The i.r. and Raman spectra of solid trichloroacetonitrile

H. F. SHURVELL and S. E. GRANSDEN

Department of Chemistry, Queen's University, Kingston, Canada, K7L 3N6

J. A. FANTRAN

Department of Chemistry, University of Ibadan, Nigeria

and

D. W. JAMES

Department of Chemistry, University of Queensland, St. Lucia, Brisbane, 4067, Australia

(Received 18 March, 1975)

Abstract—The i.r. and Raman spectra of polycrystalline films of CCl₃CN have been recorded at liquid nitrogen temperature. Chlorine isotope splitting has been resolved for the v_s fundamental and crystal splittings have been observed for five of the fundamentals. A possible crystal structure is discussed. Raman wavenumbers and depolarization ratios are included for liquid CCl₃CN.

INTRODUCTION

Infrared spectra of gaseous and liquid CCl₃CN and the Raman spectrum of the liquid have been published previously [1, 2]. In this older work the i.r. spectrum only extended to 475 cm⁻¹. However, four of the eight fundamentals $(r_4, r_6, r_7 \text{ and } r_8)$ occur at lower wavenumbers. Three of these $(r_4, r_7 \text{ and } r_8)$ were observed in the Raman spectrum by WAIT and JANZ [1]. These workers estimated r_6 to be 350 cm⁻¹ from combination bands in the i.r., whereas EDGELL and ULTEE [2] assigned a very weak Raman line at 388 cm⁻¹ to r_6 . Only qualitative depolarization measurements were made on the Raman lines and some of these were uncertain [1, 2].

Our main interest in CCl₃CN is in solid state i.r. and Raman spectra and gas phase i.r. spectra. No previous solid state spectra of CCl₃CN have been reported and the crystal structure is not known. Preliminary work on the gas phase i.r. spectrum indicated that few of the interesting features observed for CF₃CN [3, 4] were present in the spectrum of CCl₃CN.

We have recently studied the solid state vibrational spectra of CCl_3H [5] and CCl_3F [6, 7] and observed splittings of fundamentals, which were attributed to both crystal and chlorine isotope effects. Chloroform is known to have an orthorhombic crystal structure [8] and the reported vibrational spectra are consistent with this structure [5, 9, 10]. From i.r. and Raman spectra of solid CF_3CN [11], a possible crystal structure was deduced from splittings of fundamentals. In this paper we extend previous work on analogous compounds to solid CCl_3CN . In addition, we report here extended i.r. measurements of liquid CCl_3CN and depolarization ratios for the Raman lines of the liquid.

EXPERIMENTAL

Research grade CCl_sCN was obtained from The Aldrich Chemical Company. No impurities were detected in the spectra and apart from outgassing on a vacuum line, the material was used without further purification.

The infrared spectra were recorded on both Perkin-Elmer E14 single beam double-pass and Perkin-Elmer model 180 double beam grating spectrophotometers. The instruments were thoroughly flushed with dry nitrogen gas to remove atmospheric H_2O and CO_2 . The spectral slit width used varied from 1.0 to 2.0 cm⁻¹. The instruments were calibrated with suitable standards [12] and the frequencies given in Table 1 are believed to be accurate to within ± 1.0 cm⁻¹.

A conventional low temperature liquid nitrogen cell was used and the sampling method employed is similar to that described for CF_3CN [5]. Very careful annealing of the deposited films was necessary to obtain reproducible results. Spectra obtained from initial deposits usually showed less structure than they did after annealing.

The Raman spectra were recorded on a Cary 82 spectrophotometer at the University of Queensland. Spectra were excited by the 5145 A line of a C.R.L. model 52 Argon ion laser. The cryostat used was an Oxford instruments, CF100 liquid transfer cryostat. Calibration was made using known wavelengths of argon ion emission lines from the laser [13].

Mode Infrared		Raman		Assignments
Liq uid	Solid	Liquid ^b	Solid	
2251 s	2251.5 s	2249.5 vs (0.10)	2249.5 vs	C≡N str.
			2222 VVW	C≡ ¹⁵ N str.
			2198 vw	¹³ C≡N str.
1028 vs	1025.5 vs	1028.0 w (0.02)	1025.9 w	C-C str.
	1018.0 w			¹³ C-C str.
490 s	496.0 vs,b	487.8 vs (0.02)	487.5 s	c^{35} Cl $_3$ CN str.
		484.8 vs (0.02)	484.5 m	c ³⁵ c1, ³⁷ c1CN
			483.6 m	\int orientation splitting
			481.2 m) c ³⁵ c1 ³⁷ c1,cN
			480.0 sh 3.2	<pre>f orientation splitting</pre>
		~~	478.0 w	c ³⁷ c1 ³ cN str.
318 w	318.0 w	316.5 m (0.34)	318.9 m	CC1 ₃ def.
		····	792.6 m	CCl ₂ str.
			789.4 s	.
707	701 7	700 0 (0 70)	744 4	site and unit
/87 VS	791.7 VS	789.0 m (0.79)	786.9 \$	cell splitting
	784.6 W		785.4 m	
334 wsh	360.0 vw			CCl ₃ def.
262 s	265.0 m	262.0 s (0.78)	263,5 w	CCI3 rock
			181.5 w 7 7	C-C≡N def.
	· 		173.9 m < 1.1	site and
156 s		160.5 s (0.80)	164.8 s	unit cell
			,0,0	
	Infra Liquid 2251 s 1028 vs 490 s 318 w 318 w 787 vs 787 vs 334 wsh 262 s 156 s	Infrared Liquid Solid 2251 s 2251.5 s 1028 vs 1025.5 vs 1018.0 w 490 s 496.0 vs,b 318 w 318.0 w 787 vs 791.7 vs 784.6 w 334 wsh 360.0 vw 262 s 265.0 m 156 s	Infrared Raman Liquid Solid Liquid ^b 2251 s 2251.5 s 2249.5 vs (0.10) 1028 vs 1025.5 vs 1028.0 w (0.02) 1018.0 w 490 s 496.0 vs,b 487.8 vs (0.02) 490 s 496.0 vs,b 487.8 vs (0.02) 318 w 318.0 w 316.5 m (0.34) 787 vs 791.7 vs 789.0 m (0.79) 784.6 w 334 wsh 360.0 vw -	Infrared Raman Liquid Solid Liquid ^b Solid 2251 s 2251.5 s 2249.5 vs (0.10) 2249.5 vs 2222 vvw 2198 vw 1028 vs 1025.5 vs 1028.0 w (0.02) 1025.9 w 1018.0 w 490 s 496.0 vs,b 487.8 vs (0.02) 487.5 s 483.6 m 3.0 480.0 sh 3.2 792.6 m 789.4 s 787 vs 791.7 vs 789.0 m (0.79) 786.9 s

Table 1. Raman and i.r. wavenumbers $(cm^{-1})^{a}$ in the regions of the fundamentals of liquid and solid $CCl_{3}CN$

^a y = very, s = strong, m = medium, w = weak, sh = shoulder, b = broad

^b depolarization ratios are given in brackets

RESULTS AND DISCUSSION

To indicate relative intensities of the bands, i.r. and Raman survey spectra of solid CCl_3CN are shown in Figs. 1 and 2. Figure 3 shows the far i.r. spectrum of liquid CCl_3CN . Some details of the i.r. and Raman spectra of fundamentals and other features are seen in Figs. 4, 5 and 6. Table 1 lists the observed wavenumbers, Raman depolarization ratios and assignments in the regions of the fundamentals and Table 2 gives the wave-numbers of overtone and combination bands.

Frequency shifts in passing from liquid to solid states are very small. However, five of the fundamentals and several combinations and overtones are observed to split into multiplets. In addition to the chlorine isotope splitting discussed below, the a_1 modes might be split by vibrational coupling if there are two or more molecules in the unit cell. The *e* modes on the other hand, might show both site and unit cell components.

Isotope splitting

The relative abundances and symmetries of the four chlorine isotopic CCl₃CN molecules are: $C^{35}Cl_3CN$ 42.8% (C_{3v}), $C^{35}Cl_2^{37}ClcN$ 41.9% (C_s), $C^{35}Cl^{37}Cl_2CN$ 13.9% (C_s) and $C^{37}Cl_3CN$ 1.5% (C_{3v}). Chlorine isotope splitting is responsible for some of the observed fine structure associated with the v_3 fundamental, the overtone $2v_3$ and the combinations $v_3 + v_4$ and $v_3 + v_7$.

Fig. 1. An i.r. survey spectrum of solid CCl₃CN at 77 K. The spectral slit width was 3 cm⁻¹.

Fig. 2. A Raman survey spectrum of solid CCl₃CN at 77 K. Spectral slit widths and photon counting ranges (10³ counts/sec). used were: A 1.4 cm^{-1} , 50; B 1.7 cm^{-1} , 50; B 2.0 cm^{-1} , 20; D 4.0 cm^{-1} , 10.

Fig. 3. The far i.r. spectrum of liquid CCl_sCN at $35^{\circ}C$ in polyethylene cells. A 0.1 mm and A 1.0 mm pathlength.

Fig. 4. Details of some i.r. bands of solid CCl_3CN at 77 K. Trace A was obtained from a very thin film, trace B from a thick film. A medium thick film was used for v_7 and thin films for the other bands.

The magnitudes of the splittings due to chlorine isotopic molecules were predicted by means of a normal coordinate analysis. The Wilson FG matrix method [14] was used and an initial valence force field, including a few interaction constants, was obtained for CCl₃CN from reference [1]. The force field was refined using a computer program written by SCHACHTSCHNEIDER [15] and modified by BROOKS [16]. The following structural parameters were taken from the electron diffraction study of LIVINGSTON *et al.* (17): C—N = 1.165 Å,

Fig. 5. Details of some Raman bands of solid CCl₃CN at 77 K. Spectral slit widths and photon counting ranges (counts/sec.) used were: $v_1 0.6 \text{ cm}^{-1}$, 5000; $v_3 1.0 \text{ cm}^{-1}$, 2000; $v_3 0.5 \text{ cm}^{-1}$, 5000; $v_4 0.5 \text{ cm}^{-1}$, 1000; $v_5/v_3 + v_4 0.5 \text{ cm}^{-1}$, 2000; $v_7 0.5 \text{ cm}^{-1}$, 1000 and $v_8 0.4 \text{ cm}^{-1}$, 500.

Fig. 6. Some overtone and combination bands and the lattice mode region of the Raman spectrum of solid CCl₃CN at 77 K. Spectral slit widths and photon counting ranges (counts/sec.) used were: $2\nu_3 1.0 \text{ cm}^{-1}$, 1000; $\nu_3 + \nu_7 2.0 \text{ cm}^{-1}$, 1500; $\nu_4 + \nu_8 0.75 \text{ cm}^{-1}$, 2000; $\nu_7 + \nu_8 4.0 \text{ cm}^{-1}$, 2000 and for the lattice mode region 2.0 cm⁻¹, 5000.

Raman	Infrared	Assignment
	1805.0 vw	$v_2 + v_5$ (E)
*	1575.0 vw	$2v_5 (A_1 + A_2 + E)$
	1265.0 vw	$v_3 + v_5$ (E)
	1098.0 w	$v_4 + v_5$ (E)
	1046.0 vw	$v_5 + v_7 (A_1 + A_2 + E)$
	1009.5 vw	?
996.2 w,b	998.3 w	?
983.0 sh>3.7 979.3 s>6.6 972.7 w.b	~ 984.0 sh >3.5 980.5 vs >3.5 973.0 m >6.5	$\left.\right\} = 2\nu_3 (A_1)$
	965.0 w	?
~ 805.0 w,b	~ 805.0 sh	2
798.2 m > 4.2 794.0 w > 3.5 790.5 sh > 3.5 779.5 sm	798.7 s	$\left. \begin{array}{c} \nu_3 + \nu_4 \left(A_1 \right) \end{array} \right.$
762.0 sh 762.0 sh 752.0 m 746.5 m 746.5 m 55.1 741.5 w 5.5 736.0 vw 5.5	779.5 s 764.0 m 751.8 m>5.4 746.4 m>5.1 741.3 w>5.1	$\begin{cases} v_3 + v_7 (E) \end{cases}$
672.0 vw 658.0 w		$\left.\right\} v_3 + v_8$ (E)
499.7 s 497.0 sh 	486.3 w 482.7 m	$\left. \begin{array}{c} \nu_4 + \nu_8 \left< E \right> \right. \right. \\ \left. \left. \left< E \right> \right. \right. \right. \\ \left. \left. \left< E \right> \right. \right. \right. \\ \left. \left. \left< E \right> \right. \right. \right. \\ \left. \left. \left< E \right> \right. \right. \\ \left. \left. \left< E \right> \right. \right. \right] \right. \\ \left. \left. \left< E \right> \right. \right] \right. \\ \left. \left. \left< E \right> \right. \right] \right. \\ \left. \left. \left< E \right> \right. \right] \right. \\ \left. \left. \left< E \right> \right. \right] \right. \\ \left. \left. \left. \left< E \right> \right. \right] \right. \\ \left. \left. \left< E \right> \right. \right] \right. \\ \left. \left. \left. \left< E \right> \right. \right] \right. \\ \left. \left. \left. \left< E \right> \right. \right] \right. \\ \left. \left. \left. \left< E \right> \right. \right] \right. \\ \left. \left. \left. \left< E \right> \right. \right] \right. \\ \left. \left. \left. \left. \left< E \right> \right. \right] \right. \\ \left. \left. \left. \left. \left< E \right> \right. \right] \right. \\ \left. \left. \left. \left. \left< E \right> \right. \right] \right. \\ \left. $
440.5 vw 430.7 vw		$ \left. \begin{array}{c} v_7 + v_8 (A_1 + A_2 + E) \end{array} \right. $
	302.0 vw ^b	$2v_8 (A_1 + A_2 + E)$
161.2 sh		

 Table 2. Wavenumbers (cm⁻¹) of some overtone and combination bands observed^a in the Raman and i.r. spectra of solid CCl₃CN

^a For comparison of relative intensities within this table, the symbols; v = very, s = strong, m = medium and w = weak, are used. With the exception of $2v_3$ these intensities are generally an order of magnitude weaker than those of Table 1.

^b Observed in the spectrum of liquid CCl_3CN .

C-C = 1.465 Å, C-Cl = 1.765 Å and $CCCl = 109.5^{\circ}$.

A reasonable fit was obtained between observed (liquid phase) wavenumbers and those calculated using an atomic weight of chlorine of 35.45. The same force constants were then used to calculate the wavenumbers of the four chlorine isotopic molecules using atomic weights of 35.00 and 37.00. No splitting was predicted for v_1 and v_2 and the calculated separations between isotopic components of v_3 , v_4 , v_5 , v_6 , v_7 and v_8 were 3.0, 1.5-1.9, 0.6, 0.6, 1.0-1.8 and 0.6 cm⁻¹ respectively. From

these calculations it was expected that isotopic structure might be resolvable for v_3 , v_4 and v_7 . However it appears that isotopic splitting is only observed for v_3 , $2v_3$ and some combinations involving this fundamental.

The relative abundances of $^{12}\text{CCl}_3^{12}\text{CN}$, $^{13}\text{CCl}_3^{12}\text{CN}$ and $^{12}\text{CCl}_3^{13}\text{CN}$ are: 97.8%, 1.1% and 1.1% respectively. It is expected that v_2 of CCl₃CN will be appreciably shifted in the molecules containing ^{13}C and the intensity should be about 2% of the light molecule. The weak peak at 1018 cm⁻¹ in the i.r. spectrum, (Fig. 4), could be due to v_2 of the two ¹³C isotopic molecules*.

In the C=N stretching region two isotopic satellites are possible due to C=¹⁵N and ¹³C=N. The relative abundances are 0.4% and 1.1% and a diatomic molecule model, predicts shifts of 35 and 50 cm⁻¹ respectively. The two very weak Raman lines at 2222 and 2198 cm⁻¹, (Fig. 2), are assigned to r_1 of the two heavy isotopic molecules.

A_1 fundamentals

The $C \equiv N$ and C - C stretching modes v_1 and v_2 , and the symmetric CCl_3 deformation v_4 all appear as single peaks in both i.r. and Raman spectra. A weak peak on the low wavenumber side of v_2 in the i.r. spectrum, (see Fig. 4) is probably due to ¹³C isotopic molecules.

Both i.r. and Raman spectra of the symmetric CCl_3 stretching mode v_3 are complicated. The i.r. spectrum shows a strong broad peak centered at 496 cm^{-1} with unresolved structure and a weak doublet on the low wavenumber side. A Raman band centered at 487.5 cm^{-1} contains at least eight features, some of which are shoulders. This fundamental should have well resolved chlorine isotopic structure. In addition, absorption or scattering arising from the combination $v_4 + v_8$ is expected from 475 to 500 cm⁻¹. The resulting i.r. and Raman bands are difficult to identify. If the Raman scattering observed near 495 cm⁻¹ is attributed to components of $v_4 + v_8$, a pattern remains which can be recognized 88 chlorine isotope quartet similar to that observed for CCl₂F [6] and CCl₃H [5]. However, in the present case, the peaks due to the C³⁵Cl₂³⁷ClCN and C³⁵Cl³⁷Cl₂CN molecules are split into doublets, which can be explained as an orientational field effect as follows[†]. If the CCl₃CN molecules

occupy C_s sites in the crystal and the plane of symmetry contains one of the C—Cl bonds, then the orientations shown in Fig. 7 are possible.

Fig. 7. Possible orientations of $C^{35}Cl_2^{37}ClCN$ and $C^{35}Cl_3CN$ molecules on C, sites.

A mixed isotopic molecule such as $C_2^{37}ClCN$ can have two non-equivalent orientations A and Bwith respect to the site symmetry. This applies equally to $C_2^{35}Cl_2^{37}Cl_2^{2}CN$ but not to $C_2^{35}Cl_3^{2}CN$ or $C_2^{37}Cl_3^{2}CN$ which have a unique orientation C.

The broad band observed for v_3 in the i.r. extends from 490 to above 500 cm⁻¹. The band undoubtedly contains several components, but attempts to resolve these components were unsuccessful, even using spectral slit widths as small as 0.5 cm^{-1} . This may be due to the difficulty in obtaining a properly annealed sample. This problem is difficult to avoid in the sampling method used to study i.r. spectra of thin films. The films are deposited from the gas phase onto a CsI window, which has poor heat conduction properties. Annealing is less of a problem in Raman studies, because the deposit is made directly onto a metal surface.

E fundamentals

Of the four degenerate vibrations of solid CCl₃CN only v_5 , v_7 and v_8 were observed in the Raman spectrum. The lowest frequency fundamental v_8 was not observed in the i.r. spectrum of the solid, but a band was seen in the liquid phase spectrum at 156 cm⁻¹, using a polyethylene cell.

The antisymmetric CCl₃ stretching mode v_5 shows considerable structure in both i.r. and Raman spectra. The region is complicated by two combinations $v_3 + v_7$ and $v_3 + v_4$. Chlorine isotope structure is difficult to identify, but it might account for part of the structure of the Raman band. However, it is apparent that crystal splittings are present with possibly four Raman and three i.r. active components.

The CCl_3 deformation v_6 is assigned to a very weak peak at 360 cm⁻¹ in the i.r. spectrum of the solid, while a shoulder on the high wavenumber

^{*} The natural abundance of ¹³CCl₃¹³CN is negligibly small (0.01%).

[†] We are grateful to a refere for suggesting this explanation of the observed splitting of two components of v_3 .

side of v_4 in the liquid phase spectrum, (see Fig. 3), may also be due to v_6 . However, there is a difference of 26 cm^{-1} between these liquid and solid phase absorptions, which seems to be unreasonably large. The location of v_6 remains uncertain for the present.

The CCl_3 rock v_7 gives rise to a fairly broad band in the i.r. spectrum of solid CCl_3CN . The three shoulders seen in Fig. 4 for this band may well be due to unresolved chlorine isotope structure. The Raman band is also broad and asymmetric.

The C—CN deformation r_g gives rise to a Raman band very similar to that of CF₃CN [11]. Four widely separated components are found in the spectra of both molecules. There is an additional weak shoulder in the CCl₃CN case, but this could be a lattice mode. The observed splittings must be due to both site and correlation field components in the crystal.

External modes

In Fig. 6, nine clearly resolved peaks are seen in the Raman spectrum of solid CCl_3CN between 30 and 120 cm⁻¹. The wavenumbers and relative intensities are: 33.3 m, 38.2 s, 47.3 w, 55.0 m, 64.7 m, 76.7 s, 92.3 m, 102.2 w and 117.3 w. Two weak shoulders are also evident at 43.4 and near 108 cm⁻¹. The relative intensities of these lattice modes can be compared with the intensities of the internal modes in Fig. 2, where it is seen that the external vibrations are quite weak.

Overtones and combinations

A large number of weaker features in the i.r. and Raman spectra of solid CCl₃CN can be assigned to overtones and combinations. The overtone $2v_3$ is very strong in the i.r. due to Fermi resonance with v_2 . The fundamental v_2 is weak in the Raman spectrum, so that $2v_3$ is also weak in the Raman. Several combinations involving v_3 are observed in both i.r. and Raman spectra. Of these, $v_3 + v_4$, and $v_3 + v_7$ as well as $2v_3$, have fairly complex bands, part of which may be due to chlorine isotope structure. The combination $v_3 + v_7$ consists of two groups of bands, the lower wavenumber groupings (see Figs. 4 and 6) have the intensities and separations expected for the four isotopic CCl₃CN molecules.

Three combinations involving v_8 have been identified from the large separations between their components. For $v_3 + v_8$ and $v_7 + v_8$ two components are observed in each case with splittings of 14 and 9.8 cm⁻¹ respectively. The approximate wavenumbers expected for the components of $v_4 + v_8$ can be estimated from the Raman wavenumbers of the fundamentals to be 500, 493, 484 and 475 cm⁻¹. In the Raman spectrum a line at 499.7 cm⁻¹ is observed with a shoulder at about 497.0 cm⁻¹. A doublet is observed at 486.3 and 482.7 cm⁻¹ in the i.r. on the low wave number side of the v_5 fundamental. All of these features are probably components of the combination $v_4 + v_8$.

Crystal structure

There is not sufficient evidence to draw any definite conclusions concerning the crystal structure. However, it is not unreasonable to expect that CCl₂CN will crystallize with an orthorhombic structure similar to that of the related tetrahedral C_{3v} molecules CCl₃H [5], CCl₃F [6, 7] and CF₃CN [11]. The doublet splittings of the v_3 bands of $\rm C^{35}Cl_2{}^{37}ClCN$ and $\rm C^{35}Cl^{37}Cl_2CN$ is good evidence for a C_s site and if the unit cell symmetry is C_{2n} or D_{2h} , then those non-degenerate fundamentals which do not show chlorine isotope splitting can split into two or four components by correlation field splitting. In each case two would be i.r. and two Raman active. On the other hand, the degenerate modes can split into four or eight components, three being i.r. active and four active in the Raman for either structure. Correlations between the various symmetry species of C_{3v} , C_s and C_{2v} or D_{2h} are shown in Table 3. While non-coincidence of wavenumbers of components in i.r. and Raman spectra would indicate the D_{ah} unit cell group, coincidence would not rule out this possibility.

The only evidence of crystal effects for the nondegenerate fundamentals is the splitting of two of the chlorine isotopic lines of v_3 in the Raman spectrum (see Fig. 5 and Table 1). As discussed above, this may be due to an orientational effect which produces an apparent site splitting of the non-degenerate modes of the partially substituted isotopic molecules. On the other hand, both v_5 and v_8 show four crystal components in the Raman while the i.r. band for v_5 has three. It would have been useful to observe the i.r. band for v_8 , but experimental limitations prevented this.

For the combinations of site and unit cell symmetries discussed above, there will be more than one molecule per unit cell. If there were two molecules per unit cell, (e.g., C_s site, C_{2v} unit cell), we would expect nine Raman active external modes. For a D_{2h} factor group and a C_s site there would be four molecules per unit cell. Of the 21 optical lattice modes 12 would be Raman active

Table 3. A correlation table for the point groups involved in two possible crystal structures for solid CCl₃CN

under any of the 28 D_{2h} space groups. A total of eleven features were observed in the lattice mode region of the Raman spectrum (see Fig. 6). However, we were unable to record the spectrum below about 25 cm⁻¹, because of strong scattering of the Rayleigh line so that it is possible that additional optical lattice modes have not been observed.

CONCLUSIONS

Solid state i.r. and Raman spectra of CCl_aCN have been recorded for the first time. Many of the fundamentals, as well as overtones and combinations give rise to complex bands. The observed splittings are due to both chlorine isotope and crystal components. The splittings of degenerate modes indicate a lowering of symmetry in the crystal and the doubling of the v_3 lines of $C^{35}Cl_2^{37}$ CICN and C³⁵Cl³⁷Cl₂CN in the Raman spectrum may be due to an orientation effect resulting from a C_s site. The observation of eleven lattice modes in the Raman spectrum shows that there must be more than one molecule in the unit cell. The evidence is insufficient to draw any definite conclusions concerning the crystal structure, but an orthorhombic structure is not ruled out.

The laser Raman spectrum of liquid CCl_3CN has been recorded for the first time and depolarization ratios measured for the fundamentals. The i.r. spectrum has been extended to 150 cm^{-1} and

three of the low frequency fundamentals v_4 , v_7 and v_8 have been observed. However, the degenerate CCl₃ deformation mode v_6 is extremely weak and was not observed in the Raman spectrum. Very weak absorptions at 360 and 334 cm⁻¹ in the solid and liquid phase i.r. spectrum might be due to v_6 , but unfortunately $+26 \text{ cm}^{-1}$ is an unreasonably large wavenumber shift between liquid and solid, so that the frequency of v_6 remains uncertain.

Acknowledgements—The authors are grateful to the National Research Council of Canada for financial support. One of us (H.F.S.) thanks the Australian Research Grants Committee for a Research Fellowship held during sabbatical leave at the University of Queensland.

REFERENCES

- S. C. WAIT, JR. and J. C. JANZ, J. Chem. Phys. 26, 1554 (1957).
- [2] W. F. EDGELL and C. J. ULTEE, J. Chem. Phys. 27, 543 (1957).
- [3] J. A. FANIRAN and H. F. SHURVELL, Spectrochim. Acta 26A, 1459 (1970).
- [4] J. A. FANIRAN and H. F. SHURVELL, Spectrochim. Acta 27A, 1945 (1971).
- [5] H. F. SHURVELL, J. Chem. Phys. 58, 5807 (1973).
- [6] H. F. SHURVELL, J. Raman Spectroscopy. 1, 347 (1973).
- [7] H. F. SHURVELL, S. E. GRANSDEN and D. W. JAMES, Can. J. Spectroscopy. 20, 27 (1975).
- [8] R. FOURNE and M. RENAUD, C.R. Acad. Sci. B263, 69 (1966).

- [9] A. KIMOTO and H. YAMADA, Bull. Chem. Soc. Japan. 40, 243 (1967); 41, 1096 (1968).
- [10] E. A. D'ALESSIO, E. DODERO and C. POMPOSIELLO, J. Chem. Phys. 57, 4136 (1972).
- [11] H. F. SHURVELL and J. A. FANIRAN, J. Mol. Spectry. 33, 436 (1970).
- [12] IUPAC, Tables of Wavenumbers for the Calibration of Infrared Spectrometers, Butterworths, London (1961).
- [13] L. MINNHAGEN, Arkiv. Fysik 25. 203 (1963).
- [14] E. B. WILSON, JR., J. C. DECIUS and P. C. CROSS, Molecular Vibrations, McGraw-Hill, New York (1955).
- [15] J. H. SCHACHTSCHNEIDER, Tech. Rept. No. 57-65, Shell Development Co., (1965).
- [16] W. V. F. BROOKS, private communication.
- [17] R. L. LIVINGSTON, W. L. PAGE and C. N. R. RAO, J. Am. Chem. Soc. 82, 5048 (1960).