Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Mercury(II) tungstate from neutron powder data

Magnus B. Åsberg Dahlborg, ${ }^{\text {a* }}$ Göran Svensson ${ }^{\text {a }}$ and Tatiana Ouvarova ${ }^{\text {b }}$
${ }^{\text {a }}$ Inorganic Chemistry, Chalmers University of Technology, SE-412 96 Göteborg, Sweden, and ${ }^{\mathbf{b}}$ General Physics Institute A. S. Russia, 38 Vavilov Street, Moscow 117942, Russia
Correspondence e-mail: magnusad@inoc.chalmers.se

Received 3 August 1999
Accepted 26 October 1999
Mercury(II) tungstate powder, HgWO_{4}, was prepared by boiling a mixture of HgO and $\mathrm{H}_{2} \mathrm{WO}_{4}$ in water. Rietveld refinements on neutron powder data showed that the monoclinic structure ($C 2 / c$) consists of zigzag chains of edgesharing HgO_{6} and WO_{6} octahedra. The Hg atom lies on an inversion centre and the W atom lies on a twofold axis. The Hg atom forms two characteristic short collinear $\mathrm{Hg}-\mathrm{O}$ bonds.

Comment

The structure determination of the title compound is part of a study of divalent metal ion tungstates $\left(M \mathrm{WO}_{4}\right.$; Åsberg Dahlborg \& Svensson, 1999). These materials are of interest for their luminescent properties and find their applications as detector materials for high-energy radiation and particles (Blasse \& Grabmaier, 1994). The high density $\left(9.2 \mathrm{Mg} \mathrm{m}^{-3}\right)$ and strong absorption of high-energy radiation makes HgWO_{4} interesting for electromagnetic calorimetry applications.
HgWO_{4} has not been as thoroughly examined as the other tungstates, but Swindells (1951) has previously reported the synthesis and emission spectra for HgWO_{4}. Later, Blasse \& van den Heuvel (1974) investigated the luminescence properties further and compared them with other tungstates, but no structure refinements have been carried out on HgWO_{4}.

Most divalent metal ion tungstates $\left(A \mathrm{WO}_{4}\right)$ belong to either the scheelite structure (Sillén \& Nylander, 1943), if the radius of A is greater than $1 \AA$, or the wolframite structure (Keeling, 1957), if the radius of A is smaller than $1 \AA$. The radius of the Hg^{2+} ion is close to $1 \AA$ and HgWO_{4} does not belong to either the wolframite or the scheelite structure. The structure of HgMoO_{4} was published in 1973 (Jeitschko \& Sleight, 1973) and is closely related to the wolframite structure. It was also shown that HgWO_{4} belongs to the same structure type but no structural data were published. Difficulties in growing single crystals and the combination of light and heavy atoms together with strong X-ray absorption prompted us to use neutron powder diffraction and Rietveld refinements to get accurate structural parameters.

Figure 1
Polyhedral representation of HgWO_{4} viewed along the c axis with b horizontal. The WO_{6} octahedra are grey and the HgO_{6} octahedra are white.

The structure of HgWO_{4} consists of zigzag chains of edgesharing WO_{6} octahedra extending parallel to the c axis (Fig. 1). The O atoms form close-packed layers parallel to the $y z$ plane. The stacking is close to cubic close-packing but adjacent $A B C$ layers are slightly displaced relative to each other so that the fifth layer, B^{\prime}, corresponds to the A layer. Thus, the octahedral voids accommodating the Hg atoms are very distorted. As expected, mercury forms two short collinear $\mathrm{Hg}-\mathrm{O}$ bonds with an $\mathrm{Hg}-\mathrm{O}$ distance of 2.039 (4) \AA. The other two pairs of $\mathrm{Hg}-\mathrm{O}$ bonds are 2.627 (3) and 2.731 (3) \AA, forming a very distorted octahedron. By edge-sharing, the HgO_{6} octahedra also form zigzag chains running along the c axis.

The structure of HgWO_{4} is closely related to the wolframite structure of the other d^{10} elements, ZnWO_{4} and CdWO_{4}

Figure 2
Comparison of observed (dots) and calculated (solid line) intensities for HgWO_{4}. Tick marks below the diffractogram represent the allowed Bragg reflections. The difference intensities are located at the bottom of the figure.

inorganic compounds

(Åsberg Dahlborg \& Svensson, 1999), since the polyhedra are interconnected in the same way. However, the coordination polyhedron around the Hg atom makes the HgWO_{4} structure different from ZnWO_{4} and CdWO_{4}. The $\mathrm{O}-\mathrm{Hg}-\mathrm{O}$ angles are all 180°, whereas the $\mathrm{O}-\mathrm{Zn}-\mathrm{O}$ and $\mathrm{O}-\mathrm{Cd}-\mathrm{O}$ angles are about 160° in ZnWO_{4} and CdWO_{4}. The WO_{6} octahedra in the three structures are very similar. The WO_{6} octahedron in HgWO_{4}, however, is more tetrahedral than in ZnWO_{4} and CdWO_{4}.

Experimental

The title compound was prepared by mixing equal amounts of HgO and $\mathrm{H}_{2} \mathrm{WO}_{4}$ in water. The mixture was boiled for a few minutes until the orange colour of HgO disappeared. The product was filtered and dried at room temperature. The resulting powder was pale yellow.

Crystal data

HgWO_{4}
$M_{r}=448.44$
Monoclinic, C2/c
$a=11.3606$ (8) \AA
$b=6.0125$ (4) A
$c=5.1482$ (4) \AA
$\beta=113.159$ (4) ${ }^{\circ}$
$V=323.32(4) \AA^{3}$
$Z=4$

Data collection

Neutron powder diffractometer
Neutron Powder Diffractometer at NFL, Studsvik, Sweden
Specimen mounting: vanadium can
$D_{x}=9.212 \mathrm{Mg} \mathrm{m}^{-3}$
Neutron radiation
$\lambda=1.470 \mathrm{~A}$
$T=295 \mathrm{~K}$
Specimen shape: cylinder
Specimen colour: pale yellow
$10 \times 10 \times 10 \mathrm{~mm}$
Specimen prepared at 373 K

Specimen mounted in transmission mode
$T=295 \mathrm{~K}$
$2 \theta_{\text {min }}=4,2 \theta_{\text {max }}=139.92^{\circ}$
Increment in $2 \theta=0.08^{\circ}$

Table 1
Selected geometric parameters ($\left(\AA,^{\circ}\right)$.

$\mathrm{Hg}-\mathrm{O} 1$	$2.039(4)$	$\mathrm{Hg}-\mathrm{W}$	$3.5690(5)$
$\mathrm{Hg}-\mathrm{O} 2^{\mathrm{i}}$	$2.627(3)$	$\mathrm{Hg}-\mathrm{W}^{\text {iii }}$	$3.712(3)$
$\mathrm{Hg}-\mathrm{O} 2^{\text {ii }}$	$2.731(3)$	$\mathrm{Hg}-\mathrm{W}^{\mathrm{i}}$	$3.8064(5)$
$\mathrm{W}-\mathrm{O} 2$	$1.745(4)$	$\mathrm{Hg}-\mathrm{Hg}^{\text {iv }}$	$3.9577(2)$
$\mathrm{W}-\mathrm{O} 1{ }^{\text {iii }}$	$1.958(4)$	$\mathrm{W}-\mathrm{W}^{\text {iii }}$	$3.425(4)$
$\mathrm{W}-\mathrm{O}{ }^{\text {ii }}$	$2.201(5)$		
$\mathrm{O} 1-\mathrm{Hg}-\mathrm{O}^{\mathrm{v}}$	180		

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$; (ii) $x, 1-y, z-\frac{1}{2}$; (iii) $-x,-y,-z$; (iv)
$x,-y, \frac{1}{2}+z$; (v) $\frac{1}{2}-x, \frac{1}{2}-y,-z$.

Refinement

Refinement on $I_{\text {net }}$
$R_{p}=0.0282$
$R_{\mathrm{wp}}=0.0354$
$R_{\text {exp }}=0.0288$
$R_{B}=0.0466$
$2 \theta_{\min }=12.0,2 \theta_{\max }=139.92^{\circ}$
Increment in $2 \theta=0.08$
Wavelength of incident radiation: 1.470 A

Excluded region(s): 4-12 ${ }^{\circ}$, no Bragg
peaks
As HgWO_{4} is isostructural with HgMoO_{4} and the ionic radius of W is very close to that of Mo , the structural parameters of HgMoO_{4} were taken as starting parameters for the structural refinement of HgWO_{4}. The program FULLPROF (Rodriguez-Carvajal, 1997) was used for refining the cell and structure. The profile shape was represented by a pseudo-Voigt function. Profile, lattice, structure parameters, zero-point shift, six background parameters and the scale factor were refined without correction for preferred orientation. Atomic displacements were assumed to be isotropic. WINPLOTR (Roisnel \& Rodriguez-Carvajal, 1999) was used for plotting the powder diffractogram and ATOMS (Dowty, 1998) was used for the polyhedral representation. The weight function used in the refinements was $1 / u^{2}$, where u is the s.u. for the observed intensities of each data point

Program(s) used to refine structure: $F U L L P R O F$; software used to prepare material for publication: WINPLOTR.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1261). Services for accessing these data are described at the back of the journal.

References

Åsberg Dahlborg, M. \& Svensson, G. (1999). Acta Chem. Scand. 53, $1103-$ 1109.

Blasse, G. \& Grabmaier, B. C. (1994). In Luminiscent Materials. Berlin Springer-Verlag.
Blasse, G. \& van den Heuvel, G. P. M. (1974). J. Lumin. 9, 74-78
Dowty, E. (1998). ATOMS. Version 4.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA
Jeitschko, W. \& Sleight, A. W. (1973). Acta Cryst. B29, 869-875.
Keeling, R. O. (1957). Acta Cryst. 10, 209-213.
Rodriguez-Carvajal, J. (1997). FULLPROF. Version 3.5 of December 1997. Laboratoire Leon Brillouin (CEA/CNRS), CEA-Saclay, 91191 Gif-surYvette CEDEX, France
Roisnel, T. \& Rodriguez-Carvajal, J. (1999). WINPLOTR. Beta Version of January 1999. Laboratoire Leon Brillouin (CEA/CNRS), CEA-Saclay, 91191 Gif-sur-Yvette CEDEX, France
Sillén, L. G. \& Nylander, A.-L. (1943). Ark. Kemi Mineral. Geol. 17A, 1-27. Swindells, F. E. (1951). J. Opt. Soc. Am. 41, 731.

