
body. The core body mediates dimerization
and forms a cystine knot; this is a characteris-
tic structure of disulphide-bonded cysteines
that is also found in BMP-7 and numerous
other secreted proteins8. The knot takes the
general shape of a ring of intramolecular
disulphide bonds, through which passes a
single intermolecular disulphide linkage that
stabilizes the dimeric structure.

The BMP-7 dimer has wings that are
structurally similar to but more compact
than those of Noggin. In the complex1, the
Noggin and BMP-7 butterflies are arranged
back-to-back with the wings touching (Fig.
1c) and Noggin’s wings extending out to
embrace those of BMP-7. This overall struc-
ture provides an essential spatial arrange-
ment that allows an amino-terminal exten-
sion of each Noggin monomer to snake
around BMP-7 and form a ‘clip’ that
occludes the surfaces of the growth factor
that make contact with its receptor. Indeed,
one of the amino acids in the amino-ter-
minal half of the Noggin clip (proline 35)
extends into a hydrophobic pocket on BMP-
7 that normally4 makes a key contact with a
phenylalanine residue on the type I receptor.
At the other end of the clip, hydrophobic
amino acids cooperate with others to mask
the hydrophobic patch on BMP-7 that makes
contact with the type II receptor. These
extensive contacts and the occlusion of both
receptor-binding sites on BMP-7 probably
explain both the high affinity of Noggin for
BMP-7 and its potent antagonistic activity.

So just how important are these contacts
to Noggin’s antagonism of BMP-7 and, ulti-
mately, to its physiological functions? To
answer this question, Groppe et al. produced
versions of Noggin that had different muta-
tions in each of the interaction surfaces, and
used them in tests of limb-bud development
in the chick. In normal limb development,
BMPs are essential for formation of the carti-
lage that presages where bones will form9.
They are also needed to sculpt the fingers, by
inducing cell death between the digits. So,
treating developing limb buds with Noggin
leads to a loss of cartilage formation and a
block in cell death between digits. But
Groppe et al. found that mutations in Nog-
gin’s second interaction surface strongly
reduced its ability to bind BMP-7 and to
antagonize BMPs in vivo. In contrast, muta-
tion of the first interaction surface had a less
dramatic effect on binding to BMP-7, and
weak effects on limb development. Never-
theless, this latter mutation does cause joint
fusions in a number of human skeletal dys-
plasias, so the affected surface is biologically
important1.

This Noggin–BMP-7 structure1 provides
the first glimpse of how a secreted antagonist
blocks BMP function. It remains to be seen
whether BMP antagonists from another,
larger protein family — the DAN family —
have similar overall structures. But at least

one such antagonist, Cerberus, can inhibit
BMPs as well as members of another, struc-
turally unrelated family of secreted factors,
the Wnt proteins10. It will be interesting to
see how the DANs can block multiple path-
ways. Furthermore, Noggin and DAN genes
are rarely found in invertebrate genomes,
but are conserved in diverse vertebrate
species. The finding that Noggin and BMP-7
share considerable structural similarity,
despite having opposite biological func-
tions, suggests that the demands of pattern-
ing vertebrate organisms may have driven
the evolution of a BMP antagonist from an
ancient BMP-like gene. ■
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The most familiar example of a triple
point is in water: on a graph of pressure
and temperature, the three lines sepa-

rating the vapour–liquid, liquid–solid and
solid–vapour phases all cross at a tempera-
ture of 273.15 K, that value being set to define
the Kelvin scale of temperature. Phase transi-
tions such as these are normally associated
with temperature, but on the quantum scale
they can occur at zero temperature through
other mechanisms. In the lowest energy
(ground) states of atomic nuclei, different
phases exist which correspond to different
geometrical shapes. According to Jan Jolie
and colleagues1, writing in Physical Review
Letters, these phases come together at a triple
point, validating a prediction made by the
Russian physicist Lev Landau in a classic

paper on the theory of second-order phase
transitions2. Writing in 1937, Landau could
not have expected his theory to apply in the
nuclear domain.

When ice melts, it does so at a particular
temperature and with a sudden change in its
state, as the crystal structure is destroyed by
the thermal motion of the water molecules.
This is an example of a first-order phase 
transition: at the transition temperature, 
the two phases — solid and liquid — coexist
and latent heat is required to effect the 
transformation from one to the other. 
Landau’s theory deals with second-order
phase transitions in which the state of the
system changes in a continuous way with 
no coexistence of phases. Instead, at the 
transition point, the two phases become
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Nuclear physics

A triple point in nuclei
David Warner

Triple points describe states of matter in which three phases exist at the
same time — such as solid, liquid and gas. The same phenomenon has
now been found to occur between three different shapes of atomic nuclei.

Spherical

Oblate deformed

Prolate deformed

First-order phase transitions

Critical point
   O(6)

Critical point
            X(5)

Critical point
   X(5)

SU(3)

SU(3)

U(5) Triple point
    E(5)

Figure 1 The extended Casten triangle. Each apex denotes a mathematical symmetry corresponding
to one of the three shapes shown. Transition points and their associated critical symmetries are
indicated, as are first-order phase transitions. Jolie et al.1 propose that there is a nuclear triple point
that marks the second-order transition between a spherical nuclear shape and a prolate or oblate
deformed one. Existing data for the barium nucleus support this hypothesis.
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indistinguishable. A familiar example is the
magnetic transition in iron, in which the
magnetization associated with the ferro-
magnetic state vanishes at the Curie temper-
ature and the system becomes paramagnetic.

The phase transitions in these classical
systems arise from a competition between
order and thermal fluctuations. In quantum
systems, however, phase transitions can take
place at zero temperature and the change in
order is invoked by some other parameter. In
its ground state, an atomic nucleus has a 
stable geometrical shape that results from the
interaction between its constituent neutrons
and protons (known collectively as nucleons).
As the number of nucleons changes from
nucleus to nucleus, shape phase transitions
occur, in which the geometrical configura-
tion changes, for example, from spherical 
to ‘prolate quadrupole deformed’, or cigar-
shaped. (Strictly speaking, phase transitions
in finite systems can only be defined in the
classical limit in which the number of con-
stituents tends to infinity. In practical terms,
this means that the discontinuity associated
with the transition is smoothed out in the
finite system.) Quantum phase transitions
involving changes in geometrical config-
urations occur in other finite many-body 
systems as well, such as molecules.

Interest in nuclear-shape phase transi-
tions has been galvanized over the past 
two years by a new interpretation of the 
behaviour of the nuclei 152Sm (samarium)
and 134Ba (barium). In nuclear physics,
quantum phase transitions can be studied
most easily using algebraic techniques that
associate a specific mathematical symmetry
with the different nuclear shapes. In particu-
lar, in the framework of the ‘interacting
boson model’3, three such shapes exist corre-
sponding to spherical symmetry, a deformed
shape with axial symmetry and a deformed
shape without axial symmetry (described
mathematically by the groups U(5), SU(3)
and O(6), respectively). The transition
between the first two of these is represented
by a line of first-order transitions on the
phase diagram, and the transition between
U(5) and O(6) is a second-order point.

New experimental data4,5 and a fresh
examination6 of both data and theory for
152Sm and 134Ba have demonstrated the 
relevance of the concept of quantum shape
phase transitions in the nuclear domain.
Moreover, Francesco Iachello has developed
‘critical’ symmetries that provide an analy-
tical way to describe the structure of nuclei 
at the critical points of the second-order
transition7 and in the coexistence region of
the first-order transition8 (E(5) and X(5),
respectively) — predictions that are again
matched by the behaviour of 152Sm and 134Ba.

The picture was not complete, however,
without the new work published by Jolie et
al.1. Until now, the nuclear phase diagram,
known as the Casten triangle (Fig. 1), had

shown a line of first-order phase coexistence
between the U(5) and SU(3) symmetries that
culminated in a second-order point defining
the U(5)–O(6) transition. But where was the
transition in the third leg of the triangle,
between SU(3) and O(6)? In earlier work,
Jolie et al.9 showed that part of the triangle was
missing: it should be extended to incorporate
SU(3)�� symmetry. This corresponds to axially
symmetric, oblate deformation, instead of
the prolate shapes represented by SU(3) — a
flattening rather than a stretching, essentially
a change in sign of the relevant shape variable.
The previously established O(6) symmetry
then also plays the role of a critical symmetry,
describing the first-order phase transition
from a prolate to oblate shape.

Armed with this extended version of the
Casten triangle, Jolie et al.1 have now com-
pleted the story by analysing the nuclear-
shape phase diagram in terms of the Landau
theory of continuous (second-order) phase
transitions. The authors show that, in the
nuclear case, a second-order transition can
only occur as an isolated point that coincides
with a junction of two lines of first-order
transitions (Fig. 1). This is the triple point of
nuclear deformation. In agreement with
Landau’s theory, the phase transitions occur
between symmetries of higher and lower
order (spherical and deformed) and between
symmetries characterized by opposite signs

of the order parameter (corresponding to
prolate and oblate deformation). At the
triple point, all three phases exist and, look-
ing back to earlier experimental studies, the
134Ba nucleus has provided the first experi-
mental proof that this is so. 

The study by Jolie et al.1 shows, in a
straightforward and elegant way, how the
classical theory of phase transitions can be
applied to describe the shapes of atomic
nuclei in their ground states. The theory
describes the nature of the transition from
one shape to another as a function of the
appropriate parameters — a unified picture
that offers a new perspective on the changing
shape of nuclei. It also emphasizes how basic
theoretical concepts can span a multitude of
physical systems. ■
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Over the past ten years there has been
much progress in understanding
insect flight1–3. The news keeps com-

ing, and the latest instalment appears on
page 660 of this issue4, where Srygley and
Thomas describe aerodynamic observations
made on free-flying red admiral butterflies.
By injecting wisps of smoke into a wind 
tunnel, through which the butterflies flew
towards an artificial flower, the authors were
able to record airflow features around the
wings using high-speed cameras. From the
ensuing analysis, they conclude that the 
butterflies possess an impressive repertoire
of aerodynamic mechanisms, which they
employ in different circumstances and with
great virtuosity. 

We evidently still have much to learn
about insect flight, which has been refined
over an evolutionary history of 300 million
years or more5. There are plenty of reasons
for such studies. This is a subject of funda-
mental importance in biomechanics6, and

more generally in biology, because of the
abundance and ubiquity of insects, and their
importance in many ecosystems7. 

Insects are also masters of manoeuvrabili-
ty at low speeds, in hovering and flying back-
wards and sideways, skills that are of great
interest to engineers in two respects. One is
the lessons to be learned in designing 
flapping-wing ‘micro air vehicles’ (defined as
being no more than 15 centimetres in length,
width or height). Another is the prospect of
reverse-engineering insect flight control, by
finding out how insects steer in the air. 
Man-made flying vehicles are controlled 
by software commands, but the software
design requires many man-years of work and 
powerful computer chips for its implementa-
tion. By contrast, in flies for instance, flight
control probably originates from a central
complex in the fly brain consisting of about
3,000 neurons8. This gives the insect less 
computational power than a toaster, yet
insects are more agile than aircraft equipped
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Red admiral agility
Rafal/ Z

.
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Our understanding of insect flight is hampered by the difficulty of obtaining
data when the insects are flying freely. But such experiments can be
carried out and show butterflies to be masters of flight control. 
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