree of delocalization.
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