Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Mercury(II) tungstate from neutron powder data

Magnus B. Åsberg Dahlborg,^a* Göran Svensson^a and Tatiana Ouvarova^b

^aInorganic Chemistry, Chalmers University of Technology, SE-412 96 Göteborg, Sweden, and ^bGeneral Physics Institute A. S. Russia, 38 Vavilov Street, Moscow 117942, Russia

Correspondence e-mail: magnusad@inoc.chalmers.se

Received 3 August 1999 Accepted 26 October 1999

Mercury(II) tungstate powder, HgWO₄, was prepared by boiling a mixture of HgO and H_2WO_4 in water. Rietveld refinements on neutron powder data showed that the monoclinic structure (*C*2/*c*) consists of zigzag chains of edgesharing HgO₆ and WO₆ octahedra. The Hg atom lies on an inversion centre and the W atom lies on a twofold axis. The Hg atom forms two characteristic short collinear Hg–O bonds.

Comment

The structure determination of the title compound is part of a study of divalent metal ion tungstates (MWO_4 ; Åsberg Dahlborg & Svensson, 1999). These materials are of interest for their luminescent properties and find their applications as detector materials for high-energy radiation and particles (Blasse & Grabmaier, 1994). The high density (9.2 Mg m⁻³) and strong absorption of high-energy radiation makes HgWO₄ interesting for electromagnetic calorimetry applications.

HgWO₄ has not been as thoroughly examined as the other tungstates, but Swindells (1951) has previously reported the synthesis and emission spectra for HgWO₄. Later, Blasse & van den Heuvel (1974) investigated the luminescence properties further and compared them with other tungstates, but no structure refinements have been carried out on HgWO₄.

Most divalent metal ion tungstates (AWO_4) belong to either the scheelite structure (Sillén & Nylander, 1943), if the radius of A is greater than 1 Å, or the wolframite structure (Keeling, 1957), if the radius of A is smaller than 1 Å. The radius of the Hg²⁺ ion is close to 1 Å and HgWO₄ does not belong to either the wolframite or the scheelite structure. The structure of HgMoO₄ was published in 1973 (Jeitschko & Sleight, 1973) and is closely related to the wolframite structure. It was also shown that HgWO₄ belongs to the same structure type but no structural data were published. Difficulties in growing single crystals and the combination of light and heavy atoms together with strong X-ray absorption prompted us to use neutron powder diffraction and Rietveld refinements to get accurate structural parameters.

Polyhedral representation of HgWO₄ viewed along the c axis with b horizontal. The WO₆ octahedra are grey and the HgO₆ octahedra are white.

The structure of HgWO₄ consists of zigzag chains of edgesharing WO₆ octahedra extending parallel to the *c* axis (Fig. 1). The O atoms form close-packed layers parallel to the *yz* plane. The stacking is close to cubic close-packing but adjacent *ABC* layers are slightly displaced relative to each other so that the fifth layer, *B'*, corresponds to the *A* layer. Thus, the octahedral voids accommodating the Hg atoms are very distorted. As expected, mercury forms two short collinear Hg–O bonds with an Hg–O distance of 2.039 (4) Å. The other two pairs of Hg–O bonds are 2.627 (3) and 2.731 (3) Å, forming a very distorted octahedron. By edge-sharing, the HgO₆ octahedra also form zigzag chains running along the *c* axis.

The structure of HgWO₄ is closely related to the wolframite structure of the other d^{10} elements, ZnWO₄ and CdWO₄

Figure 2

Comparison of observed (dots) and calculated (solid line) intensities for $HgWO_4$. Tick marks below the diffractogram represent the allowed Bragg reflections. The difference intensities are located at the bottom of the figure.

inorganic compounds

(Åsberg Dahlborg & Svensson, 1999), since the polyhedra are interconnected in the same way. However, the coordination polyhedron around the Hg atom makes the HgWO₄ structure different from ZnWO₄ and CdWO₄. The O-Hg-O angles are all 180°, whereas the O-Zn-O and O-Cd-O angles are about 160° in ZnWO₄ and CdWO₄. The WO₆ octahedra in the three structures are very similar. The WO₆ octahedron in HgWO₄, however, is more tetrahedral than in ZnWO₄ and CdWO₄.

Experimental

The title compound was prepared by mixing equal amounts of HgO and H₂WO₄ in water. The mixture was boiled for a few minutes until the orange colour of HgO disappeared. The product was filtered and dried at room temperature. The resulting powder was pale yellow.

 $D_{\rm r} = 9.212 {\rm Mg m}^{-3}$

Specimen shape: cylinder

Specimen colour: pale yellow

Specimen prepared at 373 K

Neutron radiation

 $10 \times 10 \times 10$ mm

 $\lambda = 1.470 \; \text{\AA}$

T = 295 K

Crystal data

HgWO₄ $M_r = 448.44$ Monoclinic, C2/c a = 11.3606 (8) Å b = 6.0125 (4) Åc = 5.1482 (4) Å $\beta = 113.159 \ (4)^{\circ}$ $V = 323.32 (4) \text{ Å}^3$ Z = 4

Data collection

Neutron powder diffractometer	Specimen mounted in transmission
Neutron Powder Diffractometer at	mode
NFL, Studsvik, Sweden	T = 295 K
Specimen mounting: vanadium can	$2\theta_{\min} = 4, 2\theta_{\max} = 139.92^{\circ}$
	Increment in $2\theta = 0.08^{\circ}$

Table 1

Selected geometric parameters (Å, °).

Hg-O1	2.039 (4)	Hg-W	3.5690 (5)
Hg-O2 ⁱ	2.627 (3)	Hg-W ⁱⁱⁱ	3.712 (3)
Hg-O2 ⁱⁱ	2.731 (3)	Hg-W ⁱ	3.8064 (5)
W-O2	1.745 (4)	Hg-Hg ^{iv}	3.9577 (2)
W-O1	1.958 (4)	W-W ⁱⁱⁱ	3.425 (4)
W-O1 ⁱⁱⁱ	2.201 (5)		
O1-Hg-O1 ^v	180		

Symmetry codes: (i) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$; (ii) $x, 1 - y, z - \frac{1}{2}$; (iii) -x, -y, -z; (iv) $x, -y, \frac{1}{2} + z; (v) \frac{1}{2} - x, \frac{1}{2} - y, -z.$

Refinement

Refinement on $I_{\rm net}$	Profile function: pseudo-Voigt
$R_p = 0.0282$	27 parameters
$\dot{R}_{wp} = 0.0354$	Weighting scheme based on
$R_{\rm exp} = 0.0288$	measured s.u.'s
$R_B = 0.0466$	$(\Delta/\sigma)_{\rm max} < 0.01$
$2\theta_{\min} = 12.0, 2\theta_{\max} = 139.92^{\circ}$	Preferred orientation correction:
Increment in $2\theta = 0.08^{\circ}$	none
Wavelength of incident radiation:	Scattering factors from FULL-
1.470 Å	PROF (Rodriguez-Carvajal,
Excluded region(s): 4-12°, no Bragg	1997)
peaks	

As HgWO4 is isostructural with HgMoO4 and the ionic radius of W is very close to that of Mo, the structural parameters of HgMoO₄ were taken as starting parameters for the structural refinement of HgWO₄. The program FULLPROF (Rodriguez-Carvajal, 1997) was used for refining the cell and structure. The profile shape was represented by a pseudo-Voigt function. Profile, lattice, structure parameters, zero-point shift, six background parameters and the scale factor were refined without correction for preferred orientation. Atomic displacements were assumed to be isotropic. WINPLOTR (Roisnel & Rodriguez-Carvajal, 1999) was used for plotting the powder diffractogram and ATOMS (Dowty, 1998) was used for the polyhedral representation. The weight function used in the refinements was $1/u^2$, where u is the s.u. for the observed intensities of each data point.

Program(s) used to refine structure: FULLPROF; software used to prepare material for publication: WINPLOTR.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1261). Services for accessing these data are described at the back of the journal.

References

Åsberg Dahlborg, M. & Svensson, G. (1999). Acta Chem. Scand. 53, 1103-1109.

- Blasse, G. & Grabmaier, B. C. (1994). In Luminiscent Materials. Berlin: Springer-Verlag.
- Blasse, G. & van den Heuvel, G. P. M. (1974). J. Lumin. 9, 74-78.
- Dowty, E. (1998). ATOMS. Version 4.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Jeitschko, W. & Sleight, A. W. (1973). Acta Cryst. B29, 869-875.

Keeling, R. O. (1957). Acta Cryst. 10, 209-213.

Rodriguez-Carvajal, J. (1997). FULLPROF. Version 3.5 of December 1997. Laboratoire Leon Brillouin (CEA/CNRS), CEA-Saclay, 91191 Gif-sur-Yvette CEDEX, France.

Roisnel, T. & Rodriguez-Carvajal, J. (1999). WINPLOTR. Beta Version of January 1999. Laboratoire Leon Brillouin (CEA/CNRS), CEA-Saclay, 91191 Gif-sur-Yvette CEDEX, France.

Sillén, L. G. & Nylander, A.-L. (1943). Ark. Kemi Mineral. Geol. 17A, 1-27. Swindells, F. E. (1951). J. Opt. Soc. Am. 41, 731.