Oxygen, sulfur, selenium and tellurium[†]

Pravat Bhattacharyya* DOI: 10.1039/b508257a

As in previous years, this review will emphasise synthetic, structural and spectroscopic aspects of discrete molecular species containing Group 16 elements. Notable advances include the increasing prominence of organo-chalcogen-nitrogen heterocycles for materials applications and the wealth of structural motifs and forms of reactivity afforded by simple chemical transformations.

1. Sulfur, selenium and tellurium

We begin by reviewing carbon-free rings, cages and clusters. [As₃S₅][AlCl₄] and [As₃Se₄][AlCl₄] are obtained by reaction of S₈ or selenium respectively with As-AsCl₃-AlCl₃ melts at 80 °C, followed by slow cooling to 50 °C.¹ The cation structures are derived from As_3E tetrahedra (E = S or Se) with three edge-bridging selenium atoms in $[As_3Se_4]^+$ and four edge-bridging sulfurs in $[As_3S_5]^+$. The geometry, phase stability and electronic properties of isolated selenium chains incorporated into nanoporous AlPO₄-5 crystals were investigated,² [2,2,2-crypt-Na]⁺ salts of $[Tl_4Se_8]^{4-}$ and $[Tl_2Se_4]^{2-}$ are generated by extracting NaTl_{0.5}Se into ethylenediamine in the presence of 2,2,2-crypt and 18-crown-6,³ and [cyclo-Te₄] [Ga₂Br₇]₂ is available from the reaction between Te and GaBr₃ in benzene.⁴ Potential energy hypersurfaces of S_7 and of $[LiS_7]^+$ were investigated by Steudel and coworkers using *ab initio* MO calculations at the G3X(MP2) level of theory.⁵ The boatlike *cyclo*-S₇ conformer is less stable (by ≈ 12 kJ mol⁻¹) than the chairlike form, for the fifteen $[LiS_7]^+$ complexes modelled, the calculated binding energies were -93.8 to -165.7 kJ mol⁻¹. The same workers have also investigated Li⁺ complex formation with H₂S, Me₂S_n (n = 1-5) and isomers of S₆.⁶ The first telluradistibirane and telluradibismirane $(Bbt)_2E_2Te$ (E = Sb or Bi), containing E_2Te rings, were obtained by treating (Bbt)E = E(Bbt) with "Bu₃PTe at room temperature." The telluradistibirane is stable in solution up to 140 °C, whereas the bismuth analogue eliminates (Bbt)Bi=Bi(Bbt) and (Bbt)₂Te₂ at 100 °C. The S-S bond order in $[S_2I_4]^{2+}$, judged by crystallography, vibrational spectroscopy and normal co-ordinate analysis to be 2.2-2.4, is among the highest values determined for heavier maingroup elements in an isolated compound.⁸ Passmore and Laitinen have applied MP2, B3PW91 and PBE0 methods to predict structural and spectroscopic parameters for $[SeX_3]^+$ and SeX_2 (X = Cl, Br or I),⁹ finding close agreement with experimental data, while the mixed-valence bromoselenate $[Et_4N]_2[Se_3Br_8(Se_2Br_2)]$ is accessible from the reaction between selenium and Br2 in acetonitrile, in the presence

GDC, 37 Wimpole Street, London, UK. E-mail: Pbhattacharyya@gdc-uk.org; Fax: +44 020 7224 3294; Tel: +44 020 7887 3889

† This chapter reviews the literature reported during 2005 on the chemistry of the Group 16 elements.

150 | Annu. Rep. Prog. Chem., Sect. A, 2006, 102, 150-159

of $[Et_4N]Br.^{10}$ Highlights from the field of "inorganic" chalcogen-nitrogen systems include investigations into the bonding and spectroscopic properties of $[CoCp(S_2N_2)]$,¹¹ the unexpected availability of Se₄N₄ from reactions of Ph₂SNBr with selenium sources (Ph₃PSe, Me₃PSe, Et₃AsSe or selenium)¹² and synthesis of *tris*(pentafluorophenyl)boron adducts of OTe(μ -NBu^t)₂TeNBu^t and [OTe(μ -NBu^t)₂-Te(μ -O)]₂ upon hydrolysis of ^tBuNTe(μ -NBu^t)₂TeNBu^t by (C₆F₅)₃B·H₂O.¹³ Passmore and co-workers have isolated [SNS][SbF₆] by reacting either S₃N₂Cl₂ or (NSCl)₃ with Ag[SbF₆] and S₈ in liquid SO₂;¹⁴ the [SNS]⁺ cation participates in a cycloaddition reaction with 1,4-benzoquinone, affording a benzo-1,3,2-dithiazolylium salt.¹⁵ The reaction between Ph₂SNH and Ph₂FS \equiv N in the presence of dbu produces Ph₂S(=N–Ph₂S \equiv N)₂, which has two terminal S \equiv N bonds.¹⁶

Chalcogenadiazoles and dichalcogenadiazoles (C₂EN₂ and CE₂N₂ rings, respectively), when fused to aromatic ring systems, exhibit useful conducting and optical properties;^{17–30} prominent results include the synthesis of a biradical containing 1,2,3,5- and 1,3,2,4-isomeric dithiadiazolyl rings,²³ the polymorphism of the sterically crowded radical 2,4,6-(CF₃)₃C₆H₂CNSSN[•],²¹ and the first monomeric π -stacked *bis*-1,2,3-thiaselenazolyl radical.¹⁹

Moving onto chalcogen-halogen species, the phenylselenium(IV) trihalides PhSeX₃ (X = Cl or Br), derived by halogenation of Ph_2Se_2 with SO_2Cl_2 or Br_2 , exhibit very different structures.³¹ The trichloride forms polymeric chains analogous to other RSeCl₃, whereas PhSeBr₃ is not isostructural with either PhSeCl₃ or PhTeBr₃, displaying instead a combination of molecular, ionic and charge-transfer bonding modes. Treatment of R_2Te_2 (R = Ph or β -naphthyl) with I_2 and $[Et_4N]I$ affords $[Et_4N][RTeI_4]$ ³² metathesis reactions of R₂TeF₂ with Me₃SiCN afford R₂Te(CN)₂ (R = Ph or Mes) or R_2Te $(R = Me \text{ or } Trip).^{33} [Te(CN)_4(MeCN)_2]_n$ and $[Te(CN)_4(thf)_3]_n$ are available by reacting TeF₄ with Me₃SiCN in acetonitrile or thf, respectively; both polymers comprise trigonal pyramidal [Te(CN)₃] units linked by CN groups, but differ in the connectivities of the [Te(CN)₃] moieties and coordination of the solvent molecules.³⁴ Raman spectroscopy of SO₂ dissolved in HF-SbF₅ at -90 °C reveals that, in addition to the known adduct SO₂ · SbF₅, the protonated species [FS(OH)₂][SbF₆] is generated.³⁵ This salt was also characterised crystallographically. Fluoride abstraction during the reaction of SF₆ with $|Ti(\eta^5-1,3-1)|$ $C_5H_3^{t}Bu_2$)(6,6-dimethylcyclohexadienyl)(PMe_3)] affords [Ti(η^5 -1,3- $C_5H_3^{t}Bu_2$)F₂]₄.³⁶ Oxysulfur radicals SF_5O_x (x = 0-3) were analysed in an O₂ matrix at 16 K by IR spectroscopic and DFT methods;³⁷ such species are likely oxidation products upon photolysis of SF₆ in the upper atmosphere. Turning now to halogen adducts of Group 16-containing molecules, the reaction of benzimidazole-2-thione (mbzim) with I_2 generates {[(mbzim)₂I][I₃]} · [(mbzim) · I₂], which contains ionic (for the cation) and "spoke" (for the I₂ adduct) structural forms.³⁸ Diiodine adducts of N,N'-dimethylperhydrodiazepine-2,3-dithione and NH(Ph₂PS)₂ dissolve Pd and Au powders, respectively,^{39,40} the palladium reaction being of possible importance for recovery of this metal from spent catalytic converters, and thioether adducts $(PhCH_2)_2S \cdot IX (X = Cl \text{ or } Br)$ were structurally characterised.⁴¹

Frère and Skabara have reviewed the relationships between the molecular structures of the salts of extended tetrathiafulvalene analogues with their electrochemical properties and stacking modes,⁴² and *peri*-ditellurium bridged polyacenes were examined crystallographically as neutral molecules and, upon oxidation, as radical cations.⁴³ In the newly described β -polymorph of C₆S₈, the dihedral angle between the C₃S₅ planes along the S–S axis of the central 1,4-dithine ring is 133°, whereas in α -C₆S₈ the molecule is essentially planar.⁴⁴ Slow concentration of a carbon disulfide solution of C_{60} and Se_8 affords a co-crystal $C_{60} \cdot Se_8 \cdot CS_2$, in which Se_8 and CS_2 molecules fill octahedral voids of the distorted hexagonally close-packed fullerene molecules.⁴⁵ The reaction of PhCS₃Cl and Ag[MF₆] (M = As or Sb) gives trithietanylium salts [PhCS₃][MF₆], the 6π -CSSS⁺ ring being calculated to possess some aromatic character.⁴⁶ Reports on phosphorus-chalcogencompounds include a new route for the bulk-scale preparation of the selenating agent [PhP(Se)]₂ (Woollins' Reagent),⁴⁷ ammonium salts of pyridine-stabilised monometatrithiophosphate [py \rightarrow PS₃]^{-,48} and the synthesis and reactivity of *O*-acylselenophosphates⁴⁹ and enantiomerically pure *P*-chiral phosphinoselenoic chlorides.⁵⁰

We focus now on the co-ordination chemistry of chalcogen donor ligands, beginning with phosphorus chalcogenides. The first ditelluroimidodiphosphinate complexes were reported: $Na[N(Pr_2^iPTe)_2]$ reacts with the appropriate metal halides to form $[M{N(Pr^{i}_{2}PTe)_{2}-Te,Te'}_{2}]$ (M = Zn, Cd or Hg) or $[M{N(Pr^{i}_{2}PTe)_{2}-Te,Te'}_{3}]$ for antimony or bismuth,⁵¹ by contrast, bi- and trimetallic complexes with central M₂Te₂ and M₃Te₃ rings were obtained with gallium(III) and indium(III).⁵² Squareplanar $[M{N(Pr_2^iPSe)_2-Se,Se'}_2]$ (M = Sn or Se) were prepared by reaction of $K[N(Pr_{2}^{i}PSe)_{2}]$ with tin(II) chloride or $Se\{S_{2}P(OPr_{2}^{i})_{2}\}_{2}^{53}$ The formation of zinc phosphate polymers from insertion reactions of metathiophosphates into zinc dialkyldithiophosphates was explored using molecular simulation techniques,⁵⁴ the reaction between [Cu(MeCN)₄][BF₄], dppm and dialkyldithiophosphates affords polynuclear copper(1) complexes with bridging diphosphine ligands.⁵⁵ A macrocyclic silver(1) complex [Ag₁₂(PhS₂P-PS₂Ph)₆(dppeS)₆] was generated upon oxidation of the one-dimensional co-ordination polymer $[{Ag_2(PhS_2P-PS_2Ph)(dppe)} \cdot dppe],^{56}$ complexes containing tripodal $[AnPOS_2]^{2-}$ and $[AnPS_3]^{2-}$ ligands were synthesised from metal alkoxides and carboxylates using Lawesson's Reagent.⁵⁷ Crystallisation Ag[O₂CCF₃] from chloroform solutions containing Ph₃PS affords of {[(CF₃CO₂)Ag]₆(Ph₃PS)₄}, which has a 24-membered [AgOCO]₆ ring.⁵⁸

Oxidative addition reactions from appropriate precursors deliver naphthalene-1,8dithiolate and biphenyl-2,2'-dithiolate complexes of titanium(IV),⁵⁹ phenylchalcogenate complexes [SmCp*₂(EPh)(thf)] and [SmCp*₂(μ -EPh)]₂ (E = S, Se or Te)⁶⁰ and trigonal-bipyramidal platinum(II)-phenylseleno complexes.⁶¹ Estimates of E–E and Cr–E bond strengths (E = Se or Te) were made from kinetic measurements of reactions involving [CrCp*(CO)₃] and Ph₂E₂,⁶² application of DFT methods to the oxidative addition of R₂E₂ (R = H or Me; E = S, Se or Te) to [M(PR'₃)₂] (R' = H or Me; M = Pd or Pt) has demonstrated that activation barriers are higher for platinum than palladium for all R, R' and E combinations studied.⁶³

Mono-, bi- and tetranuclear platinum group metal complexes of cyanodiselenoimidocarbonate, $[C_2N_2Se_2]^{2-}$, and triselenocarbonate, $[CSe_3]^{2-}$ were prepared by Woollins and co-workers,^{64,65} ruthenium complexes bearing $[Se_n]^{2-}$ or $[Te_n]^{2-}$ chains were available by reacting [RuClCp(PPh₃)₂] with polychalcogenide salts.⁶⁶ The heterocubane cluster [Rh₃Cp*₃Sb₂S₅], available from [RhCp*Cl(µ-Cl)]₂ and $K_3[SbS_3]$ in boiling thf, has a very short antimony-sulfur distance [2.297(1) Å] which, in conjunction with DFT calculations on model compounds, is strong evidence for a stable Sb=S bond.⁶⁷ Reaction of [Cu(tmeda)(MeCN)][OTf] with S₈ affords [Cu₂(S₂)₂(tmeda)₂][OTf]₂, which was formulated on the basis of UV-Vis, RR and crystallography to possess a $bis(\mu-S_2^{-})$ dicopper(II) core,⁶⁸ the tetranuclear niobium complex $[Nb_4SO_5(NCS)_{10}]^{6-}$ is capped by a μ_4 -sulfido ligand.⁶⁹ The counterion and crystallisation solvent are the dominant factors in determining the solid-state structures of [9]aneS₃ and [18]aneS₆ complexes of platinum(II),⁷⁰ while the first mononuclear selenoaroyl complexes were prepared from molybdenum alkylidyne precursors using mesityl isoselenocyanate.⁷¹ The bicyclic system $CF_3CN_5S_3$ is a monodentate donor through its N5 atom with Zn^{2+} , Co^{2+} and Cu^{2+} , whereas with cadmium(II) bidentate co-ordination (the nitrogen atom adjacent to carbon is the second donor) is supplemented by a Cd \cdots F interaction.⁷² The possible existence of complexes of cyclo-O3 and cyclo-S3 was investigated, using the 18-electron rule to construct candidate species and optimising structures with the DFT-B3LYP method.⁷³ Genuine η^3 complexes of the *cyclo*-E₃ ligands for Groups 6 and 8 metals were suggested to be available with strong π -acceptor co-ligands such as nitrosyl. Voltammetric measurements on Group 8 metal complexes of (formally monoreduced) N-substituted thiazolidine-2,4,5-trithione demonstrate that this new class of dithiolene complex is stable in neutral, monoanionic and dianionic forms.74

Two unusual C–S bond activation reactions have appeared. The alkynylsulfoxide $Me_3SiC \equiv CS(O)(p-tolyl)$ reacts with $[CoCp(PPh_3)_2]$ to give a cobaltosulfoxide complex, which can be further oxidised to a metallosulfone.⁷⁵ CuSCN reacts with methanol and acetonitrile under solvothermal conditions to afford a three-dimensional co-ordination polymer containing dodecanuclear copper(I) clusters with μ_3 -and μ_4 -CH₃S⁻ groups.⁷⁶ This *in situ* generation of thiolate ligands provides a model for the geothermally induced conversion of 'inorganic' sulfur into organosulfur species. Power and co-workers have used the bulky 2,6-Trip₂C₆H₃ aryl group to stabilise quasi two-coordinate dithiolate complexes [M^{II}(SAr)₂] (M = Cr, Mn, Fe, Co, Ni or Zn) which possess almost linear S–M–S axes (with the exception of the Trip rings.⁷⁷ Wieghardt and co-workers have examined the electronic structures of benzene-1,2-dithiolate complexes of iron and concluded that highvalent iron(IV) is not accessible with these ligands,⁷⁸ copper(I) and zinc(II) complexes of

silylchalcogenate ligands have been synthesised,⁷⁹ and sulfur reacts with lanthanocene alkyls to give lanthanide thiolate, sulfide and disulfide species.⁸⁰

The molecular conformations of CH₃N=S(CF₃)₂,⁸¹ FC(O)N=S(O)F₂,⁸² FC(O)SSC(O)CF₃ ⁸³ and E(SCH₃)₂ (E = Se or Te)⁸⁴ were determined by electron diffraction studies and by *ab initio* and DFT geometry optimisation. *Ab initio* MO calculations at the G2(MP2) level demonstrate that branched isomers of dialkyl triselenides RSe(=Se)–SeR (R = Me or Et) are less stable (by ≈ 60 kJ mol⁻¹) than linear RSeSeSeR, casting doubt on claims made during 2004 of their existence.⁸⁵

We conclude this section by reviewing chalcogenide-containing materials. Two new mixed-valent tellurium oxides $A_4[(Te^{6+})_5(Te^{4+})_3]O_{23}$ (A⁺ = Rb⁺ or K⁺) contain corrugated [Te₆O₂₃] layers, constructed from corner-connected TeO₆ octahedra and TeO₅ square pyramids, which are interconnected by tetravalent tellurium atoms.⁸⁶ Two polymorphs of $[(N_2H_4)_2ZnTe]$, prepared at ambient temperatures using solution-based techniques, possess one-dimensional zinc telluride chains whose conformations differentiate the polymorphs.⁸⁷ In related studies [N₂H₅]₄[Ge₂Se₆] and [N₂H₅]₄[Sn₂Se₆] · (N₂H₄)₃ were decomposed to metal selenide films at 200-300 °C.⁸⁸ Two new members of the $(Sb_2Te_3)_m \cdot (Sb_2)_n$ homologous series, Sb_4Te_3 and Sb₈Te₉, were reported,⁸⁹ and the crystal structure of [Sb₂Te₂][AlCl₄], obtained from Te-Sb-SbCl₃-NaCl-AlCl₃ melts, contains one-dimensional chains of linked $[Sb_2Te_2]^+$ rings.⁹⁰ The semiconducting materials Li₂TeE₃ (E = S or Se), synthesised from Li, Te and E (molar ratio 2:1:3) contain layers of trigonal pyramidal $[TeE_3]^{2-1}$ dianions,⁹¹ the charge-density wave materials MTe_3 (M = rare earth metal) contain $[Te_2]^-$ square nets which, the authors noted, propagate in a fashion incommensurate from the [MTe]⁺ sub-lattice.⁹²

2. Oxygen

Among the investigations into peroxy species which appeared during 2005 were the O–O bond cleavage of $C_{60}(O)(OOBu^{1})_{4}$ by AlCl₃ to yield [5,6]- and [6,6]-oxohomo-fullerenes,⁹³ and computational studies of the decomposition of triacetone triper-oxide^{94,95} and the water-mediated degradation of peroxyacetyl nitrate [CH₃C(O)OONO₂].⁹⁶ Dihydrogen trioxide (HOOOH) has been detected for the first time in a supersonic jet and studied by microwave spectroscopy.⁹⁷ From the rotational constants for the molecule and its deuterated isotopomer structural parameters were identified: d(H–O) 0.963 Å, d(O–O) 1.428 Å, O–O–O 107.0°, H–O–O 101.1°. The cerium(III)-catalysed photoinitiated reaction between [SO₃]^{2–} and dioxygen in aqueous medium proceeds *via* formation of cerium(IV), which initiates a radical chain reaction involving [SO₃]^{-–}, [SO₄]^{-–} and [SO₅]^{-–,98}

Through *ab initio* methods the rapid removal of ${}^{1}O_{2}$ from solution by 1,5dithiacyclooctane compared with either thiane or 1,4-dithiane was found to result from a conformational change of the molecule, which electrostatically stabilised the intermediate persulfoxide and raised the barrier for physical quenching of ${}^{1}O_{2}$.⁹⁹ Generation of ${}^{1}O_{2}$ from H₂O₂ is promoted by La³⁺ salts when incorporated into zeolites Beta and USY,¹⁰⁰ or when used in conjunction with [MoO₄]²⁻ and HO⁻,¹⁰¹ with optimal catalysis at a [MoO₄]²⁻ : La³⁺ : HO⁻ ratio of 1 : 4 : 12.

Mixing ethanolic solutions of 1-[(ethoxycarbonyl)methyl]-3-hydroxy-2-pyridinone (HL) and hydrated nickel(II) nitrate, followed by addition of H_2O_2 and Et_3N , gives $[Ni_8L_{12}(\mu_6-O_2)][NO_3]_2$ in which six nickel(II) ions form an octahedral cage around the central $[O_2]^{2-}$, with the $[Ni_6(O_2)]$ core end-capped by two further Ni²⁺ ions.¹⁰²

The Ni \cdots Ni distances [3.234(2)–3.330(2) Å] confirm the absence of metal-metal bonds.

The considerable number of publications covering dioxygen activation by d- and f-block metals permits only a brief survey. In contrast with many oxygen-storage materials, the sulfur centre in the lanthanide oxysulfates $Ln_2O_2SO_4$ (Ln = La, Pr, Nd or Sm) is the redox-active site.¹⁰³ Thus, reduction by H₂ or hydrocarbon and subsequent re-oxidation with O₂ between Ln₂O₂SO₄ and Ln₂O₂S achieves an oxygen storage of 2 (mol of O_2) mol⁻¹, which is eight times higher than CeO₂–ZrO₂. Crystals of a two-coordinate palladium(0)-carbene complex rapidly fix O₂ and CO₂ to form a palladium(II)-peroxocarbonate, via a peroxo intermediate.¹⁰⁴ RR and DFT computational studies of the Ni₂O₂ core in the trans-u-1,2-peroxo bridged complex $[{(tmc)Ni}_2(O_2)]^{2+}$ disclose that the reduced covalency of the Ni-peroxo bonds relative to a structurally similar dicopper(II) complex results from the lower effective nuclear charge of nickel(π) compared to copper(π).¹⁰⁵ Exposing sterically hindered copper(I)-anilidoimine complexes to dioxygen at low temperatures gives side-on bound O₂ complexes; the O-O bond length in one example examined crystallographically [1.392(2) Å] indicates significant copper(III)-peroxo character, which is supported by theoretical calculations.¹⁰⁶ Vibrational spectroscopic studies of GaO₂ and InO₂, produced by matrix-isolation techniques from the Group 13 atoms and O_2 , show that the cyclic MO_2 (M = Ga or In), which form spontaneously, photoisomerise to linear OMO molecules, in accord with the slightly greater calculated stability of the latter.¹⁰⁷ The Pt-Pt bond in the 1,2-diplatinaborane cluster $[(PMe_2Ph)_4Pt_2B_{10}H_{10}]$ reacts with dioxygen to give $[(PMe_2Ph)_4Pt_2(O_2)B_{10}H_{10}]$, in which d(O-O) = 1.434(6) Å.¹⁰⁸ The bound O₂ molecule is readily displaced by CO or SO₂. The reversible addition of dioxygen to a non-transition metal complex has been reported for the first time. Oxygenation of a solution of an o-amidophenolatoantimony(v) complex at room temperature generates a spiroendoperoxide which, upon heating to 50 °C, eliminates dioxygen.¹⁰⁹ This capability arises from the redox behaviour of the amidophenolate group, which in the peroxide adduct exists as an iminobenzosemiquinonate.

The reaction between NaH₂PO₄ and [CrCp*I(μ -OMe)]₂ gives [{(CrCp*)₂ (μ -OMe)₂}₂(μ ₄-PO₄)]⁺, the first organometallic μ ₄-PO₄ complex,¹¹⁰ while Pt(NO₃)₂ reacts with concentrated sulfuric acid at 400 °C to give [NH₄]₂[Pt₂ (μ -SO₄)₄(H₂O)₂].¹¹¹ Crystallisation of lithium and sodium aryloxides with dioxane forms co-ordination polymers composed of Li₄O₄ or Na₆O₆ aggregates respectively,^{112,113} nonabismuth polyoxo cations [Bi₉(μ ₃-O)₈(μ ₃-OR)₆]⁵⁺ (R = H or Et) are available from base hydrolysis and subsequent ethanolysis of BiO(ClO₄).¹¹⁴

Oxidative degradation of the solvent (either dme or thf) occurs when solutions of $[M{N(Ph_2PO)_2}_2] \cdot (thf)_n$ (M = Sr or Ba) are exposed to O₂, giving binuclear complexes $[Sr_2{N(Ph_2PO)_2}_4] \cdot 2C_3H_6O_3$ and $[Ba_2{N(Ph_2PO)_2}_4] \cdot 2C_4H_8O_3$, which contain co-ordinated carboxylic acids.¹¹⁵

Anderson *et al.* have stabilised a terminal palladium-oxo unit by encapsulation within a cavity defined by two fused [PW₉O₃₄]⁹⁻ units.¹¹⁶ From crystallographic and EXAFS analyses, $d(Pd-O) \approx 1.65$ Å, ¹⁷O nmr studies confirm that in solution the solid-state structure persists. The first stable oxoborane monomer LB = O (L = β -diketiminate) was prepared following hydrolysis of the product obtained from the reaction of LAICl₂ with BCl₃,¹¹⁷ while a new methodology for preparing binary organometallic oxides containing heavy *p*-block elements was reported, using [An₂Te(OSn^tBu₂OH)₂]₂ as a representative example.¹¹⁸

Abbreviations

An	$4-CH_3OC_6H_4$
Bbt	2,6-bis[bis(trimethylsilyl)methyl]-4-[tris(trimethylsilyl)methyl]phenyl
dbu	1,8-diazabicyclo[5.4.0]undec-7-ene
dmphen	2,9-dimethyl-1,10-phenanthroline
dppeS	Ph ₂ PCH ₂ CH ₂ P(S)Ph ₂
Mes	$2,4,6-Me_3C_6H_2$
RR	Resonance Raman
tmc	1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane
Trip	$2,6-(2,4,6-^{i}Pr_{3}C_{6}H_{2})_{2}C_{6}H_{3}$

References

- 1 J. Beck, S. Schlüter and N. Zotov, Z. Anorg. Allgem. Chem., 2005, 631, 2450.
- 2 I. L. Li, J. P. Zhai, P. Launois, S. C. Ruan and Z. K. Tang, J. Am. Chem. Soc., 2005, 127, 16111.
- 3 A. M. Pirani, H. P. A. Mercier, R. J. Suontamo, G. J. Schrobilgen, D. P. Santry and H. Borrmann, *Inorg. Chem.*, 2005, 44, 8770.
- 4 A. N. Kuznetsov, B. A. Popovkin, K. Ståhl, M. Lindsjö and L. Kloo, *Eur. J. Inorg. Chem.*, 2005, 4907.
- 5 M. W. Wong, Y. Steudel and R. Steudel, Inorg. Chem., 2005, 44, 8908.
- 6 Y. Steudel, M. W. Wong and R. Steudel, Chem. Eur. J., 2005, 11, 1281.
- 7 T. Sasamori, E. Mieda, N. Takeda and N. Tokitoh, Angew. Chem. Int. Ed., 2005, 44, 3717.
- 8 S. Brownridge, T. S. Cameron, H. Du, C. Knapp, R. Köppe, J. Passmore, J. M. Rautiainen and H. Schnöckel, *Inorg. Chem.*, 2005, 44, 1660.
- 9 J. M. Rautiainen, T. Way, G. Schatte, J. Passmore, R. S. Laitinen, R. J. Suontamo and J. Valkonen, *Inorg. Chem.*, 2005, 44, 1904.
- 10 V. Janickis, W. Milius and K. W. Törnroos, Z. Anorg. Allgem. Chem., 2005, 631, 882.
- 11 J. Van Droogenbroeck, C. Van Alsenoy, S. M. Aucott, J. D. Woollins, A. D. Hunter and F. Blockhuys, *Organometallics*, 2005, 24, 1004.
- 12 W. Clegg, S. H. Dale, D. Drennan and P. F. Kelly, Dalton Trans., 2005, 3140.
- 13 G. Schatte, T. Chivers, H. M. Tuononen, R. Suontamo, R. Laitinen and J. Valkonen, *Inorg. Chem.*, 2005, 44, 443.
- 14 T. S. Cameron, A. Mailman, J. Passmore and K. V. Shuvaev, *Inorg. Chem.*, 2005, 44, 6524.
- 15 A. Decken, A. Mailman, S. M. Mattar and J. Passmore, Chem. Commun., 2005, 2366.
- 16 T. Fujii, M. Kanno, M. Hirata, T. Fujimori and T. Yoshimura, *Inorg. Chem.*, 2005, 44, 8653.
- 17 L. Beer, R. C. Haddon, M. E. Itkis, A. A. Leitch, R. T. Oakley, R. W. Reed, J. F. Richardson and D. G. VanderVeer, *Chem. Commun.*, 2005, 1218.

- 18 V. V. Zhivonitko, A. Y. Makarov, I. Y. Bagryanskaya, Y. V. Gatilov, M. M. Shakirov and A. V. Zibarev, *Eur. J. Inorg. Chem.*, 2005, 4099.
- 19 L. Beer, J. L. Brusso, R. C. Haddon, M. E. Itkis, R. T. Oakley, R. W. Reed, J. F. Richardson, R. A. Secco and X. Yu, Chem. Commun., 2005, 5745.
- 20 Q. Fang, B. Xu, B. Jiang, H. Fu, X. Chen and A. Cao, Chem. Commun., 2005, 1468.
- 21 A. Alberola, C. S. Clarke, D. A. Haynes, S. I. Pascu and J. M. Rawson, *Chem. Commun.*, 2005, 4726.
- 22 A. Alberola, R. D. Farley, S. M. Humphrey, G. D. McManus, D. M. Murphy and J. M. Rawson, *Dalton Trans.*, 2005, 3838.
- 23 T. S. Cameron, M. T. Lemaire, J. Passmore, J. M. Rawson, K. V. Shuvaev and L. K. Thompson, *Inorg. Chem.*, 2005, 44, 2576.
- 24 L. Beer, J. L. Brusso, R. C. Haddon, M. E. Itkis, A. A. Leitch, R. T. Oakley, R. W. Reed and J. F. Richardson, *Chem. Commun.*, 2005, 1543.
- 25 A. Y. Makarov, I. G. Irtegova, N. V. Vasilieva, I. Y. Bagryanskaya, T. Borrmann, Y. V. Gatilov, E. Lork, R. Mews, W. D. Stohrer and A. V. Zibarev, *Inorg. Chem.*, 2005, 44, 7194.
- 26 R. T. Oakley, R. W. Reed, C. M. Robertson and J. F. Richardson, *Inorg. Chem.*, 2005, 44, 1837.
- 27 A. F. Cozzolino, I. Vargas-Baca, S. Mansour and A. H. Mahmoudkhani, J. Am. Chem. Soc., 2005, 127, 3184.
- 28 A. R. Turner, F. Blockhuys, C. Van Alsenoy, H. E. Robertson, S. L. Hinchley, A. V. Zibarev, A. Y. Makarov and D. W. H. Rankin, *Eur. J. Inorg. Chem.*, 2005, 572.
- 29 C. Knapp, E. Lork, K. Gupta and R. Mews, Z. Anorg. Allgem. Chem., 2005, 631, 1640.
- 30 L. Beer, J. L. Brusso, R. C. Haddon, M. E. Itkis, H. Kleinke, A. A. Leitch, R. T. Oakley, R. W. Reed, J. F. Richardson, R. A. Secco and X. Yu, J. Am. Chem. Soc., 2005, 127, 18159.
- 31 N. A. Barnes, S. M. Godfrey, R. T. A. Halton and R. G. Pritchard, *Dalton Trans.*, 2005, 1759.
- 32 E. E. Lang, G. M. de Oliveira and G. N. Ledesma, Z. Anorg. Allgem. Chem., 2005, 631, 1524.
- 33 T. M. Klapötke, B. Krumm, P. Mayer, K. Polborn and I. Schwab, Z. Anorg. Allgem. Chem., 2005, 631, 2677.
- 34 D. Lentz and M. Szwak, Angew. Chem. Int. Ed., 2005, 44, 5079.
- 35 A. Kornath, R. Seelbinder and R. Minkwitz, Angew. Chem. Int. Ed., 2005, 44, 973.
- 36 R. Basta, B. G. Harvey, A. M. Arif and R. D. Ernst, J. Am. Chem. Soc., 2005, 127, 11924.
- 37 M. Kronberg, S. von Ahsen, H. Willner and J. S. Francisco, Angew. Chem. Int. Ed., 2005, 44, 253.
- 38 G. J. Corban, S. K. Hadjikakou, N. Hadjiliadis, M. Kubicki, E. R. T. Tiekink, I. S. Butler, E. Drougas and A. M. Kosmas, *Inorg. Chem.*, 2005, 44, 8617.
- 39 A. Serpe, F. Bigoli, M. C. Cabras, P. Fornasiero, M. Graziani, M. L. Mercuri, T. Montini, L. Pilia, E. F. Trogu and P. Deplano, *Chem. Commun.*, 2005, 1040.
- 40 G. L. Abbati, M. C. Aragoni, M. Arca, M. B. Carrea, F. A. Devillanova, A. Garau, F. Isaia, V. Lippolis, M. Marcelli, C. Silvestru and G. Verani, *Eur. J. Inorg. Chem.*, 2005, 589.
- 41 G. A. Asseily, R. P. Davies, H. S. Rzepa and A. J. P. White, New J. Chem., 2005, 29, 315.
- 42 P. Frère and P. J. Skabara, Chem. Soc. Rev., 2005, 34, 69.
- 43 E. Fujiwara, H. Fujiwara, B. Z. Narymbetov, H. Kobayashi, M. Nakata, H. Torii, A. Kobayashi, K. Takimiya, T. Otsubo and F. Ogura, *Eur. J. Inorg. Chem.*, 2005, 3435.
- 44 J. Beck, J. Weber, A. B. Mukhopadhyay and M. Dolg, New J. Chem., 2005, 29, 465.
- 45 M. Panthöfer, D. Shopova and M. Jansen, Z. Anorg. Allgem. Chem., 2005, 631, 1387.
- 46 M. Fang, J. Passmore and A. Decken, Inorg. Chem., 2005, 44, 1672.
- 47 I. P. Gray, P. Bhattacharyya, A. M. Z. Slawin and J. D. Woollins, *Chem. Eur. J.*, 2005, 11, 6221.
- 48 A. Dimitrov, I. Hartwich, B. Ziemer, D. Heidemann and M. Meisel, Z. Anorg. Allgem. Chem., 2005, 631, 2439.
- 49 J. Rachon, G. Cholewinski and D. Witt, Chem. Commun., 2005, 2692.
- 50 T. Kimura and T. Murai, Chem. Commun., 2005, 4077.
- 51 T. Chivers, D. J. Eisler and J. S. Ritch, Dalton Trans., 2005, 2675.
- 52 M. C. Copsey and T. Chivers, Chem. Commun., 2005, 4938.
- 53 R. Cea-Olivares, M. Moya-Cabrera, V. García-Montalvo, R. Castro-Blanco, R. A. Toscano and S. Hernández-Ortega, *Dalton Trans.*, 2005, 1017.
- 54 N. J. Mosey and T. K. Woo, Inorg. Chem., 2005, 44, 7274.

- 55 B. J. Liaw, T. S. Lobana, Y. W. Lin, J. C. Wang and C. W. Liu, *Inorg. Chem.*, 2005, 44, 9921.
- 56 D. Fenske, A. Rothenberger and M. S. Fallah, Eur. J. Inorg. Chem., 2005, 59.
- 57 W. Shi, M. Shafaei-Fallah, C. E. Anson and A. Rothenberger, Dalton Trans., 2005, 3909.
- 58 B. Djordjevic, O. Schuster and H. Schmidbaur, *Inorg. Chem.*, 2005, 44, 673.
- 59 S. M. Aucott, P. Kilian, H. L. Milton, S. D. Robertson, A. M. Z. Slawin and J. D. Woollins, *Inorg. Chem.*, 2005, 44, 2710.
- 60 W. J. Evans, K. A. Miller, D. S. Lee and J. W. Ziller, Inorg. Chem., 2005, 44, 4326.
- 61 V. G. Albano, V. De Felice, M. Monari, G. Roviello and F. Ruffo, Eur. J. Inorg. Chem., 2005, 416.
- 62 J. E. McDonough, J. J. Weir, M. J. Carlson and C. D. Hoff, Inorg. Chem., 2005, 44, 3127.
- 63 J. M. Gonzales, D. G. Musaev and K. Morokuma, Organometallics, 2005, 24, 4908.
- 64 C. J. Burchell, S. M. Aucott, A. M. Z. Slawin and J. D. Woollins, Eur. J. Inorg. Chem., 2005, 209.
- 65 C. J. Burchell, S. M. Aucott, A. M. Z. Slawin and J. D. Woollins, *Dalton Trans.*, 2005, 735.
- 66 S. M. Dibrov, B. Deng, D. E. Ellis and J. A. Ibers, Inorg. Chem., 2005, 44, 3441.
- 67 A. Lange, M. M. Kubicki, J. Wachter and M. Zabel, Inorg. Chem., 2005, 44, 7328.
- 68 J. T. York, E. C. Brown and W. B. Tolman, Angew. Chem. Int. Ed., 2005, 44, 7745.
- 69 B. L. Ooi, I. Søtofte, M. F. Bendtsen, A. Munch, L. C. Nielsen and J. Henriksen, *Inorg. Chem.*, 2005, 44, 480.
- 70 G. J. Grant, W. Chen, A. M. Goforth, C. L. Baucom, K. Patel, P. Repovic, D. G. VanDerveer and W. T. Pennington, *Eur. J. Inorg. Chem.*, 2005, 479.
- 71 L. M. Caldwell, A. F. Hill and A. C. Willis, Chem. Commun., 2005, 2615.
- 72 C. Knapp and R. Mews, Eur. J. Inorg. Chem., 2005, 3536.
- 73 B. Flemmig, P. T. Wolczanski and R. Hoffmann, J. Am. Chem. Soc., 2005, 127, 1278.
- 74 M. C. Aragoni, M. Arca, F. A. Devillanova, F. Isaia, V. Lippolis, A. Mancini, L. Pala, A. M. Z. Slawin and J. D. Woollins, *Inorg. Chem.*, 2005, 44, 9610.
- 75 J. M. O'Connor, K. D. Bunker, A. L. Rheingold and L. Zakharov, J. Am. Chem. Soc., 2005, 127, 4180.
- 76 D. Li and T. Wu, Inorg. Chem., 2005, 44, 1175.
- 77 T. Nguyen, A. Panda, M. M. Olmstead, A. F. Richards, M. Stender, M. Brynda and P. P. Power, J. Am. Chem. Soc., 2005, 127, 8545.
- 78 K. Ray, E. Bill, T. Weyhermuller and K. Wieghardt, J. Am. Chem. Soc., 2005, 127, 5641.
- 79 T. L. Küchmann, M. Hermsen, M. Bolte, M. Wagner and H. W. Lerner, *Inorg. Chem.*, 2005, 44, 3449.
- 80 Y. Li, C. Pi, J. Zhang, X. Zhou, Z. Chen and L. Weng, Organometallics, 2005, 24, 1982.
- 81 F. Trautner, R. M. S. Alvarez, E. H. Cutin, N. L. Robles, R. Mews and H. Oberhammer, *Inorg. Chem.*, 2005, 44, 7590.
- 82 R. Boese, E. H. Cutin, R. Mews, N. L. Robles and C. O. Della Védova, *Inorg. Chem.*, 2005, 44, 9660.
- 83 M. F. Erben, C. O. Della Védova, H. Willner, F. Trautner, H. Oberhammer and R. Boese, *Inorg. Chem.*, 2005, 44, 7070.
- 84 H. Fleischer, D. A. Wann, S. L. Hinchley, K. B. Borisenko, J. R. Lewis, R. J. Mawhorter, H. E. Robertson and D. W. H. Rankin, *Dalton Trans.*, 2005, 3221.
- 85 R. Steudel and Y. Steudel, Inorg. Chem., 2005, 44, 3007.
- 86 M. P. Minimol and K. Vidyasagar, Inorg. Chem., 2005, 44, 9369.
- 87 D. B. Mitzi, Inorg. Chem., 2005, 44, 7078.
- 88 D. B. Mitzi, Inorg. Chem., 2005, 44, 3755.
- 89 P. F. P. Poudeu and M. G. Kanatzidis, Chem. Commun., 2005, 2672.
- 90 J. Beck and S. Schlüter, Z. Anorg. Allgem. Chem., 2005, 631, 569.
- 91 C. Preitschaft, M. Zabel and A. Pfitzner, Z. Anorg. Allgem. Chem., 2005, 631, 1227.
- 92 C. Malliakas, S. J. L. Billinge, H. J. Kim and M. G. Kanatzidis, J. Am. Chem. Soc., 2005, 127, 6510.
- 93 S. Huang, Z. Xiao, F. Wang, J. Zhou, G. Yuan, S. Zhang, Z. Chen, W. Thiel, P. von Ragué Schleyer, X. Zhang, X. Hu, B. Chen and L. Gan, *Chem. Eur. J.*, 2005, 11, 5449.
- 94 F. Dubnikova, R. Kosloff, J. Almog, Y. Zeiri, R. Boese, H. Itzhaky, A. Alt and E. Keinan, J. Am. Chem. Soc., 2005, 127, 1146.
- 95 A. C. T. van Duin, Y. Zeiri, F. Dubnikova, R. Kosloff and W. A. Goddard, J. Am. Chem. Soc., 2005, 127, 11053.
- 96 Y. Li and J. S. Francisco, J. Am. Chem. Soc., 2005, 127, 12144.
- 97 K. Suma, Y. Sumiyoshi and Y. Endo, J. Am. Chem. Soc., 2005, 127, 14998.
- 98 I. Kerezsi, G. Lente and I. Fábián, J. Am. Chem. Soc., 2005, 127, 4785.

- 99 E. L. Clennan, S. E. Hightower and A. Greer, J. Am. Chem. Soc., 2005, 127, 11819.
- 100 J. Wahlen, D. De Vos, S. De Hertogh, V. Nardello, J. M. Aubry, P. Alsters and P. Jacobs, *Chem. Commun.*, 2005, 927.
- 101 J. Wahlen, D. E. De Vos, M. H. Groothaert, V. Nardello, J. M. Aubry, P. L. Alsters and P. A. Jacobs, J. Am. Chem. Soc., 2005, 127, 17166.
- 102 E. J. Brown, A. K. Duhme-Klair, M. I. Elliott, J. E. Thomas-Oates, P. L. Timmins and P. H. Walton, Angew. Chem. Int. Ed., 2005, 44, 1392.
- 103 M. Machida, K. Kawamura, K. Ito and K. Ikeue, Chem. Mater., 2005, 17, 1487.
- 104 M. Yamashita, K. Goto and T. Kawashima, J. Am. Chem. Soc., 2005, 127, 7294.
- 105 R. Schenker, M. T. Kieber-Emmons, C. G. Riordan and T. C. Brunold, *Inorg. Chem.*, 2005, 44, 1752.
- 106 A. M. Reynolds, B. F. Gherman, C. J. Cramer and W. B. Tolman, *Inorg. Chem.*, 2005, 44, 6989.
- 107 A. Köhn, B. Gaertner and H. Himmel, Chem. Eur. J., 2005, 11, 5575.
- 108 J. Bould, C. A. Kilner and J. D. Kennedy, *Dalton Trans.*, 2005, 1574.
- 109 G. A. Abakumov, A. I. Poddel'sky, E. V. Grunova, V. K. Cherkasov, G. K. Fukin, Y. A. Kurskii and L. G. Abakumova, *Angew. Chem. Int. Ed.*, 2005, 44, 2767.
- 110 R. Y. C. Shin, G. K. Tan, L. L. Koh, L. Y. Goh and R. D. Webster, *Organometallics*, 2005, 24, 1401.
- 111 M. Pley and M. S. Wickleder, Eur. J. Inorg. Chem., 2005, 529.
- 112 D. J. MacDougall, J. J. Morris, B. C. Noll and K. W. Henderson, Chem. Commun., 2005, 456.
- 113 D. J. MacDougall, B. C. Noll and K. W. Henderson, Inorg. Chem., 2005, 44, 1181.
- 114 J. H. Thurston, D. C. Swenson and L. Messerle, Chem. Commun., 2005, 4228.
- 115 J. Morales-Juárez, R. Cea-Olivares, M. M. Moya-Cabrera, V. Jancik, V. García-Montalvo and R. A. Toscano, *Inorg. Chem.*, 2005, 44, 6924.
- 116 T. M. Anderson, R. Cao, E. Slonkina, B. Hedman, K. O. Hodgson, K. I. Hardcastle, W. A. Neiwert, S. Wu, M. L. Kirk, S. Knottenbelt, E. C. Depperman, B. Keita, L. Nadjo, D. G. Musaev, K. Morokuma and C. L. Hill, *J. Am. Chem. Soc.*, 2005, **127**, 11948.
- 117 D. Vidovic, J. A. Moore, J. N. Jones and A. H. Cowley, J. Am. Chem. Soc., 2005, 127, 4566.
- 118 J. Beckmann, D. Dakternieks, A. Duthie and C. Mitchell, *Dalton Trans.*, 2005, 1563.