Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Ping Shen ${ }^{\text {a }}$ and Ai -Hua Yuan ${ }^{\text {b }}$

${ }^{\text {a School of Chemistry and Chemical Engineering, }}$ Jiangsu University, Zhenjiang 212013, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China

Correspondence e-mail:
xiaopingshen@163.com

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.003 \AA$
R factor $=0.023$
$w R$ factor $=0.062$
Data-to-parameter ratio $=11.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[bis(N,N-dimethylformamide- κ O)-nickel(II)]-di- μ-1,5-dicyanamido- $\left.\kappa N^{1}: \kappa N^{5}\right]$

In the crystal structure of the title complex, $\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)_{2}\right.$ $\left.\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]_{n}$ or $\left[\mathrm{Ni}(\mathrm{dca})_{2}(\mathrm{DMF})_{2}\right]_{n}$, where dca is dicyanamide and DMF is N, N-dimethylformamide, each $\mathrm{Ni}^{\mathrm{II}}$ atom is sixcoordinated in a distorted octahedral coordination environment. Four N atoms from four dca ligands fill the equatorial positions, and two O atoms from two DMF ligands fill the axial positions. The structure is isostructural with $\left[\mathrm{Co}(\mathrm{dca})_{2}(\mathrm{DMF})_{2}\right]_{n}$ but is not isostructural with $\left[\mathrm{Mn}(\mathrm{dca})_{2}(\mathrm{DMF})_{2}\right]_{n}$. The $\mathrm{Ni}^{\mathrm{II}}$ atom and the dicyanamide bridging ligand occupy special positions of symmetry $2 / m$ and m, respectively. The structure consists of uniform neutral chains where neighbouring $\mathrm{Ni}^{\mathrm{II}}$ atoms are connected through two asymmetric end-to-end dca bridges.

Comment

Dicyanamide (dca), $\left[\mathrm{N}(\mathrm{CN})_{2}\right]^{-}$, complexes have been studied extensively recently because of their fascinating topologies and interesting magnetic properties (Batten et al., 1998; Miller \& Manson 2001; Jensen et al., 2000; Riggio et al., 2001). A number of nickel(II)-dca complexes have been reported (Sun, et al., 2000; Wang et al., 2004; Konor et al., 2005). Our research interest is the construction of novel topologies of cyano complexes and studying their magnetic properties (Shen et al., 2004, 2003). In the present work, we report the crystal structure of a one-dimensional chain polymer, viz. $\left[\mathrm{Ni}(\mathrm{dca})_{2}(\mathrm{DMF})_{2}\right]_{n},(\mathrm{I})$.

(I)

Fig. 1 shows the local coordination about the nickel(II) centre in (I). The structure of (I) is isostructural with $\left[\mathrm{Co}(\mathrm{dca})_{2}(\mathrm{DMF})_{2}\right]_{n}$ (Tong et al., 2003) but is not isostructural with $\left[\mathrm{Mn}(\mathrm{dca})_{2}(\mathrm{DMF})_{2}\right]_{n}$ (Batten et al., 1999). The space group of $\left[\mathrm{Co}(\mathrm{dca})_{2}(\mathrm{DMF})_{2}\right]_{n}$ reported by Dong et al. (2003)

Received 19 August 2005 Accepted 5 September 2005 Online 14 September 2005

Figure 1
Part of the polymeric structure of (I), with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x, y, 1-z$; (iii) $x, 1-y, z$.]

Figure 2
The packing in (I), showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bond interactions as dashed lines.
has been described incorrectly in $C 2$; it should be $C 2 / m$, as reported by Tong et al. (2003). The structure of (I) consists of uniform neutral chains in which neighbouring nickel(II) atoms are connected through two asymmetric end-to-end dca bridges. The coordination geometry of the nickel(II) atom is distorted octahedral, being coordinated by four N atoms of four symmetry-related dca ligands in the equatorial plane and two O atoms of two symmetry-related DMF ligands at the axial positions. The $\mathrm{N}-\mathrm{Ni}-\mathrm{N}$ bond angles are in the range 87.84 (6)-92.16 (6) ${ }^{\circ}$, close to 90°. The four $\mathrm{Ni}-\mathrm{N}$ (dca) bond lengths in (I) are all 2.0733 (11) \AA, corresponding to the values reported in the dca-bridged nickel(II) complexes [Ni (apo)-$\left.(\mathrm{dca})_{2}\right][2.043(4)-2.096(4) \AA$; apo $=2$-aminopyridine N oxide; Sun et al., 2000] and $\left[\mathrm{Ni}(\mathrm{tn})_{2}(\mathrm{dca})\right]\left(\mathrm{ClO}_{4}\right)[2.095$ (4) and 2.116 (4) \AA; tn $=$ trimethylenediamine; Li et al., 2002], and shorter than the $\mathrm{Mn}-\mathrm{N}$ bond lengths [2.218 (2) and 2.203 (2) \AA] in $\left[\mathrm{Mn}(\mathrm{dca})_{2}(\mathrm{DMF})_{2}\right]_{n}$ (Batten et al., 1999) and the $\mathrm{Co}-\mathrm{N}$ bond lengths $[2.123(2) \AA]$ in $\left[\mathrm{Co}(\mathrm{dca})_{2}(\mathrm{DMF})_{2}\right]_{n}$ (Tong et al., 2003); this is what one would expect from the ionic radii $\left(\mathrm{Ni}^{2+}<\mathrm{Co}^{2+}<\mathrm{Mn}^{2+}\right)$. The two $\mathrm{Ni}-\mathrm{O}$ (DMF) bond
lengths are both $2.0670(13) \AA$, corresponding to the values $[2.0776(19) \AA]$ in $\left[\mathrm{Ni}(\mathrm{pmbp})_{2}(\mathrm{DMF})_{2}\right][\mathrm{Hpmbp}=1$-phenyl-3-methyl-4-benzoyl-1 H -pyrazol-5(4H)-one; Shen \& Yuan 2004] and shorter than the $M-\mathrm{O}$ bond lengths in $\left[\mathrm{Mn}(\mathrm{dca})_{2^{-}}\right.$ $\left.(\mathrm{DMF})_{2}\right]_{n}[\mathrm{Mn}-\mathrm{O}=2.199(2) \AA]$ and $\left[\mathrm{Co}(\mathrm{dca})_{2}(\mathrm{DMF})_{2}\right]_{n}$ $[\mathrm{Co}-\mathrm{O}=2.096$ (2) \AA].

The dicyanamide (dca) ligand adopts an end-to-end coordination mode. Two dca ions link two nickel(II) atoms to form a 12 -membered $\mathrm{Ni}(\mathrm{dca})_{2} \mathrm{Ni}$ ring and neighbouring rings share the nickel(II) atoms to form a chain of $\left[\mathrm{Ni}(\mathrm{dca})_{2}\right]_{n}$. The chains are linear, the $\mathrm{Ni}(\mathrm{dca})_{2} \mathrm{Ni}$ rings being in a slight chair conformation.

The free dicyanamide (dca) ligand possesses $C_{2 v}$ symmetry. The dca ligand in (I) also adopts essentially $C_{2 v}$ symmetry, with a nitrile $\mathrm{C} \equiv \mathrm{N}$ bond length of 1.1545 (18) \AA for $\mathrm{N} 1 \equiv \mathrm{C} 1$, showing the triple-bond character. The bond angle related to the amide N atom, $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 1(x, 1-y, z)$, is $118.61(16)^{\circ}$, corresponding to an amide N atom with an $s p^{2}$ hybrid orbital; that related to the nitrile group, $\mathrm{N} 1 \equiv \mathrm{C} 1-\mathrm{N} 2$, is $174.95(13)^{\circ}$, corresponding to N 1 and C 1 with an $s p$ hybrid orbital.

The chains propagate parallel to the crystallographic b axis, the $\mathrm{Ni} \cdots \mathrm{Ni}$ distance along the chain being equal to the b axis length, 7.3166 (7) Å. The chains interdigitate such that each DMF ligand lies between two DMF ligands of an adjacent chain, with a shortest $\mathrm{Ni} \cdots \mathrm{Ni}$ interchain distance of 7.628 (2) Å. Adjacent chains are held together by a weak C$\mathrm{H} \cdots \mathrm{N}$ hydrogen bond, forming layers parallel to the $a b$ plane (Fig. 2 and Table 2).

Experimental

An aqueous solution $(10 \mathrm{ml})$ of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.146 \mathrm{~g}, 0.5 \mathrm{mmol})$ was added to a DMF solution $(10 \mathrm{ml})$ of $\mathrm{Na}\left[\mathrm{N}(\mathrm{CN})_{2}\right](0.090 \mathrm{~g}$, $1.0 \mathrm{mmol})$. Slow evaporation of the resulting mixture led to green crystals suitable for X-ray diffraction analysis. Analysis found: C 35.53, H 4.12, N 33.31%; calculated for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{8} \mathrm{NiO}_{2}:$ C $35.64, \mathrm{H}$ 4.19, N 33.26\%.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$
$M_{r}=336.98$
Monoclinic, $C 2 / m$
$a=13.3866$ (17) \AA
$b=7.3166$ (7) \AA
$c=8.0595(10) \AA$
$\beta=112.503$ (3) ${ }^{\circ}$
$V=729.28(15) \AA^{3}$
$Z=2$
$D_{x}=1.535 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1804 reflections
$\theta=3.2-27.5^{\circ}$
$\mu=1.35 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Block, green
$0.40 \times 0.21 \times 0.20 \mathrm{~mm}$

Data collection

Rigaku Mercury CCD	900 independent reflections
\quad diffractometer	887 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.018$
Absorption correction: multi-scan	$\theta_{\max }=27.5^{\circ}$
\quad (Jacobson, 1998)	$h=-17 \rightarrow 15$
$T_{\min }=0.646, T_{\max }=0.774$	$k=-8 \rightarrow 9$
4029 measured reflections	$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0436 P)^{2}\right.$ $+0.3824 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$S=1.03$
900 reflections
76 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

Ni1-O1	$2.0670(13)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.3074(15)$
Ni1-N1	$2.0733(11)$	$\mathrm{N} 3-\mathrm{C} 2$	$1.319(2)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.243(2)$	$\mathrm{N} 3-\mathrm{C} 3$	$1.448(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.1545(18)$	$\mathrm{N} 3-\mathrm{C} 4$	$1.458(3)$
			$87.84(6)$
O1-Ni1-N1	$91.61(4)$	$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 1^{\text {iii }}$	
$\mathrm{O}^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 1$	$88.39(4)$	$\mathrm{C} 1^{\text {iv }}-\mathrm{N} 2-\mathrm{C} 1$	$118.61(16)$
N1-Ni1-N1 ${ }^{\text {ii }}$	$92.16(6)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$174.95(13)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x,-y+1, z$; (iii) $-x+1, y,-z+1$; (iv) $x,-y+2, z$.

Table 2
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{~N} 2^{\mathrm{v}}$	$0.95(1)$	$2.51(1)$	$3.453(2)$	$169(2)$

Symmetry code: (v) $-x+\frac{3}{2},-y+\frac{3}{2},-z+1$.

H atoms were found in a difference Fourier map and refined with bond-length restraints of $\mathrm{C}-\mathrm{H}=0.95$ (1) \AA for the methyl groups and the $\mathrm{H} \cdots \mathrm{H}$ distance restrained to 1.50 (1) \AA. One of two independent H atoms lies on the mirror plane.

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; method used to solve
structure: the coordinates of the Co structure of Tong et al. (2003) were used; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of Jiangsu Province (No. BK2005056), People's Republic of China.

References

Batten, S. R., Jensen, P., Kepert, C. J., Kurmoo, M., Moubaraki, B., Murray, K. S. \& Price, D. J. (1999). J. Chem. Soc. Dalton Trans. pp. 2987-2997.

Batten, S. R., Jensen, P., Moubaraki, B., Murray, K. S. \& Robson, R. (1998). Chem. Commun. pp. 439-440.
Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Dong, W., Liang, M., Sun, Y. Q. \& Liu, Z. Q. (2003). Z. Anorg. Allg. Chem. 629, 2443-2445.
Jacobson, R. (1998). Private communication to the Rigaku Corporation.
Jensen, P., Batten, S. R., Moubaraki, B. \& Murray, K. S. (2000). Chem. Commun. pp. 793-740.
Konor, S., Dalai, S., Mukherjee, P. S., Drew, M. G. B., Ribas, J. \& Chaudhuri, N. R. (2005). Inorg. Chim. Acta, 358, 957-963.

Li, B. L., Ding, J. G., Lang, J. P., Zheng, X. \& Chen, J. T. (2002). J. Mol. Struct. 616, 175-179.
Miller, J. S. \& Manson, J. L. (2001). Acc. Chem. Res. 34, 563-570.
Rigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Riggio, I., van Albada, G. A., Ellis, D. D., Spek, A. L. \& Reedijk, J. (2001). Inorg. Chim. Acta, 313, 120-124.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Shen, X. P., Gao, S., Yin, G., Yu, K. B. \& Xu, Z. (2004). New J. Chem. 28, 996999.

Shen, X. P., Li, B. L., Zou, J. Z., Hu, H. M. \& Xu, Z. (2003). J. Mol. Struct. 657, 325-331.
Shen, X. P. \& Yuan, A. H. (2004). Acta Cryst. E60, m1228-m1230.
Sun, B. W., Gao, S., Ma, B. Q., Niu, D. Z. \& Wang, Z. M. (2000). J. Chem. Soc. Dalton Trans. pp. 4187-4191.
Tong, M.-L., Zhou, A.-J., Hu, S., Chen, X.-M. \& Ng, S. W. (2003). Acta Cryst. E59, m405-m407.
Wang, S. W., Zhu, X., Li, B. L., Lang, J. P., Zheng, X. \& Zhang, Y. (2004). Chin. J. Struct. Chem. 23, 145-148.

