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HEN several atoms combine to form a molecule there are many ques-
tions which the physicist would like to be able to answer. Perhaps the

most important question is whether a given set of atoms can combine or
not to form a molecule. The chemists for many years have been able to give
an answer through the use of the rules of valence. While this answer has
been very satisfactory in its success in justifying known compounds and in

predicting new ones, it has not been possible until recently for the physicist
to interpret these rules in the light of quantum mechanics. The work of Heit-
ler and London' on the formation of homopolar diatomic molecules has shown
that valence is to be connected with the symmetry character of the wave
functions of the outer electrons in each atom. These ideas have not as yet
been applied in detail to molecules with more than two atoms but there is
little doubt but that they can be so extended. The question of whether a set
of atoms may form a stable molecule depends then, upon the electronic states
of the individual atoms.

In the present article we shall not consider the electronic state of the
molecule nor spectral bands which involve changes in the electronic energy.
Rather it will be assumed that a stable configuration of the atomic nuclei
does exist and the problem which we shall attempt to treat is that of the
space configuration of the nuclei and of the force functions acting upon the
nuclei in the neighborhood of their equilibrium position. Although this
neglect of spectra involving a change in the electronic state is a great limita-
tion of the general problem of molecular structure it is partly justified by the
fact that so little is known experimentally about such spectra whereas there
exists a great body of data on the infrared bands. Undoubtedly more experi-
mental information can be obtained relating to the visible and ultraviolet
bands of polyatomic molecules and this may well present one of the most in-
teresting problems to be attacked in the near future.

Recently three very important books have appeared on the subject of
infrared spectra by J. Lecomte, ' by F. I. G. Rawlins and A. M. Taylor' and
by Cl. Schaefer and F. Matossi. 4 Each of these books summarizes more or
less fully the entire field of infrared spectroscopy and together they present
descriptions of practically every paper that has appeared on this subject.
In view of the existence of these reference books, it would appear to be an

' W. Heitler and F. London, Zeits. f. Physik 44, 455 (1927).
' J. Lecomte, Le Spectre Infrarouge, Paris 1928.
' F. I. G. Rawlins and A. M. Taylor, Infrared Analysis of Molecular Structure, Cambridge,

1929.
' Cl. Schaefer and F. Matossi, Das Ultrarote Spektrum, Berlin1930.
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unnecessary duplication for us to attempt here any summary of the whole

body of infrared data even if it were possible in the space at our disposal.
XVe would like rather to present the methods which are available for the in-

terpretation of infrared spectra and to apply these methods to a set of typical
cases. The material will therefore be presented in logical rather than chrono-
logical order and should be supplemented by the books which have been
quoted above.

Part I comprises an exposition of the methods which may be used for
studying the infrared spectra of polyatomic molecules. The order of the sec-
tions, the vibrational, the rotational and the symmetry properties of mole-
cules is based upon the appearance of a spectrum as viewed with spectro-
scopes of progressively higher resolving powers. The gross features of a spec-
trum are the positions and intensities of the bands and these depend wholly
upon the vibrational properties of the molecules. Greater resolution reveals
the existence of fine structure in the bands which is to be associated with the
rotation of the system and eventually may show certain intensity ratios
among these lines which can only be explained when we take into account
the symmetry character of the wave functions.

Part II which will appear in a forthcoming issue of The Reviews of Mod-
ern Physics will contain a detailed application of these methods to the inter-
pretation of the infrared spectra of a number of the more important polyatom-
ic molecules.

SECTIOX 1. THE VIBBATIOX SPECTBUM OF THE
POLYATOMIC MOLECULE

1. The normal vibrations.

The vibration spectra of diatomic molecules have been investigated in

great detail both theoretically and experimentally. A review of the general
properties will be interesting since they may be carried over directly to apply
to the polyatomic case. Let us suppose that the system consists of two nuclei
A and 8 which have a position of stable equilibrium at the point r = rQ.

In Fig. 1 is plotted a typical curve representing the potential energy as a
function of the distance between the nuclei. Fig. 2 shows the force F= d V/dr
for the same molecule plotted to the same scale.

%hen the nuclei are very close together the force is very large and in a
direction tending to separate them. At r = rQ the force vanishes and the line-

arity of the curve in this region is a measure of how nearly the oscillator may
be considered as simple harmonic for these amplitudes. For larger values of r
the force reaches a maximum corresponding to the point of inHection of the
potential curve. As r approaches infinity the potential approaches asymptot-
ically a straight line whose height represents the work of dissociation of
the molecule. The horizontal lines in Fig. 1 represent the possible energy
states, which are discrete below D but continuous above. It is found that
the distance between the lower energy levels is nearly constant and is much
smaller than the distance D. Thus for HCl we have hvo/D=0. 026 and for
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Co hvo/D=0. 023 where hvo is the distance between the two lowest energy
states.

We shall principally be interested in the lowest energy states of vibration
where the force function is nearly linear since infrared absorption bands are
concerned with transitions from the lowest energy state to those states im-
mediately above. The problem may be treated by the wave mechanics when
it is found that the wave functions and energy values of these lowest states
are nearly identical with the functions and energy values of the simple har-
monic oscillator. The results of' this treatment may be summarized for transi-
tions between the lowest states.
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Fig. 1.

1st. The frequency of radiation absorbed or emitted is very nearly the
mechanical frequency of motion as computed in the classical manner. The
fundamental band corresponds to changes of one unit in the quantum num-
ber, the overtones to changes of more than one unit.

2nd. The intensity of radiation is nearly that computed by classical elec-
trodynamics, that is, it depends upon the square of the amplitude of the
change of the electric moment.

3rd. The wave function has a value sensibly diAerent from zero only in
the immediate neighborhood of the point r = ro corresponding to the fact that
the classical amplitude of the motion is small compared with the equilibrium
distance between the atoms.

These general properties may also be shown to hold for the polyatomic
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molecule. * Here we have a number s of atomic nuclei which we assume to
have a possible equilibrium position. In this section we shall deal with the
internal or vibrational degrees of freedom. The whole system has 3s degrees
of freedom but, of these, three correspond to uniform translation of all parti-
cles along the three space directions. In general when the particles do not lie
along a straight line there will also be three degrees corresponding to rota-
tions of the whole system about three axes. Thus of internal degrees of free-

Fig. 2.

dom there will be n = 3s —6. Let there be chosen a set of coordinates g~, g2.

q„giving the displacements from equilibrium, (i.e. in the vibrationless state all
q, are equal to zero). In considering the system either in classical mechanics
or in wave mechanics, the first step is to find the Hamiltonian. The kinetic
and potential energies assume a simple form in consequence of the property
(3) that the amplitude of motion in first approximation may be taken as in-
finitesimal compared with the normal distances between the nuclei.

& = 2(llllql + ' ' ' + &nnqn + 2&12qlq2 + ' ' ' )

2(flllql + ' + f q + 2f12qlq2+ ' ' ' )

where the a's and b's are constants. A linear transformation may now be
affected to the so-called normal coordinates, t'

* Perhaps it should be emphasized that these properties depend upon experimental data,
namely upon the fact that for real molecules huo/D&(i and that the force field is found to be so
nearly linear in the region of the energy states in question.

t' See, for example, E.T. Whittaker, "Analytical Dynamics, " 2nd edition, p. 178.



DAVID M. DENNISON

whereby the energies obtain a very simple form.

T = -', (x,' + x22 + + x„2)

V = 2(X(x, + X2x2'+ + X„x„).
The) 's are the n roots, distinct or multiple, of the determinant,

i
(2; l( —b, 2 i

= 0

and the coefficients c;t, of the linear transformation are given by the erst
minors of the determinant.

The Hamiltonian may then be written,

where
H = Hj, +Hg+ +B

II - = pP ~ + -') x '
It is evident that we have in effect an aggregation of n independent simple
harmonic oscillators. The translation into the language of wave mechanics
is now particularly simple in that the wave function of the whole system is
the product of the wave functions for the individual oscillators and the char-
acteristic value is the sum of the individual characteristic values. This
method of treatment is evidently allowed because the system is separable in

the n normal coordinates. Thus,

=W +W +. +W
The quantity f(„;&v' represents the V; Hermitian ol thogonal function where
we have introduced as variable y;= (2)r)'"Il "9.'"x;. The index V; is an in-
teger 0, 1, 2, and the function W"' = ( V;+ /2)B /2/22r. Reference to the class-
ical theory of small oscillations shows that the system will vibrate with a num-
ber n of normal or characteristic frequencies v&, v2, v . These are given by
the relation 2; =X;1/2/2)r and consequently we may write y; = 2)rv /2h "'x; and
W '=(V;+ 1/2)h);. While the method of derivation of the Hermitian functions
and their general expression is given in most of the treatises on the quantum
theory, it may be interesting to give the 6rst four of them in normalized form.

—~—it4e-u I2
0 2

(u)

&
—1/421/2y(, —2 /2

1 2

x—1/42 —1/2(2y2 1)(,—2 /2

1/43 1/2(2y2 3y)& (( /2
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The next problem is that of determining the selection rules and to do this
the matrices representing the electric moment of the system must be exam-
ined. Let R be the electric moment having three components along three
perpendicular axes in the molecule R~, R„and R~. Any one of these, say R~,
will be given, for small displacements of the atoms by a linear function of the
original coordinates q~, q„, and therefore by a linear function of the normal
coordinates.

R( = (R()0+ QAgxy

(Rc) p is the permanent electric moment in the f direction while the coe%-
cients A j, may be determined for any system whose Hamiltonian is known.

The matrix elements in question are

&n'
P(„„)dye d3'n.

A well-known property of the Hermitian orthogonal functions is that
the integral

vanishes unless the integers V" and V' diHer by one unit. In that case

ygvgv lay —P—'1 j2/21/2

The matrix elements representing R~ will therefore all vanish except; (a)
the diagonal elements R&v,

'
v„"——(R~)0, and (b) those elements for which all

the initial and final numbers are the same with the exception of one, say
VI„and this increases or decreases by one unit. *

I' ~ = A h'~'V '~'/7r2"'v "'
This expression for the electric moment gives the desired selection rules

and when taken in conjunction with the energy relation shows that the fre-
quencies of radiation which may be absorbed or emitted are just the normal
frequencies v~, v . It has therefore been shown that a wave mechanical
treatment of the system yields results identical with those obtained from
the classical theory. It must always be remembered that the system we have
considered is only an approximation to a real molecule, the simplification
lying in the fact that we consider the motion (i.e. values of it/* differing from
zero) to exist in a region small compared with the inter-atomic distances,
and that we take the force fields to be linear near the equilibrium positions.
An actual molecule of course only approximates to these conditions and con-
sequently we shall expect that the selection rule deduced above will not be
rigorously obeyed and that harmonic and overtone bands corresponding to
multiple changes in the quantum numbers will be observed in the spectrum.

* For a single harmonic oscillator with an electric charge e and a mass p it is easy to show
that A =e/p, 'I' and we then obtain the familiar expression for the amplitude of the electric mo-
ment (k Ve'/8~'p, v)'I'.
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Most infrared data on molecules consist of two curves, experimentally
determined, giving the spectral energy from a hot source as a function of
wave-length. The first curve is taken with a cell containing the gas in ques-
tion in the path of the radiation, the second is taken with the cell empty,
and these curves together yieM the percentage transmission of the gas for
the range of wave-lengths studied. This final curve giving the transmission
as a function of the wave-length or of the frequency will usually show a num-
ber of intense regions of absorption corresponding to the fundamental fre-
quencies of the system together with some fainter regions corresponding to
the overtones. The appearance of an absorption band depends largely upon
the degree of resolution of the spectrometer. With very low resolution it ap-
pears without structure, with higher resolution it may be seen to have several
adjoining maxima which form the envelope of the band. With suRiciently
high resolution the curve will consist of a large number of individual lines,
in some cases regularly and in others irregularly spaced. The phenomena of
the envelope and of the individual lines are consequences of the rotation of
the system and will be dealt with in Section 2. At present we are concerned
only with the positions and intensities of each band taken as a whole. Intensity
is best defined as the integral of the absorption coeScient over the region of
the band in question, I=fudv where o. is related to the percentage transmis-
sion land the cell-length l by Lambert's law.

~
—el

Unfortunately the intensity I is very dificult to determine experiment-
ally for it is found that with a spectrometer of the usual resolution, Lambert's
law is not obeyed. This is due to the fact that the band actually consists of
the rotation lines whose width is much narrower than the degree of resolution
of the spectrometer. Either of two methods might be employed to remove
this diSculty, the fine structure lines may be broadened by examining the
gas under a high pressure, or observations may be taken with so little gas in
the cell that the transmission T always remains very high. In most of the
experimental curves which are available however these conditions do not
obtain. Formally for such curves an apparent absorption coeScient and an
apparent intensity may be found but these results must be treated with
caution. Experience has shown that in absolute amount the true intensity
may be as great as ten times the apparent intensity. The errors introduced
by comparing the intensities of two bands in the same spectrum are of course
not as large as this but they will exist and will tend to make strong bands ap-
pear less strong than they actually are.

Leaving aside the difFiculties encountered in actually measuring the in-
tensity I, we may consider its relation to the Einstein coefficients and to the
matrix elements of the electric moment. The following equation giving the
intensity of absorption from the state labeled with the quantum numbers a
to the state with numbers 5 has been very clearly derived by Tolman' and
his derivation need not be repeated here.

R. C. Tolman, Statistical Mechanics with Applications to Physics and Chemistry, New
York i927 {Seepage 173 and following).
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Here g„and g& are the weights of the two states, X the number of molecules
per cc in the state c and E.,~ is b~a element of the electric moment. If, as is
often the case, R has three components along the three perpendicular axes
then

(R.)' = (R).)'+ (R„.)'+ (Et.)'

When we are interested in comparing the intensities of several funda-
mental absorption bands, the above formula becomes quite simple. If the
experiments have been carried out at room temperature, X becomes X the
total number of molecules per cc and the factor (1—e ""1~v ) may be set equal
to unity. This is of course because most of the fundamental bands in question
lie at shorter wave-lengths than 20' and a substitution shows that hv/kT is

then considerably larger than one. Consider the intensity of the kth funda-
mental. All the vibrational quantum numbers remain zero excepting VI,
which changes from zero to one.

(»')~ = (.&'7rgij3cgo)(Aa'+ &v, '+ Ca').

This expression is identical with the corresponding classical formula for the
intensity. Two special examples will be familiar to the reader. For a linear
harmonic oscillator go =go and A'= e'/p where e is the charge and y the re-

duced mass. Let the line of the oscillator be along the $ axis, when 8 = C=0.
We then see that the energy absorbed per second by each oscillator is 7re'/3pc,

just the classical expression. Again we might consider an isotropic oscillator
in space. It may then be shown that g~

——3go and A '+8'+ C' = e'/p and thus
the energy absorbed per second by each system is s.e'/pc; again a classical
result. *

The wave mechanical treatment of the vibration spectrum of molecules

may be summarized as follows. To the approximation in which the motions
of the atoms are small compared with the inter-atomic distances, the system
may absorb or emit radiation with a series of frequencies. These frequencies
are the so-called normal frequencies and may be computed with the classical

~ These examples suggest that we may compare the intensity of the k'~ fundamental band

of a polyatomic molecule with the intensity of absorption of an oscillator with the reduced mass

pf, the frequency v& and the charge e&. We then obtain.

(I')I = & a&I'i3&gol .
This conception becomes useful when we identify the amplitude of the comparison oscillator
with the amplitude of some one q, (or linear combination) of the coordinates of the polyatomic
molecule. We may then with Dennison' regard ez as an effective moving charge. A more satis-
factory viewpoint is however that of Kemble, Bourgin and Dunham. 7 who write the electric
moment E of the molecule as a function of the coordinates q&

. q„. In this case eI, is the first

derivative of E v ith respect to q. at the equilibrium position. eI, =(8E/Bq, ) o showing clearly
that we may expect ez to be the same for only those vibrations vz which may be identified with

the same coordinate q, .
' D. M. Dennison, Phys. Rev. 31, 503 (1928).
' E. C. Kemble and D. G. Bourgin, Nature, 117, 789 (1926); D. G. Bourgin, Phys. Rev.

29, 794 (1927);J.L. Dunham, Phys. Rev. 34, 438 {1929).
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theory of small oscillations. The intensity of absorption of the corresponding
fundamental bands depends upon the amplitude of the electric moment for
the normal vibration in question.

A number of models representing particular molecules have been treated
making use of various assumptions to obtain the potential energy function.
Historically the first example is that of CO2 as studied by Bjerrum. ' He as-
sumed a model having the form of an isosceles triangle with the carbon atom
at the apex. He used several forms for the potential function; one in which the
potential depended only upon central force fields, that is, only on the dis-
tances between the atoms, and others in which the potential was also a func-
tion of the apex angle. Hund' and Kornfeld" examined the spectra of H2O,
H2S and the CO3 ion using a model in which the force fields were non-central,
the mechanism residing in a polarization of the electron shells surrounding
the atoms. Dennison" ~' found the normal vibrations for models of NH3 and
CH4 assuming the forces to be central and Nielsen" made a like treatment of
the COB ion.

In all these investigations, the molecule was assumed to have a certain
geometric symmetry in its equilibrium configuration. Thus the atoms of
H20 were to stand at the corners of an isosceles triangle, the NH3 atoms at
the corners of a regular pyramid with the nitrogen atom at the apex, and
the atoms of methane formed a regular tetrahedron with the carbon atom
in the center. The potential energy function whether dependent upon central
forces or not was always assumed to have the same symmetry as the geomet-
ric configuration of the molecule.

A common feature of all the above mentioned work is that many of the
properties of the normal vibrations are independent of the particular con-
stants involved in the potential function and depend only upon the geometric
symmetry. These properties which we shall call the character of the vibra-
tion, involve the direction of vibration of the electric moment, some informa-
tion as to its magnitude and a general description of the motions of the in-
dividual atoms. The problem of the vibration of groups of atoms possessing
geometric symmetry has been considered by C. J. Brester, "but his solution
while very satisfactory and undoubtedly correct is not in a form suitable for
presentation here. It is however possible to obtain the character of the vibra-
tion of symmetrical polyatomic molecules through very simple considera-
tions, which may be described as follows. Since the work of Brester has shown
that the character of the vibration is independent of the particular values of
the forces between the atoms, but depends only upon the geometric configura-
tion, we may examine those limiting cases where some of the forces are ex-
tremely weak compared with others. In the next paragraphs some examples

8 N. Bjerrum, Verh. d. D. Phys. Ges. 15, 737 (1914).
~ F.Hund, Zeits. f. Physik 31,81 (1925).

'o H. Kornfeld, Zeits. f. Physik 25, 205 (1924).
' D. M. Dennison, Phil. Mag. 1, 195 (1926).
'~ D. M. Dennison, Astrophys. Journ. 52, 84 (1925).
'~ H. H. Nielsen, Phys. Rev. 32, 773 {1928)."C. J. Brester, Kristsllsymmetrie und Reststrahlen, Utrecht 1923.
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of the method will be presented where the character of vibration of the sim

pier cases may be checked by reference to the work of Hund, Dennison, etc. ,

cited above.

2. The triatomic molecule YX2.

The first problem is that of the triatomic molecules having two equal
atoms YX2 such as Hqo, H2S, etc. Ke assume that the atoms lie at the
corners of an isosceles triangle, the unequal atom F being at the vertex, and
that the potential function possesses this geometric symmetry. As limiting

case, let the force field between the X atoms be very strong compared with the
field between the X atoms and the Y atom. Clearly one of the vibrations
will be that of a mutual vibration of the X atoms, the Y atom being virtually
unaffected, since it is so weakly bound. (See Fig. 3)

Inter media. te

Fig. 3,

This frequency which we call vi does not in the limit have a changing elec-
tric moment but it is easy to proceed to an intermediate case. Let the forces
between the Y atom and the X atoms grow slowly. The Y atom will be per-
turbed by the motion of the X atoms but because of the symmetry in the
force fields its motion will lie along the bisector of the apex angle. The X
atom~ will now no longer move along the same line for the whole system must
fulfill the mechanical conditions that the linear momenta and also the angular
momenta must be constants; in the present instance chosen zero. The direc-
tion of the change of the electric moment is clearly along the symmetry line
for this vibration v~. Its amplitude will depend upon the particular values of
the force fields but mill not in general vanish.

Returning to the limiting case, consider the vibration of the Y atom rela-
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tive to the X atoms. The X atoms are thought of as being so tightly bound
that they form a rigid dumbell. The problem becomes similar to the vibration
of a mass point elastically bound to a rigid bar. Evidently v2 will be one of the
normal vibrations, the two X atoms moving in parallel directions and op-
posed to the motion of the Y atom. In the intermediate case where the force
fields are all of the same order of strength, it will be seen that the F atom will

somewhat inHuence the X atoms so that they no longer move parallel to each
other. The motion however is symmetrical about the line bisecting the apex
angle and the direction of change of the electric moment is clearly along this
line. While the amplitude of the electric moment is dependent upon the con-
stants of the force fields, it will not be difFicult to give some estimate of its
magnitude. To the extent to which the amplitude of motion of the X atoms
may be replaced by the component of their motion along the bisector of the
apex angle, the amplitude of the motion of the Y atom relative to the center
of gravity of the X atoms is that of an harmonic oscillator having a frequency
is and a mass ii = 2m&/(2ttt+ M) where m and M are the masses of the X and
F atoms respectively.

The third normal frequency v3 results from a tipping of the bar represent-
ing the X atoms relative to the F atom. Because of the mechanical demands
on the angular and linear momenta of the system the X atoms do not move
along the dotted lines as might be supposed but rather along lines which may
be proved to be the sides of the original isosceles triangle. To the approxima-
tion that the amplitudes of motion are small compared with the equilibrium
distances, the distance between the two X atoms remains a constant and the
Y atom moves along a straight line perpendicular to the bisector line. These
properties are independent of the relative field-strengths and may be carried
over directly to the intermediate case. The direction of the change of the
electric moment is for this vibration perpendicular to the line bisecting the
apex angle. The magnitude of the displacement of the F atom relative to the
center of gravity of the X atoms is dependent only upon the masses of the
particles and the form of the triangle but not upon the force fields. (This ob-
tains since the direction of motion of the particles is independent of the mag-
nitudes of the force fields. ) The amplitude of this displacement may be shown
to be equal to the amplitude of an oscillator of frequency v3 and reduced
mass iis =2ttrM/(2m+3')+2nrM'/(2m+3II)stan'n where cr is the half-angle
at the apex of the isosceles triangle. *

The character of the vibration becomes of particular importance when we
come to examine the fine structure of the bands caused by the interaction of
the vibration and rotation. Ke shall consider the H20 spectrum in detail
later but it may be remarked here that of the three fundamental bands, we
shall expect two of them vi and v2 to possess a similar fine structure since the

* Continuing the line of thought presented in the footnote to page 287 we may say; let the
intensity of this band v& be measured experimentally and found to be Iz. Let us identify the am-
plitude of the comparison oscillator with the amplitude of motion of the F atom relative to the
center of gravity of the X atoms. The egective change es ——[3ii,cIs/Ev]"'represents the first
derivative of the electric moment E for a displacement of the atoms of the kind involved in the
motion vq.
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direction of vibration of the electric moment is the same. Actually in the ob-
served spectrum we are able to identify with certainty only two of the three
fundamental frequencies. Since these are found to have quite di8erent fine
structures, we may conclude that one of them is v3 while the other may be
either v~ or v~.

It now becomes very interesting and important to examine the deviations
from simple harmonic motion when the higher approximations are taken into
account. In this case the motion for the vibrations vi and v2 deviates some-
what from simple harmonic motion but remains always symmetrical about
the bisector line. This means that in general faint overtone bands will appear
whose positions are approximately given by n&v&+ n2v2 where n& and n2 are any
set of integers. For all these overtones the direction of the electric moment is
along the bisector line and consequently they will all have a fine structure
similar to the fundamental bands v& and v&. The frequency v3 will also have
harmonics n3v3 but here the change of the electric moment will be perpendicu-
lar to the bisector line for all odd values of n3 and parallel to it for all even
values of n3. This is true also of the general overtone n~v~+n~v2+nav3, that is,
the change of the electric moment is along the bisector line for even values of
n3 and perpendicular to it for odd values.

The proof of these statements follows from a wave mechanical treatment.
In first approximation the wave function of the vibrations of the system is
p"&rmv&=p&»r'f&„&v'f „&&'rwhree f&„,&"' is the V. ; Hermitian orthogonal function
with the variable y;. y; is simply a constant times the normal coordinate x;.
Set up the rectangular axes $ and &l where f is perpendicular to the bisector
line and g lies along it; the origin lying at the center of gravity of the system.
Now by examining the determinant of the normal vibration problem with re-
gard to the geometric symmetry of the potential and kinetic energies, it may
be shown that x& and x2 are even functions of $ while x3 is an odd function.
That is by reversing the directions right and left x~~x~, x2~x~, but xa~ —x~.
If the Hermitian functions are examined it is seen that they are odd or even
functions of their coordinate, depending upon whether the index number V is
an odd or even integer. Consequently &&t &„,p'& and p&»&v& are even functions of

$ for all values of V& and Vg, but lt'&»&r3 is an even or odd function depending
upon whether V3 is an even or odd integer.

4Ve now wish to consider higher order approximations and we expand the
perturbed wave function in terms of the unperturbed functions. This ex-
pansion will have the following property, since the perturbing potential must
necessarily be symmetrical in $; it will be a series involving only even integers
for V3, when the unperturbed state has an even value of V3 and will involve
only odd integers when the unperturbed state has an odd value of V3. Thus
the perturbed wave functions show exactly the same odd or even character
in ( that the unperturbed functions showed.

The matrix elements of the electric moment in the g direction will be
determined by fR„+"""r"v"0'v'"" '"dy&dy2dy3 where these wave functions are
the perturbed ones. The component of the electric moment in the g direction
R„must necessarily be a symmetrical function of $. (In first approximation
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it is proportional to g, R„=RO+Ag. ) Consequently the integrand will be
an even function in $ only when Vg" —Vq' is an even integer. Only under
this condition may the integral giving the matrix element be non-vanishing
since the limits of the integral correspond to a range of $ from + ~ to —~.
In a similar way we may show that the matrix elements of the electric moment
in the $ direction can differ from zero, only when V3"—Vq' is an odd integer,
thus proving the relationship between the overtones and the direction of
the change of the electric moment.

Two special cases of the triatomic molecule may be considered. If all three
of the atoms are taken equal and the configuration is that of an equilateral
triangle, the two frequencies v2 and v3 become identical and the system be-
comes degenerate. *

This degeneration is equivalent to the type of degeneration which exists
when a mass particle, free to move in a plane, is elastically bound to a point.
The motion, isotropic in a plane, has a frequency independent of the direction
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Fig. 4. Fig. 5.

of vibration in the plane and this is exactly the condition here. It may be
shown that the frequency v2 is independent of the direction of motion of any
one of the three atoms. Of course, as soon as the direction of one atom is
chosen, the motion of the other atoms is quite fixed and allows no arbitrari-
ness. In this case of the three equal atoms the motion corresponding to v&

becomes particularly simple. All three atoms move on median lines and the
triangle formed by them remains equilateral throughout the motion.

The second special case occurs when the three atoms lie along a straight
line, a model which probably represents the CO2 molecule. In the vibration
vq the Y atom remains stationary (see Fig. 4) and the change of the electric
moment as well as its absolute magnitude is zero during the motion. This
frequency is called inactive since it will not be observed in an absorption or
emission spectrum for the matrix elements representing the electric moment

* A simple proof consists in examining the kinetic and potential energy expressions for a
system which exhibits a three-fold symmetry. It is then easy to show that the determinant
yielding the normal frequencies has two equal roots. Khich frequencies become equal may then
be determined from one of the problems which has been solved explicitly using a, particular
potential function, for example using central forces.
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are all zero. The frequencies v2 and v3 are both active and have the property
that during the motion the distance between the X atoms remains unchanged.
In the non-linear model there existed three frequencies in agreement with the
relation previously given n=3s —6. For the linear model we have only two
degrees of rotational freedom and hence we should expect n=3s —5 or four
normal frequencies. The extra frequency arises from the fact that v2 is now
a double root of the determinant, for the F atom may move, not only along a
line, but in a plane perpendicular to the figure axis. The motion in this plane
is obviously isotropic.

Because our interpretation of the CO~ spectrum rests upon the particular
properties of the motion, we shall give a somewhat detailed account of the
analysis. Let the X atoms have each the mass m and let their positions be
specified by x&y&s& and x2y&s&, where the xys axes are a perpendicular set of
Cartesian coordinates with the s axis lying along the figure axis. (see Fig. 5)
Let the V atom be represented by the mass M and the coordinates x3$3s3.
The kinetic energy of the system is of course,

2 = (m/2) (x12 + y12 + 212 + x22 + y22 + 222)+ (M/2) (x22 + y22 + @22)

KVe now remove the degrees of freedom of rotation and translation by a set of
relations of which the typical one is, mxi. +mx2+3XIx3=0. We need a set of
coordinates giving the relative displacements of the particles and these may
be chosen as x, y, s giving the displacement of the V particles relative to the
center of gravity of the X particles and q giving the change in the distance be-
tween the X particles. Letting this normal distance be a, we have,

q
= (s, —2,) —a

x = x, —(x, + x,)/2 2 = 22 —(21+ 22)/2

y = y —(y + y)/-'

Substituting these values in the expression for T, we find,

T = (m/4)0I2 + (i1/2)(x" + y2 + 22)

where

p, = (2mM)/(2m + M) .

The potential energy is a function of all four variables and to the first ap-
proximation is a homogeneous quadratic form. The geometric symmetry is
assumed to exist also in the potential energy and hence it must clearly be an
even function in the variables x, y, s. It is not necessarily either an even or
odd function in q. This demand of symmetry suffices to show that the coeffi-
cients of the cross terms vanish and leaves,

$ 0 —202mp 2q2 + 2x2p 2~(x2 + y2) + 2202' 2~22

The coeScients of q', etc. , are of course undetermined constants but in the
above expression they are given in terms of the normal frequencies v&, v2 a.nd
v3. The system is here so simple that the natural choice of coordinates is also
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a choice of the normal coordinates. The mechanical problem is immediately
solved and the properties of the motion are seen to be those described in an
earlier paragraph. *

For the remainder of the discussion it will be more convenient to make a
substitution. Since the force field in the x, y plane is isotropic, it will be more
convenient to use polar coordinates, x = r cos P and y = r sin p.
Then

T = ()s/4) j' + ()(/2) (z' + r' + r'(t(')

P'0 —%2v ygq + 2x' v pp' + 2~'v p

Setting up the appropriate wave equation, it is clear that the general solution
is a product of functions each depending upon a single variable (i e th. e. equa-
tion is separable in these coordinates).

where

V& Vg V E

4 = y(, )(l'(()z(, )
e&'(~

~ = 2~[v,(s/2h]' 'q

$ = 2)r [v,p/h]"'s

p = 2~[ v/2)h] &'(r.

The numbers Vi V2 V3 and l are all positive integers and the first two functions
are the orthogonal Hermitian functions. The energy constant does not con-
tain / and has the form,

lf ' = hv)(P'( + 2) + hv2(V2 + 1) + hvs(V3 + s)

The part of the wave equation involving the variables p and P is simply
the wave equation of a plane isotropic oscillator in polar coordinates and the
result may be written down immediately. The dependence upon P is e+"&

where l is an integer and the + sign indicates two independent solutions. The
function R may be expressed

V~E = p' e-& "
(p)

V2—E

where
2k + 2l —2V2

(h + 2)(h + 2 + 2l)

The expressions for the intensities Ii, I2, and Ig of the bands s i, vm and v3 respectively be-
come very simple for the collinear molecule.

Ii ——0 I~ ——2Emeg j3~
Ii = Eme3'/3p, c

where p, =2' Jt)/E/(2m+3SI) and e~ is the first derivative of the e!ectric moment B for a displace-
ment of the Fatom perpendicular to the line joining the X atoms. ea is the first derivative for a
displacement along the figure axis. In each of these displacements the distance between the X
atoms is kept constant and the derivatives are to be computed for the equilibrium configuration.
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This function E. when multiplied by e~"& could be called a two dimensional
Hermitian orthogonal function expressed in polar coordinates. It may be of
interest to give a few of these for the lower values of V2.

TABLE I.

Wave function

~-'/2e P /'

~—1/2pg
—P /2gi42

~—1/2pg —P /2g-iQ

&/2(] p2) p P /2

(2~)-i./2p2&-P2/2&2s4

(2 ~)-1/2p2p P /2p 244

For each value of V2 there are V2+1 independent wave functions and since
the energy depends only upon V2 this constitutes the weight of each state. It
will in the following be very important to notice the general properties of the
wave function. For each value of V& there may be a number of values of I the
highest one being equal to V2. The values of / for any given V2 differ by two
units. For each l except 1=0, there are two wave functions whose dependence
upon p is the same but which depend upon p as e"& and e-"~.

Up to the present the behavior of this sytem is identical with that already
given for any vibrating molecule. The transitions are those for which one and
only one of the quantum numbers V&, V2 or V3 changes by one unit and the spec-
trum consists of three fundamental bands, of which v& has zero intensity be-
cause of the symmetry of the motion. The next step in the analysis is to
introduce a perturbation, and by so doing give up the assumption that the
motion of the atoms is infinitesimal compared with the equilibrium distances
between them. The kinetic energy is unchanged but the potential energy be-
comes V + V' where U' is some function of q, s and r. We retain the geometric
symmetry of the force fields and consequently V' must be an even function of
s and of r but may depend in any way upon g. V' must however be independ-
ent of @. To find the changes in the energy due to V', we have recourse to the
theory of perturbations of degenerate systems. The first step is to set up the
secular determinant. In our case the diagonal elements of the determinant
will have the form,

V (QVgpVg grani) 2dr iVI

The non-diagonal elements are all zero since they all contain the vanishing
integral f', e'"@dg where n is some integer positive or negative but never zero.
This vanishing of the non-diagonal elements shows that the coordinate system

q, s, r, P is appropriate for studying such a perturbation as V'. The perturbed
values of the energy 8" are now given by the diagonal elements and we see
that they are not all distinct. The set of numbers V&, V2, V&, +f, (f / 0) gives a
value for the perturbed energy lV' which is identical with the value for the set
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V&, V2, U3, —l. The general form of the energy levels is shown diagramatically
in Fig. 6 where two pairs of coincident levels are drawn slightly separated.
This last degeneracy caused by the falling together of two energy levels when-
ever l/0 cannot be removed by taking into account any number of higher
approximations with perturbing functions of the form of V'. lt will however be
removed by any magnetic field as for example the field caused by the rotation
of the molecule as a whole. Such an eHect would probably be too small to be
observed since the magnetic fields are so weak but it would have the property

of splitting up the fine structure lines of a band into

Vp l doublets whose separation would be a linear func-
tion of the ordinal number of the line.

The more important results of this discussion
+i rest upon the form of U' (even function of z and r,

independent of $) rather than upon some particular
expression, but it may be useful to make a digression
and compute 8" for a particular V'. We shall sup-
pose that the general function V' is developable in
a power series in the coordinates and we retain only
the first terms of this expression. If 'A is the param-
eter of smallness and c, 6, . i are constants, then

0 0

Fig. 6.

U' = X(ag' + bgr-' + cqz') + X'(dq4 + er' + fz'

+ gg2r2 + hg z 2+2ir2z2)

It is easy to compute W explicitly as a function
of the above constants), a, , i and si, v2, v3 with
the aid of the wave functions previously tabulated
We shall however merely give the total energy
g = g '+ TV' as a function of a number of constants
xi&, xi2 etc. since this form will be quite sufficient for
most purposes.

1'1' /h = constant + Ulvl + U2v2 + U3v3 + 2 llUI

+ *22(U2' —3&') + ~33U3' + *12U1U2

+ &i3ViV3+ &23U21 3

This expression differs from the general formula for the vibrational energy of a
triatomic non-collinear molecule only in the presence of the factor (1/3) P

Ke now propose to discuss the intensities of overtone and combination
bands for which purpose we must examine the perturbed wave functions.
The method of finding them is we11-known and we need only sketch the re-
sult. A perturbed wave function with the quantum numbers V&, V2, V3 and l
becomes, (we select the plus sign in e~"3', the minus sign giving a similar re-

sult)

V tV &Vs' V 1 Vz VqL zip ~ ~ ~ V1VIV2/ V1+zz Vz+2p (Vn+2&) i zip
U =P P g e + ~ ~ ~c p~i f f E e
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The letters n, P and y are integers and the range of summation is over all
valuessuch that V'+n, V'+2P and V~ j2y are positive integers, omitting the
single term where n =P =y = 0. The coeScients of the expansion in the un-
perturbed wave functions are determined by the integral,

V iV gV2l
(-pi + 2I p3 + 2'r p )-i ji I"l'vi~rag" i~vi+-~rs+2P g(vs+") t

It is interesting to notice why further terms do not come into the expan-
sion of the wave functions. The reason that we find the even integer 2P
arises from the fact that V' is a symmetrical function in s. If 2P were taken as
odd the corresponding coefficient in the expansion would vanish. Again the
presence of 2y rather than y comes because V' is independent of P. This latter
fact also causes the perturbed wave function to have the same dependence
upon P as the corresponding unperturbed function.

We are now ready to discuss which transitions giving rise to overtone
bands will be allowed. The components of the electric moment perpendicular
to the figure axis will be proportional to r cos P and to r sin P. The component
along the axis is proportional (not necessarily with the same factor) to s. Us-
ing the perturbed wave functions and computing the matrix elements repre-
senting the electric moment we find,

(a) The elements giving the component of the electric moment perpendic-
ular to the axis, may have values differing from zero, if and only if the change
in V3 is an even integer and the change in V2 is an odd integer. The change of
VI may be either odd or even. The change of l must be + 1.

(h) The elements giving the component of the electric moment along the
axis, may have values differing from zero, if and only if the change in V3 is an
odd integer and the change in V& is an even integer. The change of V& may be
either odd or even. The change of / must be zero.

These conclusions rest upon the symmetry properties of the kinetic and
potential functions and not upon the order of approximation employed. *

4Ve may summarize them by saying that harmonic bands of such a molecule
may appear whose positions are roughly given by the expression n&v&+n~v&

+n3v3 where the n's are positive or negative integers. Only such bands will
appear for which n2+n3 is an odd integer. If n2 is even the change of the elec-
tric moment is along the figure axis while if n2 is odd it lies perpendicular to
this axis. One consequence of these results may be of very practical import-
ance in discussing the infrared spectra of triatomic molecules. If the three
atoms are collinear and symmetrical, then the sum of the frequencies of any

* One further consideration must be introduced in order to make the proof rigorous. In
general the components of the electric moment perpendicular to the figure axis will be f cos @
and f sin p where f is some function of r, z and q and in first approximation is equal to r. The
component of the electric moment along the figure axis will be F which in first approximation
reduces to z. The equality of the two X atoms makes it necessary that quite generally f must
be an even function in z and F an odd function in z and that both f and F be independent of @.
These properties taken in conjunction with the odd or even character of the wave functions,
furnishes a rigorous proof of the above statements regarding the appearance of overtone bands.
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two observed bands (overtones, combination bands, or fundamentals) will

not be the frequency of an active or observable overtone. For if v' and v" are
the two active frequencies then their sum is given by,

V = S~ Vy + Rg V2 + S3 V3

V = tip Vy+%g Vg+ 'S3 V3

v + V —(Sl + Sl )vl + (+2 + s2 )v2+ (N3 + s'3 )v8.

In order that v' and v" may have nonvanishing intensities both n2'+n3' and
n2 "+n~" must be odd integers. This means however that (n2'+n2")+
(nq'+nq") must be an even integer and hence v'+v" will be an inactive band.

We shall show in Part II that these results are strikingly con6. rmed by the
observed spectrum of CO2 making it appear very probable that this molecule
is collinear. We hope that the method may be applied to the spectra of many

Limit

X Y Y

I ig. 7.

other triatomic molecules to show that when systematically the sum of two
active frequencies in the spectrum is also a third active frequency, either (a)
the molecule is not collinear, or (b) if collinear its potential energy function
does not possess the symmetry postulated above. In the light of our present
knowledge of the structure of molecules it seems unlikely except in very
special cases that a molecule could possess geometric symmetry and fail to
have a corresponding symmetry in its potential function.
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3. The co11inear molecule Y2X&

Ke shall now return to a consideration of the normal vibrations of poly-
atomic systems, choosing as an example a model with four atoms, Y2X2. Let
us consider a special configuration (which it is hoped may later be identified
with the acetylene molecule) in which the four atoms are symmetrically
placed along a line. (see Fig. 7) The system will have 3X4 —5=7 degrees of
internal freedom, each of which must correspond to a normal vibration. ~

A simple way to build up the normal vibrations is to start with an assumed
force field which while convenient for this purpose would be very unlikely
actually to occur. Let the two Y atoms be strongly bound to each other and
let the two X atoms be strongly bound to each other but let the forces be-
tween the X and Y atoms be very weak. Ke then obtain in this limiting case
a frequency vj corresponding to a mutual vibration of the Y atoms, the X
atoms remaining stationary and a frequency v2 corresponding to a vibration
of the X atoms, the F atoms remaining stationary. These are each single
vibrations and both optically inactive. In the intermediate cases of force fields
between all the atoms which are comparable in magnitude, all four atoms
will move in both the normal vibrations v~ and v2 but it is clear that the mo-
tion always remains symmetrical and consequently these bands will have zero
intensity in an absorption spectrum. The remaining vibrations of the system
are concerned with the mutual motion of the Y group against the X group.
We have v3 in which the Y atoms move as a unit along the axis. This fre-
quency is optically active for all magnitudes of force fields. The F group may
move o6 the axis in two ways, giving rise to the frequencies v4 and v&. Of these
v4 is active and v; inactive for all force fields, the direction of the change of the
electric moment in the former case being perpendicular to the axis. Both v4

and v& are double frequencies since the motion is isotropic in the plane per-
pendicular to the figure axis. Ke see that this yields seven degrees of internal
freedom and completes the number of normal vibrations.

A discussion of which combination bands will be optically active and which
will not may be carried out along the same lines employed for the molecule
YX2. The energy in first approximation is a function of five quantum num-
bers V„.V5.

lV/h —Pl(~1+ g) + V2(V2+ g) + V3(V3+ g) + P4(V4+ i) + V5(VS+ l).
The wave functions however require seven indices and we introduce l4 and I;
which stand in the same relation to U4 and V~ that l did to V2 in the YX2 mole-
cule. The wave functions are similar to those for the YX2 molecule. The
problem is however somewhat more complicated in form and consequently
we shall merely give its solution.

Let the change in a quantum number be denoted by n, (Vi"—Vi') =n&,
* In a recent paper Mecke" has discussed the spectrum of C."Hq, and the normal vibrations

of the molecule as given by him agree completely with those we shall present. Part II will con-
tain a treatment of the C2Hq spectrum and we shall reserve until that time a critical description
of this interesting paper.

» R. Mecke, Zeits. f. Physik 64, 173 (1930).
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when the positions of all the infrared bands of the Y~X2 molecule will be given
by the approximate formula,

V = S]Vy + S2V2 + R3V3 + S4V4 + S5V5 ~

The condition that a band may be optically active, rests with the three
numbers n~, n4 and n5 and may be summarized with the following scheme.

l~«I+I".I+ '
068 even even ocld

n4 = even

n5 = even

Qdd

even

even

QCM

The First two columns give the condition for the electric moment to vib-
rate along the 6gure axis while the last two give the conditions for it to vib-
rate perpendicular to the Figure axis. KVe notice that only such bands may be
optically active for which n3+n4 is an odd integer. This carries with it the
conclusion that the only two fundamentals which may appear in the spectrum
are v3 and v4 and that any other band which appears must be some combina-
tion involving either v3, v4 or both.

The results which have been obtained for Y2X~ depend upon assumptions
entirely similar to those employed for YX&, namely that the molecule is
collinear and that the potential energy function possesses the geometric
symmetry of the molecule. If the above selection rules are found to be vio-
lated then either (a) the molecule is not collinear or (b) its potential function
is not symmetrical.

Fig. 8.

4. The symmetxical molecule YX3.

Another molecule having four atoms but possessing simple properties is
the molecule YX3 where we take a regular pyramid as the normal configura-
tion with the X atoms at the corners of an equilateral triangle forming the
base, and the Y atom at the apex of the pyramid. (See Fig. 8.) As limiting
case we let the force Fields between the X atoms be strong and those connect-
ing the X and 7'atoms be very weak. There will be two frequencies v& and v2

corresponding to the mutual vibrations of the X3 group alone which have just
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the properties previously described for such a model. In v& the X atoms re-
main at the corners of an equilateral triangle throughout the motion. For
this limiting case the change of the electric moment is zero but in the inter-
mediate cases the Y atom will be influenced by the X atoms and the electric
moment will oscillate. This oscillation is clearly along the symmetry axis and
accordingly ii will be called a

~~
vibration. v& is a double frequency and in

the limit also has no changing electric moment. When however the force
fields binding the atoms become of the same order of magnitude, the motion
of the X atoms induces a motion to the Y atom. This motion of the V atom
in first approximation is an isotropic vibration in a plane perpendicular to the
symmetry axis. In the intermediate case therefore v2 remains a double fre-

quency and is a J vibration. The remaining normal vibrations of the sys-
tem may be determined by considering the motion of the X3 group, taken as
a rigid triangle (because of the intense mutual fields), relative to the

diatom.

The motion mill consist of two sorts, a vibration v3 in which the triangle and
the mass point Y oscillate with respect to each other, the triangle plane re-
maining always parallel to itself. This is an active vibration even in the limit-

ing case, with electric moment oscillating parallel to the symmetry axis.
When we pass from the limiting to the intermediate cases, we see that in

v3 the X atoms will also move relative to each other, but because of the sym-
metry in the potential and kinetic energies, they will always remain at the
corners of an equilateral triangle; the length of the side of the triangle of
course is not a constant. Thus is is a single and a

~~
vibration. The last fre-

quency v4 is represented by a tipping motion of the triangle relative to the
mass point. It is even in the limit, active, J and a double frequency. This
last statement means that the frequency of vibration is independent of the
direction of motion of the P atom in a plane perpendicular to the axis.
Nothing essentially new is introduced by the intermediate cases. Ke find
thus four independent frequencies, two

~~
and two J . Since the latter are

each double, there are six degrees of internal freedom corresponding to the
general formula for four atoms.

The above discussion allows us to predict the essential features of the
infrared spectrum of the VX3 molecule. There will be four fundamental ab-
sorption bands all of which should appear since their corresponding vibrations
are all active. The intensities of the four bands may be widely diferent and
will depend upon the force fields as mell as upon the configuration of the
molecule. The fine structure of the band vi, will be similar to the fine struc-
ture of the band v3 since they both correspond to a vibration of the electric
moment along the figure axis. The pair of bands v2 and v4 will also have a simi-
lar fine structure which however will be unlike that belonging to the pair vj
and v3. Further questions with regard to fine structure will arise when we
come to discuss experimental spectra. What will be the fine structure of a
combination band such as vi+v2 or v3+v4P These problems wi11 involve the
introduction of anharmonic force fields and are closely related to the sym-
metry properties of the wave functions. It appears that we may well post-
pone their consideration until Section 3.
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Ke may remark on the properties of the normal vibrations when the
height of the regular pyramid is zero, that is, when the equilibrium position
of the 7 atom lies at the center of gravity of the X atoms. The frequency
v& now becomes inactive since the motion of the X atoms has no inHuence on
the V atom. The remaining frequencies remain qualitatively unchanged and
accordingly the spectrum of such a molecule as the CO3 ion where the atoms
are known to be coplanar should consist of three active frequencies, of which
one v3, has an electric moment vibrating perpendicular to the plane while for
~2 and v4 it vibrates in the plane.

These conclusions have been strikingly confirmed and form one of the
most successful applications of the theory of vibrations. The important ex-
periments of Cl. Schaefer and his co-workers have demonstrated that any
crystal containing the ion COi, (MgCO3, CaCOq, etc.) possesses three intense
absorption bands lying at about 7p, 11.5p and 1.4p. These absorption fre-
quencies are a property of the CO3 ion and correspond to the three active fre-
quencies u2, v3 and u4 of the model FXg. It is found that the absorption spec-
trum obtained with light polarized parallel to the crystal axis contains only
the band at 11.5p. If the light is polarized perpendicular to the crystal axis,
then only the bands at 7p and 14@, are observed. Clearly the 11.5p band is to
be identified with the vibration v3. Further considerations show that the 7y
band corresponds to v& and the 14@ band to v4. The tw'o books by Schaefer
and Matossi4 and by Rawlins and Taylor' both contain very adequate and
authoritative treatments of the infrared spectrum of the CO3 group and we
shall refer the reader to these works rather than attempt to summarize them
further.

5. The symmetrical molecule ZYX3.

The normal vibrations of one further system will be considered. Let an
additional atom Z be added to the model just considered and let Z lie along
the symmetry line beyond the Y atom (see Fig. 9). As a limiting case let the
force fields holding the Z atom to the FX3 group be weak compared with the
mutual forces within that group. Ke will then divide the vibrations of the
whole system into the mutual vibrations of the FX3 group and the vibrations
of this group relative to the Z atom. The former vibrations are ii~~, i2J,
i 3~~ and v4 J as previously described. When we Iet the force fields connecting
the Z atom approach those connecting the YX3 group, the numerical values
of the frequencies will be somewhat altered but their general character mill

not. The motion of the Z atom relative to the YX3 group gives rise to two
frequencies v5, corresponding to a motion of the PX3 pyramid in which each
atom moves along a line parallel to the original symmetry axis. The Z atom
itself mo~es along the axis and this vibration is therefore active, single and ~~.

The frequency v6 corresponds to a tipping motion of the pyramid relative to
the Z atom and is active, double and 4. Nothing new is introduced when we

go over to the intermediate cases of force fields. The system as a whole will

then possess six independent frequencies, in general all active, of which three
are

~(
and three J .
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An important variation of the model just considered occurs when the Z
atom becomes identical with an X atom. This model, YX4 which we may
take to have a high degree of symmetry with the X atoms at the corners of a
regular tetrahedron with the Y atom at the center, may well represent such
molecules as CH4 and CCI4. The normal vibrations of this system are some-
what difficult to obtain from the preceeding case but they are mell known
from a special treatment of such systems using central force fields. " The first
frequency v& is perfectly symmetrical, with the X atoms, throughout the
motion, remaining at the corners of a regular tetrahedron (the length of

Fig. 9.

whose side of course oscillates). The center of gravity of the X atoms re-
mains fixed at the position occupied by the Y atom and hence v&, which is a
single frequency, is inactive. The frequency ~2 is double and corresponds to a
motion of the X atoms on the surface of a sphere. The Y atom and hence the
center of gravity of the X atoms, remains fixed during the motion and con-
sequently v2 is also inactive. The frequencies v3 and v4 are alike in character
but different in magnitude and for central forces v3 is always greater than v4.

These frequencies are triple and are both active. The motion of the Y atom
in each case is the motion of a mass particle vibrating isotropically in three
dimensions. These four frequencies complete the normal vibrations of the
YX4 molecule and it will be interesting to correlate them with the vibrations
of the ZYX3 molecule, This may be done by considering the limiting case
where the force fields connecting the Y atom to the rest of the system vanish.
A correspondence may now be obtained between the mathematical solutions
for the models YX3 and YX4 enabling the following identifications to be
made.

This diagram shows how, as the Z atom is made more and more nearly
like the X atom, certain of the originally active frequencies v& and v4 will be-
come inactive. Moreover certain frequencies such as v2, J and double com-
hines with v„~

~

and single to form v~, active and triple.
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ZYX3

(1) v, —

J (2) vg

[f (1) v,

(2) v4

J (2) vg-

FX4

= v~ (1) inactive

v, (2) inactive

v3 (3) active

—v, (3) active.

In the foregoing pages a method has been sketched for determining the
characteristics of the normal vibrations of molecular systems and it has been
applied to a number of simple examples. It was mentioned earlier that a
number of these molecules have been examined by various writers, using cer-
tain assumed potential functions and obtaining the frequencies by means of
the usual mathematical method of small vibrations. A very real difficulty
which was always present however was the choice of the potential energy ex-
pression. The simplest assumption is that the forces are central but it seems
probable that this assumption may well be far from the truth for many mole-
cules. Ke would think that it would be particularly inappropriate for such
molecules as H20, (an isosceles triangle) NH& (a regular pyramid) and others
belonging to these classes, for here the equilibrium configuration of the atoms
is determined by forces, such as polarization and the so called "valence"
forces which are almost certainly non-central in character. However for
molecules having a high degree of symmetry, CO2 (a linear model), the ion
COS (the C lying at the center of an equilateral triangle representing the
oxygens) and CH4 (a regular tetrahedron), the noncentral character of such
forces as those of polarization will in first approximation vanish. Conse-
quently for such molecules it may well happen that a model employing a
central force potential function will give values for the frequencies and their
intensities which are approximately correct. Reference will be made to
these explicit solutions when we come to consider the interpretation of the
absorption spectra of these molecules.

6. Complex polyatomic molecules.

It is evident that it would be very difficult to apply the theory of normal
vibrations to discuss the fundamental frequencies of a very complex mole-
cule possessing say ten or more atoms. In fact unless the potential energy
function were of a special and particularly simple form conditioned by a
simplicity of the structure, a solution to the normal vibration problem even
if found would be virtually useless because of the great number of unde-
termined constants which must necessarily enter.

The complexity of the mathematical problem of the vibration of a mole-
cule with so many atoms, may be set in correspondence with the fact that the
observed infrared spectra of such molecules are indeed far from simple, pre-
senting often from twenty to thirty bands in the regions which have so far
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been examined. (1p to 15@.) There are however certain surprising regu-
larities which become evident when the spectra of related organic molecules
are compared. For example nearly all molecules containing both carbon and
hydrogen atoms appear to have an absorption band at about 6.8p. Much
work has been done on these spectra by Coblentz, Lecomte, Bell, Ellis and
many others" and attempts have been made to arrange the absorption bands
with reference to pairs of atoms appearing in the molecule. Such an ordering
process seems to have a real signiIicance and yields certain frequencies which
are then attributed to pairs of atoms, as for example a C-H frequency, a
N-H frequency etc.

A further and important empirical law is noticed when spectra of ho-
mologous substances are compared. As one atom of a molecule is replaced
by another atom or group of atoms, the absorption bands in general undergo
slight shifts in position and intensity. In addition to these bands which may
be correlated in the several spectra, some new bands may appear and others
may disappear.

While it is not our purpose in the present article to discuss in any detail
the spectra of very complex organic molecules, we may present the lines along
which an analysis might be made. It should be clear from the examples of
the simpler polyatomic molecules which have already been considered that
in a normal vibration the motion is not confined to any pair of atoms, but
rather is shared to a greater or lesser degree by most of the atoms composing
the system. Thus when it is found experimentally that an absorption band
always appears for molecules containing atoms of carbon and of hydrogen,
we may not think that this corresponds to a vibration of one particular pair
of atoms C-H to the exclusion of the remaining atoms of the molecule. It
cannot however be doubted that the appearance of such a band is dependent
upon the presence of carbon and hydrogen atoms in the molecule.

A way out of this difficulty appears to lie in the nature of the construction
of many organic molecules. Let us think of a complex system as being made
up by joining together a series of groups of atoms (such as the methyl group,
the OH group, etc. ) which would then be regarded as the building stones of
the molecule. In general because of the greater mass of the group, as com-
pared with the individual atoms, the frequencies produced by the inter-
vibration of groups taken as units would lie outside the region generally ex-
amined, that is, their wave-lengths would lie below 10p, . AVe might think that
the bands which are commonly observed correspond to mutual vibrations
within one or another of the groups. The whole system could then be likened
to Z sets of oscillators, each set containing a number of normal modes of
vibration. These sets are more or less weakly coupled to each other and thus
the frequencies of any one set will be modified by the presence of the other
sets. This type of model would appear to have properties analogous to those
observed for many of the complex molecules. Thus there would be frequencies
which would be characteristic for each group and since a group will always

"See the list of references Cl. Schaefer and F. Matossi, reference 4, pp. 266—285.
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contain the same atoms, certain absorption bands may well appear to be
characterized by the presence of certain pairs of atoms; in fact in some
cases a group consists of just one pair of atoms. Moreover upon substituting
one group for another group in the formation of an homologous series, we
see that many of the frequencies (those characterized by the unsubstituted
groups) would merely undergo small shifts in position and intensity. Some
new bands would appear while others would disappear in agreement with the
observed data.

A series of papers" on molecular dynamics has recently appeared in
which attempts are made to analyze with considerable detail the normal
vibrations of several complex organic molecules and to these papers the reader
vho is interested in a further development of the subject is referred.

SECTION 9. THK ROTATION OF POLYATOMIC
MOLKCULKS

l. Introduction.

It has been pointed out earlier that the appearance of the near infrared
absorption spectrum of a gas depends largely upon the degree of resolution
of the spectrometer used in mapping it. When the spectrum is observed with
an instrument of low resolving power, it is found to consist of a series of ab-
sorption regions in given positions and with given intensities. These gross
features are those which we have discussed in Section 1 and may be cor-
related with changes in the vibrational energy of the molecule. When such
a spectrum is remapped with a spectrometer of sufficiently high resolving
power, the absorption regions reveal a distinct structure, the envelopes of the
bands, and ultimately are found to consist of a series of fine-structure lines.
The presence of these lines is a consequence of the rotation of the molecule
and their positions are to be correlated with simultaneous changes ip the
vibrational and rotationa1 energies of the system. The extent of the fine
structure which corresponds to a change of the rotational energy is observed
to be of the order of magnitude of 50 to 100 waves/cm. The position of. the
band, corresponding to the change of the vibrational energy is of the order
of 500 to 5000 waves/cm, (20@ to 2p).

The possibility for a molecule to possess rotational energy is manifested
not only in a fine structure to the near infrared bands but also in the existence
of a far infrared absorption spectrum ( 100@). The lines of such a spectrum
correspond to changes in the rotational energy alone and they are observed
in molecules which possess a permanent electric moment, such as H20, NH3,
etc. The far infrared spectra should be the easiest to interpret theoretically
but data in this region are extremely difficult to obtain. Moreover as we shall
see the far infrared lines are usually not sufFicient in themselves to determine
all three moments of inertia of a molecule. For these reasons we must be

"C. F. Kettering, L. W. Shutts and D. H. Andrews, Phys. Rev. 36, 531 (1930); D. H.
Andrews, Phys. Rev. 36, 544 (1930);R. C. Yates, Phys. Rev. 36, 555, 563 (1930);A. H. Lewis,
Phys. Rev. 36, 568 (1930).
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prepared to discuss the simultaneous changes in the vibrational and rota-
tional energies of a system which give rise to the fine structure lines in the near
infrared.

Fortunately, it is possible to treat the vibration and rotation of a mole-
cule quite separately and then combine the results of these discussions to
represent the behavior of an actual system. The validity of this procedure
rests Finally upon two assumptions, the first of which we have already used,
namely, that the amplitudes of vibration of the atoms of a molecule are, for
the lower energy states, small compared with the equilibrium distances be-
tween the atoms. The second assumption is that the forces between atoms,
induced by the rotation are small compared with those interatomic forces
giving rise to the vibrations. This latter assumption is equivalent to saying
that, at the temperatures at which observations are carried out, the mean
rotational frequencies are much smaller than the vibrational frequencies, a
condition which is certainly true for all the bands studied up to the present
time.

To these approximations the Hamiltonian function may be written as,

where Hy depends only upon the mutual coordinates of the atoms and is the
function we have already considered in Section 1. Hg, the rotational energy
is a function of three coordinates giving the orientation of the system in
space. For our problem H& wi11 have no potential energy term.

The wave equation appropriate to the system will be separable in the
mutual and the rotational coordinates and will have the general properties
characteristic of separable coordinate problems. The energy constant will
be the sum of the energy constants of the two parts of the wave equation,

1 V = H~y + IVY

and the wave function will be the product of Pv, depending only on the mu-
tual coordinates and Piq depending upon the rotational coordinates.

0 = Ives.

The functions Ps corresponding to the various rotation quantum numbers,
form an orthogonal set, as well as the set fv. We consider that each function
Px and Pv has been normalized separately. To find the selection rules we must
again consider the matrix elements representing the electric moment.

Let us take three perpendicular axes $, il, i fixed in the molecule and three
axes x, y, s 6xed in space where the origin of both sets of axes lies at the center
of gravity of the system. The electric moment relative to one of the moving
axes say $ will then be (see page 285),

Rt = (R()p+ QApxp

where (Rt)p is the permanent electric moment in the $ direction, xp is the
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k'" normal coordinate and A~ is a constant. The component of electric mo-
ment along a space direction say the x direction is then,

E = E~ cos (x + R„cos gx + Et; cos t;x

where the direction cosines between the two coordinate systems will be func-
tions of the rotational coordinates alone, (not of the mutual or normal co-
ordinates). Letting all the vibrational numbers be represented by V and all
the rotational numbers by R, we may write the matrix element,

y'8'
(R*)r"s" =

J~ RA'v 0s4'v gs dr.

It is now convenient to introduce pg. , p~„, p„, etc.
and V(as

z I"

(pt, )R" —— cos $ePs.Pg. dr
J

and
yl

(V&)v = Jt Q~a~Ar gv d~.

Here (p~,)s s' is the matrix element along the x direction corresponding to
a unit electric moment along the $ direction in the molecule, associated with
the change in the rotational quantum numbers from R' to R". It is inde-
pendent of the normal vibrations of the system. (V~)r v' is the matrix ele-
ment of the electric moment in the molecule along $, associated with a change
of the vibration numbers. We have already shown that (V~)r v' is different
from zero* only when the individual vibrational numbers change in the fol-
lowing manner,

when its value may be explicitly computed in terms of A&.

Substituting these quantities we obtain

y'R' 8' R' R'
(R*)V'B" (Rj)0(P(*)R'' + (R )0(P *)R" + (Rr)0(Pr )R"

y'8' yI R' ys R' y' R'
(R.)v s ~ = (V()v" ( ).)s" + (V,)v (~,.)s + (Vr) v 4 r.)s"

together with similar expressions for R„and R,. The intensity of the tran-
sition is of course proportional to the sum of the squares of those matrix ele-
ments of R„R„and R, corresponding to the same change of quantum num-
bers.

The meaning of the above expressions is clear. The far infrared bands
correspond to a change of the rotational numbers alone and such bands will

~ To the approximation in which the intensities of the overtone bands may be neglected
in comparison to the intensities of the fundamental bands,
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have a finite intensity only when the molecule possesses a permanent dipole
moment, that is when (R~)0, (R„)0and (Rr)o are not all zero. In this case cer-
tain allowed changes of the rotational numbers R may take place; just which
changes can be ascertained only when we have the wave function its given
explicitly.

The near infrared bands arise from simultaneous changes in the numbers
V and R and the matrix element will be formed from products of the vibra-
tional and the rotational matrix elements. An illustration may show the
nature of the bands. In the model representing the H20 molecule, let the $
axis be along the bisector of the apex angle of the isosceles triangle, the g axis
parallel to the base and the I' axis be perpendicular to the plane of the tri-
angle. From the symmetry, the permanent electric moment must lie along
the $ axis and therefore the far infrared spectrum will be governed by selection
rules given by those elements p~„p~„and p~, which are different from zero. In
the near infrared, the change of the electric moment also lies along the $ axis
for the two frequencies vI and v~. The selection rules for the rotational num-

bers are here identical with those applying to the far infrared band since they
depend upon the matrix elements of the same direction cosines. On the other
hand the frequency v3 has its change of moment along the g axis and conse-
quently the matrix elements involving the rotational numbers are here p„„
p», p„,. These will in general be non-vanishing for quite different changes
in E. and hence the fine structure of the v3 band may be expected to be of a
quite diA'erent character than that of the vI and v2 bands.

2. The symmetrical top rotator.

In order to find explicit expressions for the energy constant 8'& and the
matrix elements of the direction cosines, it is necessary to make use of the
Hamiltonian function H&. This function may be expressed by a variety of
coordinates but it will always depend upon the moments of inertia of the
molecule about its center of gravity. By choosing $, g, t to lie along the
principal axes of inertia of the body, the Hamiltonian will depend only upon
the principal moments of inertia A, 8, C, respectively.

In general A, 8, and C will be all different but for many of the molecules
the geometric symmetry makes at least two of them equal. (CO&, 1VH3,

CHqCl, etc.). In this event the motion according to classical mechanics be-
comes very simple as does the analysis by means of the quantum theory.
It may be useful to review very shortly the mechanical motion of such a
system which we might represent by means of a cylinder. Let the i or C axis
lie in the axis of the cylinder when it is evident that the two moments of
inertia A and 8 are equal. (Fig. 10.)

As is well known the motion consists of a rotation of the body about its C
axis with frequency co+ coupled with a precession of the C axis about the line
of total angular momentum, here chosen as the s space axis. The precession
will have a frequency cd and the angle 0 between the C and s axis will be
constant in time. A simple analysis now reveals the following facts. If the
total angular momentum has a value I', then,
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1
(ug

——P/2nd, and (ug —— ———P cos 0/2~
C

and the total energy is

1 1
II' = P'/2' + —P' cos'0

2

According to the correspondence principle of Bohr, the selection rules are
intimately connected with those frequencies which would be absorbed or
emitted on the basis of classical electrodynamics and these may easily be

IZ

X

Fig. 10.

seen from the above model. If the electric moment (or change of electric
moment) lies along the C axis, it is evident that it will have a constant com-
ponent along the s axis while its components along x and y will vibrate with

Fig. 11.

frequency au&. The frequency e& will not appear. If the electric moment lies
along A or 8, then its component along s will oscillate with the frequency
~& whereas its components along x and y will have the two frequencies or&

+M~ and orJ —co~.
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The quantum mechanical treatment of the symmetrical top molecule
i.e. , the free rotation of a body two of whose principal moments of inertia are
equal is well known and the more cumbersome details of the analysis need not
be given here. '" The orientation of the body may best be described by means
of the Eulerian angles, 8, P, P (see Fig. 11) where 8 is the angle between the
C and s axes, P is the angle between the A axis and the line formed by the
intersection of the AB and xy planes; it accordingly measures the turning of
the body about its C axis. The angle f is that angle between the x axis and
the line formed by the intersection of the AB and xy planes and gives the
turning of the whole body about the s axis. * The kinetic energy in these co-
ordinates, giving the rotational energy of a rigid body having two of its
principal moments of inertia A and 8 equal, is well known.

'I' =;l~'2(8'-' + P' sin'8) + C& 2(P + f cos 8)'

The wave equation may be obtained in the usual manner and when we let the
wave function be represented by U, has the form

o'U 1 8'U
--—+ c&)t 0——+ —+ cot 0 +
()0'-' 00 C 8g' ~in' 0

lt is seen that in the Harniltonian function both the angles p and lt are
ignorable coordinates and we will expect that the wave function U will have
a simple dependence upon these angles. It may be shown that V is separable
in the Eulerian angles and has the form,

L 0 gi Kg~iMQ(0)

The condition of single-valuedness of U determines that E and .lI shall have
integral values either positive or negative and including zero.

The function 0 is determined by the diHerential equation

I, 1f —A. cv) 0)'
~-)" + 0' cot 9 —— + 0.+~ —0

sin-'8

where 0 is the constant 0 =87r'A W/O'-' —AK'/C.
It has been found convenient in studying this equation to use the follow-

ing substitutions„

* Clearly in the preceding example where the s axis was arbitrarily chosen as the line of
total angular momentum we have the following behavior of the Eulerian angles in time, 0=6io
p=2m~~k+pp, and f =2waugt+p .
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The equation which F must satisfy is,

3(1 —f)F" + Iy —(u + P + 1)f]F' —aPF = 0

where the constants, n, P, and y are given by the relations,

y = 1+d, a+/ = 1+8+«
+5 0+5

A ——+ i) 0' E'-.
2 2

The equation defining F is the well-known hypergeometric equation and F,
the hypergeometric function has the form

F = 1+ ( ()/1 v)~+ ( ( + 1)P(0+ 1),'1 2V(v+ 1))~'+

The only solutions of the wave equation which have a meaning for us are
those in which the wave function remains finite for all possible values of the
coordinates. This condition, when applied here, determines that 0. shall be a
negative integer or zero o. = —P, (P=0, 1, 2, -,) and this in turn deter-
mines the possible values of the energy constant W. By a simple calculation
we find

1
H = J(J + 1)h'/gs'3 + ———K'h'/Sn'

C

where J is some positive integer J=p+(d+«)/2.
The relation between J and the quantum numbers E and iV suggests the

physical significance of these numbers. Fvidently J is greater than or equal
to (d+ «)/2. Now several cases occur,

«+ «)/2 =
~ I

& + 1'
I
+ l I

I' —»
I

=
I

&
I

«r
I
I

I

—
I
»

i

for j»j &
I
zj.

Consequently J must be at least. as large as
I
X or

I Mj whichever of these
two is the greater. Conversely we may say that K and 31 may have a range
of values positive or negative but that

I
EI & J and

I MI & J. These facts
suggest that J, X and 3f may be interpreted as representing angular mo-
menta and it may in fact be shown that the total angular momentum P, the
component along the C axis P„. and the component along the s space axis P,
are given by

P"-= J(J + 1))«'/4s'

P, = Eh/2s

P, M h/2~.

The weights of the states may be found very simply. The system is de-
generate since TV does not depend upon the number M nor upon the sign of
the number X. When K =0 we have for each J, (2J+1) independent wave
functions which for a given energy constant, satisfy the wave equation.
When X~O there will be for each value of J, K and lV two independent
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functions satisfying the wave equation (one corresponding to +
~

Jt and the
other to —

~
K~). The weights are then,

gJ~=2J+1 E=O
gJK = 2(2J + 1) K W 0.

'G~e have now found the energy states of the symmetrical top rotator and
the weights of these states as a function of the quantum numbers. The next
problem is to determine the selection rules and the intensities. This may be
done by examining the matrix elements representing the electric moment. In
particular we must find the matrix elements p~, etc. , representing the direc-
tion cosines. The analysis (see Dennison and Reiche and Rademaker)" is
rather involved and we need only give the results here. Taking the $, 11, f
axes as lying along the A, 8, C axes respectively, the following selection rules
are found which correspond exactly to the rules as determined by the cor-
respondence principal. p~, pt.„and p~, have elements differing from zero for
these changes of the quantum numbers, 6J= +1,0, AX=0, AM = +1,0.
p„„p» and p„, (or pt„p~„and pt, ) are non-vanishing for the changes 5J
= +1,0, AE = +1, h3f = +1, 0. The explicit expressions for these elements
are tabulated in the papers already cited. We are however primarily inter-
ested in the intensities of lines and these, because of the degeneracy, depend
rather upon certain combinations of the direction cosine elements. Thus a
rotator finds itself in a state defined by a given J, X and 3I and we are inter-
ested in the transition to a state defined by J, K where the sign of the X and
the value of the new M are immaterial since they do not enter the expression
for the frequency of the transition. We therefore define elements A as fol-
lows,

J'K' J'X' M'
(JfJ"K' ') Q (pJ"K' ' M' ')

where we sum over (1) all values of 3I", (2) the two values +X"and —X"
and (3) all the indices of the p.* When this is done the following formulae are
obtained, where both the X' and X"are taken as positive.

J K
(JlJ—1 K)

2J —1 J, K J2 —+2

2J + 1 4J(2J + 1)

(J + F)(J + E + 1)
(JfJ K%1) , EWO

16J(J + 1)

' The usefulness of this expression depends upon the fact that the sums so obtained are
independent of the quantum number M'. lt is for this reason that A needs no index 3I'.

"D. M. Dennison, Phys. Rev. 28, 318 {1926);F. Reiche and H. Rademaker, Zeits. f.
Physik 39, 444 {1926);F. Reiche and H. Rademaker, Zeits. f. Physik 41, 453 (1927); R. de L.
Kronig and J.J. Rabi, Phys. Rev, 29, 262 {1927};C. Manneback, Phys. Zeits. 28, 72 {1927).
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(J + K)(J + E —1)
( 4 J—1 K+ 1)

16J(2J + 1)

J 0,
x-'1 J—11}

J —1

8(2J + 1]

g(2J —1)

These amplitudes follow the well-known summation rules of Burger and
Dorgelo, that is, the total radiation from a state is proportional to the weight
of that state. It may easily be verified that the following relations are true,

J K J K J A".

gJK[(4J K) + (.1J—1 K) + (-4J+1 K) ] g IK/4

J fC J h. J K
gJK [(4J K —1) + (')J Ic~l) + (J1J—1 K 1)—

J A. „, ,I' A" J A"

+ (~1J—1 K+1) + -1 I 1 K 1) + () I, 1—K+1) ] gJK

where the factor &~ comes from the fact that we are expressing amplitudes of
a Fourier series in the time using the complex e'- '"' rather than the real
cos 2xvt form.

KVe shall now sketch the appearance of the near infrared vibration rota-
tion bands of a symmetrical top molecule. Two types of bands may be pro-
duced,

~ t
bands in which the electric moment oscillates along the C axis and

4 bands in which the electric moment oscillates perpendicular to the C axis.
In certain cases the electric moment might have components both along and
perpendicular to C, when the fine structure would consist of an overlaying of
the two original types with an intensity ratio equal to the ratio of the squares
of the components.

In the
~ ~

type band we are concerned with the direction cosines pI. prv and

p~. and the selection rules are consequently 6J= + 1, 0 and DE = 0. Reference
to the energy constant 8' for the symmetrical top shows that the lines of an
absorption band will be given b~ the following expressions where v01s the
normal frequency of vibration.

J K—branch vJ 1K = 1„—hJ/41r-'. 4

J A.

0 ~~ranch vJ ~ = v0

J—1Z+ branch v J K = vl,, + lIJ/411'J1 (J = 1, 2,

Substituting from the formulae on page 287 and page 308 we obtain the
following expression for the intensity of a transition,
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where the constant A is,

A = [8m'voItI/3ch ggqss ~J~' ](V~r )'(1 —e '"o'~ ) .
In this discussion we have assumed that the vibration frequency vo is very

large compared with the fine structure of the band and hence the true fre-

quency of absorption v&'z' " "
may be replaced by vo. In almost all the

applications the number of molecules at room temperature in the normal
state (with regard to vibration) may be taken as equal to the total number of
molecules, i.e. , the factor (1 —e ""'~"r) reduces to unity.

Introducing the notation P = (A/C) —1 and o = h'/87r'A k T we find for the
intensities of the various lines of the

~ ~

band. *

J—j.

—branch Iq ~
= A P([2](J' —E')/4J)e ~&'+J'

0 branch Ig = A g g(E'(2J + 1)/2J(J + 1))e '&'+J' ~&

j 0 K=0

J-1+ branch Iq ——(Iq ~)e"~

The summations are necessary since several transitions give rise to the
same spectral frequency. The symbol [2] is to be taken equal to 1 for %=0
and 2 for XWO. While the intensities are directly functions of 0 and P, the
general appearance of the band is somewhat independent of their values and
we may illustrate it in Fig. 12.

Flg. 12.

The
~ ~

band becomes the familiar diatomic molecule band when the
moment of inertia C=O. Clearly the zero branch disappears since P—+~ and
all terms of the summation vanish. For the + and —branches we obtain the
well-known formulae for the diatomic molecule,

IJ ~
= (AJ/4)e and IJ ——(AJ/4)e

The perpendicular type band has a considerably more complex fine struc-
ture whose general appearance depends largely upon the ratio of the moments
of inertia A/C. We may describe it as a series of superimposed single bands
where each single band possesses a +, 0 and —branch. This picture is very

I* The intensity of a line Ig, no longer requires the subscript E since the frequencies of
the corresponding lines depend upon J but not upon E. It is for this reason that on the right
hand side we sum over all possible E values.
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helpfu1 when (A/C)))1 but might appear misleading when (A/C)~1.
The X'" single band on the negative side of vo.

J E—branch vg ~~ ~
= vo —(h/4+ A2)(J+P(E —~)), (J = E, E+ 1, ' )

J Z
0 branch v~~, = v, —(h/4 'A)(P(E —~)),

J—1 X+ branch v q x ~
= vo —(h/4~'A)( —J+P(E —2)), (J = E + 1, E + 2, )

Similar expressions give E'" single band on the positive side of vo. It
must be noticed that the allowed values of J in the —and + branches do not
start with 0 but with K and %+1,following the structure rule J~X.

ist Positive Band

1st Negative Band

2nd Positive Band

2nd Negative Band

i I I I I I I I r i

3rd Positive Band

I I I I I

3rd Negative Band

I l I

Qmplete & Eh, nd

~ I I II I I I
'

I l I , , i i i i i'll II illlMllli Il i «, « , I I i I I I I I I I i

Fig. 13.

The intensity of the absorption lines of the E'" negative single band will

be given by the expressions, *

—branch I~ g ~ f (A(J + E —1)(J+E)/8J)e
cc

0 branch Ig~ q
= A g((2J+1)(J—E+1)(J+E)/8J(J+1))&

+ branch I q ~ ~
= (I~ ~w q)((J —E+ 1)(J —E)/(J+ E —1)(J+E))e

*The constant A in these formulae is constructed in a similar manner to the A in the
formulae for the jI bands but is of course not equal to it.



INFRARED SPECTRA OF POLYATOj/IIC MOLECULES

In Fig. 13 there is drawn the general appearance of such a 3 band when
A/6 is taken to be of the order of five, and a =0.018. In the upper part of the
figure we have drawn the 1st, 2nd and 3rd single bands on both sides of pp.

At the bottom all the lines are assembled giving the completed band. More
lines would enter due to the 4th, 5th etc. single bands. These would however
be weak in the region shown. The following points covering the diagram
should be noted. Unless P = (A/C) —I is an exact integer or the inverse of an
integer and the convergence factor (interaction between rotation and vibra-
tion) is very small, the + and —branch lines of one single band will not fall
on the positions of the + and —branch lines of other single bands. This
means that the + and —branch lines of all the single bands taken together
will form an almost continuous absorption which however may have irregu-
larly spaced stronger and weaker regions because of the accidental falling
together of the many fine lines. The zero branches of the single bands are
inherently stronger than the individual + and —branch lines (due to the
summations) and hence we may expect them to stand out of the more or less
continuous background. The ratio of the sum of the intensities of the zero
branches to the total background intensity is a function of 0 and P but it can
be shown to have the order of magnitude unity for p) 1. The above expres-
sions for the line intensities of the symmetrical top are not always convenient
to handle owing to the presence of the summation signs. In most of the
applications where a is not too large these sums may be replaced by integrals
and evaluated.
3. The asymmetrical toy rotator.

Some of the simpler as well as most of the more complex polyatomic mole-
cules can not be represented by a symmetrical top rotator. For example the
model of the water vapor molecule will in general have three principal mo-
ments of inertia which are all different. It is true that for any plane model
(as H&0) the sum of the two principal moments lying in the plane is equal to
the moment of inertia perpendicular to the plane. Unfortunately this intro-
duces no essential simplification into the equations of motion.

It is well known that the motion of an asymmetrical rotator may be
described in classical mechanics as a rotation about either the greatest or
least axis of inertia coupled with a precession and nutation (of commensur-
able period) of this axis about the line of total angular momentum. Thus the
motion, although of three degrees of freedom, has only two degrees of perio-
dicity and we shall expect that the energy constant, however complex its
form, will be a function of only two quantum numbers. Our first problem
is to obtain the energy constant by means of the wave mechanics. This ques-
tion has been answered successfully by a number of authors2' using a variety
of methods. The simplest method of finding 8'appears to be that proposed
by O. Klein and we shall here follow his work although frequent reference will
be made to the papers by Kramers and Ittmann.

'0 E. Witmer, Proc. Rat. Acad. 13, 60 (1927); S. C. Wang, Phys. Rev. 34, 243 (1929);H. A.
Kramers and G. P. Ittmann, Zeits. f. Physik 53, 553 (1929); H. A. Kramers and G. P. Ittmann,
Zeits. f. Physik 58, 217 (1929); H. A. Kramers and G. P. Ittmann, Zeits. f. Physik 60, 663
{1930);O. Klein, Zeits. f. Physik 58, 730 {1929).
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The rotator is de6ned by its three principal moments of inertia A, 8, and
C whose axes are mutually perpendicular. The total angular momentum of
the body P will have components Pj, P2 and P3 along the moving axes A,
8 and C respectively. In classical mechanics, the Hamiltonian function is,

a = —22(P, 2/X + P,2/B + P32/C)

while the following relations exist between the P, .

P' = P ' + P2' + P3' = a constant.

{P3P2 j Pl {P1P3 j P2 {P2P1 } P3

where { j is the Poisson bracket symbol. These relations may be trans-
lated into the matrix mechanics and furnish equations which the matrices
representing the angular momenta must satisfy.

H =-' (P12/A + P22/B + P32/C)

P2 P2+P2+P2
P,P3 —P3P1 = (ih/223)P2

P2P, —P,P2 ——(ih/22r)P3

P,P, —P2P3 ——(ih/22r)P, .

The last four matrix equations are well known (for example in the theory
of the spinning electron) and several matrix representations for the P, may
be given which will satisfy these equations. One which is applicable to our
case is that having the following nonvanishing elements. *

J K . J K
P1 g «+1 = 3P2 g «~1 = (h/4 r) [(2J —E)(J + E + 1)]

J Z
P;g « = (h/22r)E, J & E.

This representation was chosen primarily for the reasons that in it both
the angular momentum along C, P3, and the square of the total angular
momentum, P', become diagonal matrices. The nonvanishing elements of
the matrices representing Pp, P22 and P32 may be easily computed.

2JK 2JK
(P1)g « = (P2)g K = (h'/82r')(J'+ J —E')
2 JK 2 J K

(Pl)J «+2 (P2)J «+2
= (h'/162r') [(J —E)(J —E —1)(J + E + 1)(J + E y 2) ]"'

(PI)g « = h E2/42.2r2

From these it becomes clear that P' is a diagonal matrix whose elements
are (P')g« ——h'(J'+ J)/42r' These properties of P' and P3 show that in the
limiting case where A =B the numbers J and X are identical with those sym-
bols as used in the earlier discussion.

The next step is to examine the matrix representing the Hamiltonian
function H when the angular momenta are represented in the above manner.
A simple calculation yields,

* The inverse elements, as P&J K+, may be easily obtained when we remember that the
matrices representing the P, or any real function of them must be Hermitian.
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Hj Q (h'/16x') ( (1/A + 1/8)(J' + J —E') + 2E'/C}

H~ ~+~ ——(h'/32x')(1/A —1/8) ((J—E)(J—E —1)(J+E+1)(J'+E+2)}'i'.
It is evident that for the one case where A =8, the Hamiltonian matrix is
diagonal and its elements must then represent the energy constant. This
agrees with the formula previously obtained for the symmetrical top.

(II ~~)~ s —h2(J2 + J)/gx2A + (1/C 1/A)h2E2/gx2

In general however when A /8 the matrix representing H is not diagonal
and we have the problem of transforming to some other representation in
which it mill be. It is well known how to perform such a transformation and
to obtain the resulting diagonal matrix for H whose terms are now 8', the
values of the energy constant. The so-called secular determinant is set equal
to zero and the resulting equation yields the required values of W. The ele-
ment of the determinant may be written ~H "—W8 "~ where 5„" is the
Kroneker symbol and H "the matrix elements of the Hamiltonian in the old
representation.

For the asymmetrical top the secular determinant becomes rather simple
since the only non-vanishing elements are those which are diagonal in J. The
number Emay take'on 2J+1 values for any given J (see Fig. 14) since
+JX & —J and thus for each J there will be 2J+1 energy constants 8'.
These will in general all be distinct except in the limiting cases where A =8
or 8 = C. Here since the energy is independent of the sign of X there are
only J+1 distinct lV, as we have already seen. When A WBWC the 2J+1
energies must be ordered and we choose, following Kramers and Ittmann to
arrange them simply according to their magnitude. We need a new index
which may be taken as r and which will range from +J to —J. By definition
then 8'~+I~ 8'~. Perhaps it should be emphasized that this index has no
direct relationship with the old letter E. In fact as far as we are aware 7. has
no simple physical interpretation but serves only as an index by which to
arrange the energy constants.

The energy constant as a function of the moments of inertia may be found
by solving the secular determinant or maybe obtained (Kramers and Itt-
mann") from the parameter of the Lame differential equation. Kramers and
Ittmann have given 5' for J= 0 to 4 as well as asymptotic formulae for higher
values of J. In Table II we have tabulated the 8', for J=0 to 8 using the
following notation. We define,

a, = 1/A + 1/8 —2/C

l, P, = (1/A —1/C)(1/8 —1/C)

(
ag = 1/8 + 1/C —2/A

P, = (1/8 —1/A) (1/C —1/A)

f
.. = 1/C+ 1/A —2/8

p3 = (1/C —1/8) (1/A —1/8) .

Sx'W, /h' = x„+ (J'+ J)/C

gx2II'„/h' = x, + (J' + J)/A

8x'W„/h' = x, + (J'+ J)/8
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The quantity x„ is the r'" root of a polynomial appearing in the table.
When the polynomial is given with n, and P, without subscripts we mean that
any pair may be used and that the resulting values of 8' will be the same.
When the n, and P, have the subscript i, we mean that each pair n& P&, n& P2,

a3Pg will yield distinct values of W. No attempt has been made to give the
S; in their correct order, that is, to give the subscript 7. but this may easily
be found for any problem under actual computation.

TABLE II
J=0
l'V = 0

x4

J= 1

1/A + 1/B
8n-~8/h~ = 1/A + 1/C

1/B + 1/C
J=2

4/A + 1/B + 1/C
8n'W/h' = 1/A + 4/B + 1/C

1/A + 1/B+ 4/C
x' —4nx + 12p = 0

J=3
8x'8'/h' = 4(i/A + 1/B + 1/C)

x2 —10nix+ 60pi+ 9a = 0

J=4
x3 —20ax' + (64a' + 208p)x —640np = 0

x~ —10aix + 9a + 28pi = 0
J=5

35aix + (259ai + 528pi)x 225ai 4560aipi = 0
x' —20ax + 64n' + 108p = 0

J = 6
—56nx3 + (784n2 + 1176p)x2 —(22560ap + 2304a3)x + 48384a~p + S5440

x3 —35nix2+ (259' + 336pi)x —225ai3 —2064aipi = 0
J=7

x" —84a;x' + (1974np + 2296pi) x~ —(12916a + 78896nipi) x

+ 353808' + 11025a;4 + 449848aPpi = 0
x' —56nx' + (784n' + 776p)x —2304n' —10584np= 0

J=8
x' —120ax' + (4368n' + 4176p)x —(52480n'

+ 23S584np)x' + (147456n4 + 2893824n'p

+ 1797120p')x —5308416n'p —18247680np2 = 0
x4 —84aix3+ (1974;~+ 1656pi)xm

—(12916a + 49968aipi) x + 11025n,4

+ 200376ai2pi + 118800p = 0

p2 —0

In accordance with the general theory it is seen that for each value of J
there are 2J+1 values of the energy, that is, of the index v. It is interesting
to follow the energy curves as we change one of the moments of inertia. In
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somewhat and will now be given an index J7.. Because the energy curves for a
given J never cross, we can at least make the identification that the energy
state 8 J,~=o becomes 8'J, ,=J. Reference to Fig. 15 shows for J= 3 the values
of X when A =8 and when 8 = C and thus indicates the relation between the
K and the index v. The wave function UJ, „~I may be expanded in a series in

UJ~~ whose coefficients are the first minors of the seculardeterminant.
Since the secular determinant contains elements which are non-diagonal in
the letter E only it is evident that U&„&=g& C~, M U~xM where the sum-
mation is over the number X alone. When we now think of forming the
matrix elements representing the electric moment it is evident that only
those will be non-vanishing for changes of J and M which were non-vanishing
for the same changes of J and M for the symmetrical top. (Since the wave
function UJ„M is a sum over symmetrical top wave functions having the
same letters J and M. ) Therefore the selection rules for the asymmetrical
top must be 6J= + 1, 0 and l3 M = + 1, 0. The changes in M are not pertinent
to our present problem since the frequency is independent of M.

To obtain the selection rules for 7., the following property must be noted.
The secular determinant has relatively few non-vanishing elements; these are,
the principal diagonal and two sub-diagonals displaced one unit to the right
and left from the principal diagonal. (See Fig. 16 where for 7=3 the non-
vanishing terms are given by X.)

+3 +2 +1 0 —1 —2 —3

X 0 X 0 0 0 0

+2 0 X 0 X 0 0 0

X 0 X 0 X 0 0
0 X 0 X 0 X 0

0 0 X 0 X 0 X

0 0 0 X 0 X 0

0 0 0 0 X 0 X

Fig. 16.

It may be proved from the form of the determinant that the wave func-
tion UJ,~ is expandable in a series UJz,& using either odd values of E only or
even values only. Thus for certain values of v. ,

while for other values of 7.,

The asymmetrical rotator was described by the axes j, g, f lying along the
principal moments of inertia A, 8, C with respect to the space fixed axes
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x, y, z. The connection between these two sets was made by means of the
Eulerian angles 8, P, f C.onsider now the transformation by which $~ —$,

This will be accomplished by letting 8~8, P~4+ir, P~f.
Examination of the wave functions of the symmetrical top shows that under
this transformation Uq~~ —+UJ~~ when X is an even integer but Ujlf-~ —+
—Uzx& when Eis od'd. This property which we shall call transformation (a)
holds unchanged for the asymmetrical top as well since U&,~ is expandable
in the wave functions UJj('~ using either even 0r odd X numbers. Thus for any
given value of J the highest state r =J is even or + for transformation (a),
the next two states r =J—1 and 7- =J—2 are odd or —,the next two + etc.
This is shown in Fig. 17 for J=5.

Fig. 17.

We shall now define the transformation (b) as j~$, rt~ —it, f + t" —Th—e.
results of applying this transformation to the wave functions may be easiest
seen by remarking that changing the axes $~f, rt —+it, t~) makes (a) turn
into (b). The details of the argument need not be given here but the re-
sults are as follows, the lowest state r = —J is + to transformation (b), the
next two higher states are —,the next two + etc.

The selection rules follow quickly; if the electric moment R (or its change)
lies along the axis of least moment of inertia A, (that is the $ axis) it is changed
into its negative by the transformation (a) but is unchanged by (b). Thus,

Direction of electric moment (a) (b)
A +
B
C +

The matrix elements representing the electric moment along the space
axes will depend upon such integrals as

7'+'3f '
(Rt,)g", ie ~ —— R(~ .cos$x~ Ug, ie Ug","I"dV
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where the direction cosine
~

cos f x~ is + for both transformations (a) and (b).
Since the integration is over all space the integral will be non-vanishing only
if the integral as a whole is + with regard to both the transformations (a)
and (b).

These consideration appear somewhat complicated but may be summa-
rized by a few simple rules. For each group (2J+1 in number) of states having
the same J, the energy levels are ordered according to their magnitude and
given the index7. so that v = +J represents the highest and 7 = —J the lowest
of the group. Property (a) is then written down. Starting with r= J we
write +, for r= J'—1 and J—2, write —,etc. Property (b) makes the level
r= —J, + the levels r= —J+1 and —J+2,—etc. (see Fig. 17 describing
the levels where J= 5.)

1st. In all cases the allowed transitions are those for which AJ=+1, 0.
Znd. If the change of electric moment is along the least moment of inertia

axis, transitions may occur between levels having unlike signs under (a) and
like signs under (b).

3rd. If the change of the electric moment is along the middle moment of
inertia axis, transitions may occur between levels having unlike signs under

(a) and unlike signs under (b).
4th. If the change of the electric moment is along the greatest moment of

inertia axis, transitions may occur between levels having like signs under (a)
and unlike signs under (b).

These rules while somewhat different in form are exactly equivalent to
those given by Kramers and Ittmann in their third paper. In Fig. 18 we have
drawn the allowed transitions between the rotational states J= 3 and J=4
of an asymmetrical top rotator when the vibration of the electric moment is
along the middle axis of inertia. This diagram is entirely similar to a diagram
appearing on page 68G of the third article by Kramers and Ittmann and il-

lustrates the identity of their selection rules and ours.
» addition to giving the selection rules Kramers and Ittmann have also

obtained formulae by means of which the intensities of the various lines may
be computed. While these formulae probably present as simple a way as any
« find the intensities, the actual labor involved in evaluating them is con-
siderable, particularly when the transitions occur between states whose J
value is not small.

Recently the author has been engaged in attempting a detailed analysis
of the near infrared absorption bands of water vapor, the results of which he
hopes to publish in the near future. The methods which were used to obtain
the theoretical intensities of the lines are equivalent to those employed
by «amers and Ittmann, although they have a slightly diferent form and
follow a suggestion given by Wang. " The secular determinant shown in Fig.
&4 allows us to determine the various values of the energy constant S'. The
sub-minors of this determinant are the coefficients C~~~ which appear when
the wave function of the asymmetrical rotator is expanded in terms of the
wave functions of the symmetrical rotator. Thus by computing the minors
of the secular determinant we are enabled to give the wave function of the
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asymmetrical rotator in an explicit form. We know the amplitudes associated
with transitions between states of the symmetrical rotator (page 313) and
hence with the aid of these coefficients we may compute the transition prob-
abilities between states of the asymmetrical rotator. In the proposed paper
on the water vapor spectrum it is intended to give many of the transitions
between the lower energy states as explicit functions of the moments of
inertia of the molecule.

+ + Q

Fig. 1g.

The problem of the asymmetrical top rotator may now be considered a
solved; for the methods have been described by which we can obtain the ro
tational energy levels, the selection rules and eventually the transition prob
abilities. In spite of this the reader may have little idea of the general appear-
ance of the infrared bands of an asymmetrical top molecule and we should
therefore like to close this section by presenting certain typical diagrams of
the absorption lines. A comprehensive picture giving all the possible lines for
all ratios of the moments of inertia seems to be out of the question because of
the practical difficulties involved. There are an infinite number of lines of
which in any particular band perhaps a hundred or more will have intensities
sufficiently above their neighbors to be observed by modern infrared spectrom-
eters. Just which transitions correspond to these more intense lines will

depend largely upon the moments of inertia of the molecule. Thus for water
vapor we believe that most of the intense lines will be included if we consider
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all transitions up to and including the levels for which J=4. In a heavier
molecule such as sulphur dioxide we should probably need to include levels
as high as J=8. In any case however the lines near the center of the band
will depend upon transitions between the lower states. We have, therefore,
in Figs. 19 and 20 plotted the lines using the twenty five levels J= 0, 1, 2, 3, 4.
The Boltzmann factor e ~'~~ is taken as unity for all lines.

A second difficulty which is encountered when we attempt to present a
general picture of the rotation lines of an asymmetrical top molecule, is that
the positions of the lines depend upon the three parameters A, B and C and
consequently we should need a three-dimensional graph. Ke have chosen
therefore to draw the rotation lines for one special class of asymmetrical
molecules, namely those molecules for which all of the nuclei lie in a plane.
A relation then exists among the moments of inertia, A+8 = C. The sim-
plest representatives of this class of molecules will be the triatomic molecules,
for example H20, H2S, etc. and for these as we have seen in Section 1 the
electric moment may vibrate either along A, the least axis of inertia, or 8,
the middle axis of inertia. It is these two types of vibration rotation bands
which we show in Figs. 19 and 20 respectively. Both figures are plotted to
the same scale, the unit of which is taken as h/8s. C (i.e. two lines separated
by x units on the graph have a frequency difference of xh/8s'C).

Each of the figures consists of ten sets of lines placed one above the other
corresponding to values of p =A/8 ranging from 1.0 to 0.1. In any one of
the sets of lines, the height of a line indicates its intensity. These rotation
lines are all symmetrically arranged about the vibration frequency va. In
many of the applications where two of the nuclei are equal (H20) the inten-
sities of the lines on either side of vo will not be symmetrical but will depend
upon the spins of the equal nuclei. This will be described further in Part II.

The lines corresponding to any particular transition are connected by
fine lines so that it should be possible to interpolate to find the positions of
the lines for any value of p. Each line is given a label (J, ~"—J, ') indicating
the rotational levels associated with it. For every line on the plus side of
&o, (J, ~

"—J, '), there appears a line at an equal distance on the negative
side of va with the label (I, ' —J, ."). In both figures the set of lines for p =1.0
are plotted with the arbitrary equal height of five units.

Ke wish to emphasize that any conclusions based upon these diagrams
must be viewed with some caution since, because of the limitations involved,
they do not exactly correspond to any real molecule. The transitions between
only a limited number of levels J=O to J=4 have been given. Ke might
expect these to be the principal lines for a molecule all of whose moments of
inertia were small. If, however, the moments of inertia were small, the Boltz-
mann factor would be less than unity and consequently the intensity of many
of the lines we have plotted would be considerably reduced. On the other
hand the fine-structure lines of a molecule with large moments of inertia
would contain many more lines, corresponding to transitions between states
with J values greater than four. Some of these new lines would fall in the
region we have pictured but most of them would fall to either side, extending
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the branches of the band. In spite of these limitations we feel that the fig-

ures present many of the qualitative features of the fine structure of asym-
metrical top infrared bands, particularly the appearance of the centers of
the bands.

Fig. 19 shows the structure when the electric moment oscillates along the
least moment of inertia axis A. For p =1.0 we have a symmetrical top mole-
cule A =8= C/2. Here the lines are equally spaced and have been drawn
with equal heights. If we examine the fine structure for smaller values of p

we see that each single line splits into a number of lines. The tendency is to
form a zero branch which at first is broad and ill defined but becomes rapidly
sharper as p decreases. In the limit of p = 0 we have again a symmetrical top
but this time it corresponds to a linear molecule A =0, 8= C. The zero
branch here reduces to a single line but because of the Boltzmann factor (not
included in these diagrams) its intensity vanishes. The lines of the positive
and negative branches become for p=0, equally spaced and we have the
typical spectrum of a linear molecule whose electric moment vibrates along
the axis. The figure enables us to follow the individual lines between these
two extremes p =1.0 to p =0. The principal characteristic of this diagram is
the gathering of the zero branch as p decreases.

In Fig. 20 we see the fine-structure lines when the electric moment oscil-
lates along the middle axis of inertia B. The lines for the case p =1.0 must
be identical with those in Fig. 19 for we have the same symmetrical top
molecule in each case with the electric moment vibrating perpendicular to
the symmetry axis. As before when p decreases, each line splits up into a
number of individual lines. However, there is here no tendency for a zero
branch to form but rather the lines diverge from the center leaving a distinct
gap. As p approaches zero the whole structure becomes very coarse relative
to the structure of Fig. 19 and in the limit all lines would go to infinity. This
is what we should expect when we remember that in the limit the spacing
of the lines depends upon 1/A and here A approaches zero. The principal
feature of this spectrum is the formation of a well defined gap in the center of
the band over the major portion of the range of p.

These characteristics may be set in immediate correspondence with the
appearance of the fundamental bands of water vapor at 2.7p, and 6.6p. The
former possesses a broad zero branch at its center while the latter has a dis-
tinct gap or region of no absorption at its center. This correspondence will

be described in detail in Part II.
Khile a triatomic molecule can not have vibration bands in which the

electric moment oscillates along the greatest axis of inertia C, other plane
molecules (for example OCH, ) may. The properties of such a band might be
sketched. For p=1.0, the fine structure would not resemble that of Figs. 19
or 20 but would possess a sharp intense zero branch. The lines of the positive
and negative branches would be equally spread but with a spacing constant
twice that of the foregoing examples. As p decreased, all lines would become
multiple as before. In particular, the sharp zero branch would become broad
and badly defined but would still retain its intensity. Near the limit foi p
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approaching zero the spacing of the lines would become very coarse and
eventually each line mould approach a corresponding line in the diagram 20
for in the limit of p =0 the 8 and C axes become equivalent.

SECTION 8. THE SYMMETRY PROPERTIES OF
POLYATOMIC MOLECULES

l. Introd. uction.

In order to interpret the infrared spectra of polyatomic molecules it is

necessary erst of all to understand the mechanism of the vibration and rota-
tion of the molecules which determine the spectral frequencies. In addition
to this however, the spectra of many of the molecules which have been exam-
ined experimentally present certain features, the explanation of which rests
upon the quality of two or more of the atomic nuclei forming the molecule.
The properties of systems having several equal particles was originally stud-
ied by Heisenberg" and 6rst applied by him to a discussion of the spectrum
of helium. The principal features of such systems may be described by show-

ing that the energy states together with their associated wave functions may
be separated into a number of classes. Each class will have a certain sym-
metry character which is determined by the behavior of the wave functions
when the like particles of the system are interchanged. It has been proved
rigorously that no transitions, whether induced by radiation or by collisions,
may take place between states possessing different symmetry characters.
Mihile this proof is quite simple even for the general case we believe that it
may be more helpful for the reader to present it for the case where the sys-
tem contains only two like particles. The particles may be labeled 1 and 2

and their coordinates (three each) may be denoted by xz and x2 respectively.
The wave functions of this system divide themselves into two classes which
have been called symmetrical lP' and antisymmetrical P', having the follow-
ing properties. p* and If' are functions of the coordinates x~ and x2, and
when the two like particles are interchanged x&~@2, x2~xj., the symmetri-
cal wave functions are unchanged while the antisymmetrical wave functions
change their sign. Thus

8 8f.(xgxg) = P.(x2xg)
a a

P„(x,xg) = —g„(xmx,).
The transition probability between any two states, n" and n', whether

spontaneous or induced by external forces, will depend upon matrix elements
I'„."" representing some function of the coordinates I'. In radiative transi-
tions F is the electric moment of the system but in certain collision problems
it may be a more complicated function of the coordinates. The point is that
F must be a symmetrical function of the coordinates F(x&, xz) = F(x2, x&)
since the interchanging of the two exactly equal particles cannot affect the
behavior of the system towards any external forces. It now becomes clear

"Qf. Heisenberg, Zeits. f. Physik 38, 411 (1926); W. Heisenberg, Zeits. f. Physik 39, 499
(1926).
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that the matrix elements of I' between two states of diHerent symmetry
character must vanish,

F„,(, ,)
= ( P "Fg„dx,dxi = 0

since the integration is over the same range of x~ and x2 and since the inte-
grand as a whole is antisymmetrical in these coordinates.

Let us now return to the consideration of systems with several like parti-
cles. The energy states may be divided into a number of classes characterized
by the symmetry properties of their associated wave functions. No transi-
tions may occur from a state of one class to a state of any other class. Thus
a system with r diferent classes would behave exactly like r diferent systems
since no inter-combinations are possible. As is well known this is not what
is observed in nature, for all the energy states of a system may intercombine
under suitable conditions, although the transition probabilities may be very
small indeed. The solution to this difhculty is given by the exclusion rules
which say that of all the thinkable or r classes of states of a system only one
class actually exists in nature. %hen the like particles in the system are elec-
trons we have the Pauli Exclusion Principle which allows only the one class
to exist which is totally antisymmetrical. That is, the wave functions are
such that they change sign whenever any pair of electrons of the system are
interchanged. The success of this principle in interpreting the periodic sys-
tem of the elements is too well known to need mention here.

%hen the like particles of the system are protons there exist exclusion
principles which are entirely similar to the Pauli Principle and which limit
the total number of symmetry classes which exist in nature to one single class.
For protons the work that has been done on the hydrogen molecule shows
that the wave functions are antisymmetrical with respect to the interchange
of any two protons. For more complex nuclei it appears that the single sym-
metry class which exists is either totally symmetrical or totally antisymmet-
rical depending upon whether the nucleus contains an even or odd number
of particles. The question of which exists will not, however, form a part of
our immediate problem.

The reader might easily have gained the impression from the foregoing
paragraphs that further discussion of the possible symmetry classes of the
wave functions of polyatomic molecules will be unnecessary since only one
such class actually occurs. This impression would be misleading for the fol-

lowing reason. The energy of a polyatomic molecule may be expressed as the
sum of a number of terms of descending order of magnitude, (1) the elec-
tronic energy, (2) the vibrational energy, (3) the rotational energy, (4) the
spin energy of the nuclei, (assuming, as is usually the case, that the nucleus
possesses a spin). In first approximation the Hamiltonian of the system is
separable in the sets of coordinates having to do with the energies (1), (2),
(3) and (4) and consequently the total wave function of the system may be
written as a product of wave functions.

+ = (4s)(4v)(4s)(Ps).
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The exclusion principle demands that 4' shall be of a certain symmetry
class; either symmetrical or antisymmetrical depending upon the type of
nuclei involved. Other than this demand, however, the exclusion principle
does not limit the symmetry class to which a part of the wave function, say
lPr, may belong. Thus if there are only two equal nuclei and if 4 is to be
antisymmetrical with respect to them, there are eight possible ways in which
this may be accomplished. These may be written very shortly by adopting
the notation (s, a, a, s) to indicate a function symmetrical in the electronic
and spin parts of the wave function and antisymmetrical in the vibrational
and rotational parts. The product of two functions both of which are anti-
symmetrical is of course a symmetrical function.

1—(a, s, s, s)

2—(s, a, s, s)

3—(s, s, a, s)

4—(s, s, s, a)

5—(s, a, a, a)

6—(a, s, a, a)

7—(a, a, s, a)

8—(a, a, a, s).

Similarly for tmo equal nuclei there are eight possible ways in which the total
wave function may be made symmetrical.

When the system contains more than two equal particles there will be
many symmetry classes to which each part of the wave function may belong.
There mill then be very many ways in which the demands of the exclusion
principle may be realized.

Ke will discuss one additional feature of the general theory before proceed-
ing to a detailed consideration of the symmetry classes of particular mole-
cules, namely the transition probabilities. In the above scheme it will be
noted that the states 1, 2, 3 and 8 are antisymmetrical as regards that part
of the wave function depending upon the electronic, vibrational and rota-
tional coordinates. The states 4, 5, 6 and 7 are symmetrical in these coordi-
nates. Thus if there were no nuclear spin, no transitions of any kind could
take place between these tmo groups of states. The existence of a nuclear
spin mill however allow these transitions to occur but it may be shown that
their probability is exceedingly small. To understand this we have only to
remember that the transition probabilities mill depend upon the matrix
elements I'„""mentioned above. Now the function I" can depend only in
very small degree upon the spin coordinates since the magnetic moments
of the nuclei are so very small that their influence upon any external fields
will be nearly negligible. This has as a result that the matrix elements corres-
ponding to transitions between states of diferent symmetry in the spin co-
ordinates will be so small that we may quite disregard them for spectroscopic
purposes. A well-known example of the noncombining character of these
groups of states is furnished by hydrogen gas, H2 which normally consists
of molecules in the two sets of states, (s,s,s,a) and (s,s,a,s). Under suitable
experimental conditions the one modihcation (s,s,s,a) alone may be produced
and it is found to be very stable, with a mean time of transition to states of
the (s,s,a,s) group, expressable in years.
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2. The molecule YX2.

In applying the above considerations to the energy states of polyatomic
molecules, we shall treat* first the simplest case which may occur, namely, a
triatomic molecule two of ~hose nuclei are equal YX&. The results may
also be applied without change to some more complex molecules with two
equal nuclei, such as formaldehyde 0=C&H. The total wave function may
be divided into the product of four functions depending upon the electronic,
the vibrational, the rotational and the spin states respectively. The first
of these need not concern us since the electronic state is unaltered during the
transitions giving rise to infrared bands. We shall consider successively the
symmetry characters of the vibrational, rotational and spin wave functions.
It will prove convenient to treat first the non-collinear molecule FX2.

On page 291 of Section I it was remarked that the vibrational wave func-
tion which depends upon the three numbers V~, V~ and V3, behaves in the fol-
lowing manner for a reversal of the directions right and left in the isosceles
triangle. The wave function remains unchanged when V3 is an even
integer. However, when V3 is an odd integer the wave function upon revers-
ing the directions right and left, retains its form but changes its sign.

This means that the character of the vibrational part of the wave function
is symmetrical for even values of V3 and antisymmetrical for odd values of
V3 and is independent of the quantum numbers V& and V& ~

Let us now examine the symmetry character of that part of the wave
function depending upon the rotation. Two cases may occur.

(a) The least moment of inertia A may fall along the bisector of the apex
angle as in Fig. 21. Reversing the two atoms X will be accomplished by the

Ip

I

Fig. 21.

following transformation of the Eulerian angles. (Let 0 be the angle between
the A axis and the space axis s) 8—+8, P—&/+ s, f~P. The symmetry charac-
ters may be easily established by examining the limiting case where A =0 and
8 =C, and extending this to the general case of A WB~ C, remembering that
the symmetry character of a level is independent of the parameters. It is
then found that the character is a function of the index ~ but not of J or M.
The lowest level 7 = —J is always symmetrical, the next two 7 = —7+1,

Many of the results discussed in the folIowing pages appeared erst in a paper by F.
Hund. ""F. Hund, Zeits. f. Physik 43, 805 (1927).
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T = —7+2 are antisymmetrical, the next two symmetrical, etc. (see Fig. 22

illustrated for 2=3).

Fig, 22.

(b) The middle moment of inertia 8 may fall along the bisector of the
apex angle and here reversing the nuclei amounts to the transformation,
8—&s —0, P—& —P, P~P+s. The symmetry character may be established
by examining the limiting case where the asymmetrical top approaches the
symmetrical top. For a given value of J the levels are alternately symmetrical
and antisymmetrical, and are independent of the number 3L For even J the
highest and lowest levels r =J and 7 = —J are symmetrical whereas for odd
J they are antisymmetrical. This is shown in Fig. 22 for J=3.

The fine structure lines of the near infrared bands correspond to simul-
taneous changes in vibrational and rotational quantum numbers defining the
levels. * As we have already said transitions may occur only between levels
having like symmetry characters, that is, the total wave function must be
either symmetrical in both initial and final states or antisymmetrical in both
states. Applying this we see that in a near infrared band corresponding to
an even change in the vibrational quantum number V3, the fine structure
lines will be the result of transitions between rotational levels having the
same symmetry character. If the change of V3 is odd, the transitions will be
between rotational levels of opposite symmetry character. These rules do
not contradict any of the general selection rules already found for the asym-
metrical rotator but rather form a part of them. This obtains because the
oddness or evenness of the wave functions used to determine the general selec-
tion rules are intimately connected with the symmetry characters of these
functions.

We may next consider the modification when the three atoms lie along a
straight line as is perhaps the case in CO2 ~ It is easily seen that the symmetry
character as regards the vibrational part of the wave functions has the same

* The spin modifications will be considered in a later paragraph.
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dependence upon the quantum numbers V~ and V3, that it had above. The
character of the wave function is independent of V&., it is symmetrical for the
even values of V3 but antisymmetrical for the odd values. In the collinear
model the vibration v2 has somewhat changed its significance since it takes
on many of the properties of a rotation. It may be simplest to describe the
system (now including both the vibration and the rotation) by means of the
old coordinates (see page 295) q, s and r together with the Eulerian angles.
Of the Eulerian angles, the one which we here designate by @, corresponds
exactly with the angle P which was used in describing the vibration alone.
(see Fig. 23). The wave equation is separable in these coordinates and the
energy constant may be divided into a vibrational and rotational part,

W = hvar(V) + p) + hvm(V2 + 1) + h»3(Vv + -') + (h'jss'I)(J'+ J —t2)

where I is the moment of inertia of the molecule about a line perpendicular
to its 6gure axis. The interaction terms between the vibration and rotation

Fig. 23.

have as usual been neglected. The wave function may be written as follows
where P,»', etc. have their old significance.

V1 Va V2i 4/2 ~j2
f »,»,»,is~ = 4 (~&$&t)R(,) t (1 —t) Fe e

where
d =

i
t —M i, s =

i
t + M i, t = p(1 —cos 8)

and Ii is the hypergeometric function as dehned in the section on the sym-
metrical top. It will be remembered that there are two independent wave
functions when l/0, one using +l and the other —l but both having the
same energy constant 1K

An interchange of the two X atoms may be effected by the transformation,
8—+s.—8, P—+ —P and f—&/+ s.. An examination of the behavior of the wave
function shows that it possesses the following characteristics. For the series
of states where l =0, all states with even J are symmetrical in the part of the
wave function depending upon the quantum numbers V2, l, Jand M and anti-
symmetrical for odd values of J. When l /0 there are two energy levels which
coincide as has been pointed out. Closer examination shows that one of
these is symmetrical for an interchange of the nuclei and the other antisym-
metrical. Fig. 24 illustrates the character of the states of l = 0 and l = 1 where
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a symmetrical state is represented by a full line and an antisymmetrical state
by a dotted line. The coincident levels for l = 1 are drawn slightly separated
in the figure.

Fig. 24.

These properties will play an important role in interpreting the fine-struc-
ture lines of the near infrared bands. In accordance with the exclusion princi-
ple we shall assume that in nature only such energy states of the molecule
exist which correspond to wave functions of one symmetry class (in the pres-
ent case to either symmetrical or to antisymmetrical functions). Thus in the
spectrum of CO2, since the oxygen nucleus possesses no spin, we will expect
the fundamental bands to have every alternate fine structure line completely
absent. However, a band corresponding to the transition V2, 1~2 and l, 1-+2
would have every line present.

The last step in the analysis of the symmetry characters of the wave func-
tions of the YX2 molecule will consist in a description of the properties of the
nuclear spin wave functions. While the treatment is entirely equivalent to
that for the homopolar diatomic molecule it may be of interest to give some
of the details here.

We let each X nucleus have a spin of s units, that is an angular momentum
sh/2s. and we may suppose that these spins are oriented by means of an ex-
ternal magnetic field. * Let m be the component of s along the field. It may
take on the values s, s —1, s —2, , 2 —s, 1 —s, —s; in all (2s+1) different
values. The part of the wave function depending upon the spin of the first
nucleus may be designated by U& ', and that depending upon the spin of
the second nucleus by U2 ". If we neglect the interaction between the two
spins, the part of the wave function depending upon both spins will be U~
U m~~

Clearly there will be (2s+1)' such spin wave functions and we shall now
proceed to examine their symmetry characters. An interchange of the two

* The separation of the levels induced by the external magnetic field is of course of much
too small an order of magnitude to be observed experimentally.
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X nuclei evidently transforms U&
'

U2 "into U2"' U&"". Of the original
(2s+1)' functions there are (2s+1) for which m' =m". The wave functions
of this group are unchanged when we interchange the X nuclei and conse-
quently these functions have a symmetrical character. All the remaining
functions (2s(2s+1) in number) for which m'Wm" can be grouped into pairs
as follows U&"' U2 "and U&"" U2"'. The two energy levels of one of these
pairs evidently exactly coincide and therefore the states of a pair are de-
generate. This degeneracy may be removed when we take into account the
interaction between the two spins themselves. When this is done however it
is found that the appropriate wave functions are not U~

'
U2

" and U&

U2~' but rather the following linear combinations (1/2"')(Uq 'U2 "+U,""
U2"') and (1/2'~')(U, "'U~ "—U~ "U2 '). Upon now interchanging the X
nuclei it is clear that the first of these has a symmetrical character and the
second an antisymmetrical character. Thus we have shown that of the original
(2s+1)' spin functions (s+1) (2s+1) are symmetrical and s(2s+1) are anti-
symmetrical. Ke shall assume that for polyatomic molecules having two equal
particles as for homopolar diatomic molecules, only one modification exists in
nature, that is, the wave function as a whole must be either symmetric for
all levels or antisymmetric for all levels. A closer discussion of which exists,
symmetric or antisymmetric levels, will depend essentially upon the charac-
ter of the electronic wave functions, a subject we do not propose to treat.

We shall expect that the fine structure of the near infrared bands of mole-
cules having two equal particles, may be described by two sets of lines, the
one set arising from transitions between two levels both of which are sym-
metrical in the part of the wave function depending upon vibration and rota-
tion. The levels giving rise to the other set have wave functions whose vibra-
tion-rotation part is antisymmetrical for an interchange of the equal parti-
cles. Intercombination lines between the two sets of levels will be much too
faint to be observed due to the smallness of the spin interactions. The ratio
of intensity of these two sets of lines will be (s+1)/s where s is the spin in
units of h/2s associated with each of the equal nuclei. All the levels giving
both sets of lines, are either symmetrical in the vibration-rotation-spin part
of their wave functions or antisymmetrical in these functions.

3. The molecule Y2X2.

It may be of interest to sketch the symmetry properties of a collinear mo-

~2X2 such as was discussed on page 299 of the first section. There are
two pairs of like atoms and the wave functions may be classified as to their
symmetry properties with regard to each pair. Each state which was for-
m«ly taken to be single actually will consist of two nearly coincident states
with reciprocal symmetry properties. This obtains because there are two
positions of equilibrium which may be turned into each other, either by an
interchange of the two Y atoms or by an interchange of the two X atoms.
(See Fig. 25) The magnitude of the separation between these two levels will
in general be far too small to be observed. It is conditioned by the ratio of
the energy which would be necessary actually to aRect an interchange of one
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pair of atoms with respect to the others, to the energy hv& where the fre-
quency is that illustrated in Fig. 7. We shall use the notation proposed earlier
in which the quantum numbers V~, V~, V3, V4and V5 have to do with the fre-
quencies of vibration py, p2, p3, p4 and v5 respectively. The vibrations v4 and v;

are each double and consequently we introduce the quantum numbers /4 and
/5. The wave functions will have the same dependence upon /4 and /5 that
the wave functions for the collinear model YX2 have upon /. To make a
complete description of the system, it is also necessary to employ the numbers
J and M having to do with the rotation of the model. The symmetry pro-
perties however are not a function of the magnetic quantum number .V.

Fig. 25,

The symmetry properties of the states of the model X2 Y2 may be found
through considering what effect the interchange of a pair of equal atoms will
have on the wave functions. Thus the part of the wave function depending
upon the vibrations vj and v2 will be clearly symmetrical for any interchanges;
v3 is antisymmetrical for an interchange of both pairs, etc. Collecting the
results of these considerations we may make the following summary.

(1) For all values of V~ and V2, for even values of V3 and for all values of
V4 and V5 for which /4 ——/~ =0, we may classify the states according to the ro-
tational number J. When J is even, there are two nearly coincident states,
one of which is symmetrical in both the F pair and the X pair of atoms while
the other is antisymmetrical for an interchange of either the Y pair or the X
pair. %hen J is odd, there are two nearly coincident states one of which is
symmetrical in the Y pair and antisymmetrical in the X pair while the other
is antisymmetrical in Y and symmetrical in X.

(2) For all odd values of V3 (coupled with any values of Vz, V&, V4, and
Vz for which /4

——is=0) we again classify the states according to J and find
for J odd, two states, one symmetrical in F and X and the other antisym-
metrical in Pand X. For J even, there are two states of which one is sym-
metrical in Y and antisymmetrica[ in X while the other is antisymmetrical in
V and symmetrical in X.

(3) When the quantum numbers Vq, V2, Uq, V4 and Vq take on any values
but when /4 and /5 do not both vanish, we And that for every J value there are
four nearly coincident states having the four possible combinations of sym-
metry properties. These results are shown diagramatically in Fig. 26 where
the nearly coincident levels are drawn slightly separated.

The allowed transitions follow from considerations similar to those em-
ployed for a system containing only one pair of equal atoms. Transitions
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may take place only between levels that have the same symmetry character
in the Y pair and the X pair separately. Thus X, Y,~X,Y„X,Y,—+X, V„
etc. To complete the study of the symmetry properties of this model we
should remark the changes which will be introduced when each Y nucleus
possesses an angular momentum of s~k/2s and each X nucleus an angular
momentum s,h/2s. . Each state which was taken as single up until now will
consist of (2s&+1)'(2s, +1)' nearly coincident levels. The magnitude of

J
Y~ X~
Y~ Xg

J
YaX,
Yg Xg

y. x.
Yg Xs
Ys Xg
Ys Xs

Ya ~s
Ys Xa

YsX6 1
Ys Xs

Yg Xp,
Ya Xs
Y~ Xg
Y5 Y5

Ya ~a
Ys Xs

Yg Xg
Ys Xp,

Fig. 26.

the separation of these levels will be too small to be observable since it de-
pends upon the interaction of the magnetic moments of the nuclei with such
magnetic fields as those produced by the rotation of the molecule. Of the
many nearly coincident states (2s&+1)(s&+1)(2s&+1)(s&+1)will have spin
wave functions (that part of the total wave function depending upon the
spins alone) which are symmetrical in both the Y pair of nuclei and the X
pair. A number (2s&+1)(s&)(2s,+1)(s&+1) will be antisymmetrical in the
Y pair and symmetrical in the X pair, etc. We hope to apply these considera-
tions in interpreting the spectrum of acetylene C2H&.

4. The molecule YX3.

A very important class of molecules to the infrared spectroscopist are
those having three equal atoms and one or more others. The molecules fall-

ing in this group whose spectra have been determined are NH3, PH3, AsH3
and the methyl halides. The symmetry properties of these molecules are
rather more complex than those of molecules having only two equal atoms
and have been investigated in a very important paper by F. Hund. ~ In the
f~llo~ing pages we shall attempt to describe the results obtained by him but
the proofs wi11 be omitted and the reader referred to the original article.

We begin by considering the vibration of a triatomic molecule having
three equal atoms whose equilibrium configuration is represented by an
equilateral triangle. Let the three atoms be distinguished by the indices 1, 2
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and 3. It may now be shown that the wave functions describing the vibra-
tion (or the rotation, or both) will be divided into four symmetry classes
which we can label a, P, y, h. The wave functions of class n are unchanged
when any two of the atoms are interchanged, that is, n is symmetrical in all

the indices. The wave functions of class P become negative when any two
atoms are interchanged and are thus antisymmetrical. The class y may
be described as being symmetrical for an interchange of two atoms, say 1 and

2, but having neither a symmetrical nor antisymmetrical character for an in-

terchange of either 1 or 2 with 3. The class 6 is antisymmetrical for an inter-
change of a pair say 1 and 2 but neither symmetrical nor antisymmetrical for
an interchange of 1 or 2 with 3. It may be shown that the classes y and 5 al-

ways occur together and that they are degenerate, their energy levels fall-

ing exactly together. No perturbing potential, providing it has the three-
fold symmetry demanded by the equality of the three atoms, can ever unde-

generate these two.
Referring back to page 292 of the first section we remember that when

the three atoms of the molecule YX2 become equal the frequencies v2 and

v3 coincide forming a double frequency which we shall now call simply v2

with a quantum number V2. The weight of each state is now (V2+1). Hund
has shown that the symmetry properties of the wave functions are indepen-
dent of the number VI and have the following dependence upon V2.

TABLE III.

l ~+& Symmetry character

2
3

2m
2n1+1

3

2tg+1
2m+2

(y and 6), These levels coincide and will not be
separated by higher order perturbation terms.

a, (y, 6)
~, P, (v, ~)

n, m pairs of levels having the character (y, 6)
a, P, m pairs of levels having the character (y, 5)

In first approximation, for every value of V2 there will be (V2+1) coin-
cident levels but higher order perturbations will distinguish between some of
these. The symmetry character of the wave functions tells us that for V2 ——2m

there may exist m+1 separate levels, m of which have the weight 2. If V2 =
2m+1 there may exist m+2 separate levels, m of which again have the weight
2.

Following Hund we shall now introduce a further atom Y to produce the
molecule YX3. When the fourth atom Y has its equilibrium position at the
center of gravity of the X particles, the molecule will have the following sym-
metry properties.

The lowest vibration state V&= V2= V3= V4=0 has the symmetrical
character u and it may be shown that the symmetry character of the wave
functions is independent of the numbers V&. (We shall employ the notation
of Section 1 in which v~ is the inactive vibration, v2 and v4 are active double
vibrations lying in the plane of the triangle and v3 is the active single fre-
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quency whose electric moment vibrates perpendicular to the plane). When
V2 = V4 ——0, we find the character a for all even values of V3 and the character
P for all odd values. The part of the wave function depending upon Vg or
upon V4 will have just that symmetry character already described for the
vibration v2 of the molecule X3. The symmetry character of the wave function
for any values of V&, V2, V3 and V4 may be found by multiplying the wave
functions depending upon each of these numbers separately. The behavior of
the symmetry character under such a multiplication may be schematically
given as follows.

(~)(~) = ~ (~)(v, &) = (v, ~)

( )(P) = P (P)(v, ~) = (~, v) = (v, ~)

(P)(P) = ~ (v, h)(v, ~) = ~, P, (v, ~).

The most interesting applications of this theory are to molecules where the

diatom

does not lie in the plane of the X atoms but rather where the molecule
may be represented by a regular pyramid with the Y atom at the apex. A
curious feature now obtains in that each state, including the normal state, is
no longer single but consists of two nearly coincident states. This is due to
the fact that there is not one position of equilibrium but rather two exactly
equivalent ones as shown in Fig. 27.

I ig. 27.

+Xp

The qualitative theory of this phenomenon has been treated by Hund and
it may be shown that the two nearly coincident levels have wave functions
which are reciprocal in character. By this we mean that the symmetry
character of one of the levels is P times that of the other. The separation
between these levels is in general very small but is a function of the ratio of the
amplitude of the motion of the Y atom relative to the center of gravity of
the X atoms, to the normal height of the regular pyramid representing the
molecule. We shall expect that this energy difference will be unobservable
spectroscopically for all molecules except those where the normal height of
the pyramid is small compared with the length of a side of the base.
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In his paper Hund next discusses the symmetry character of that part of
the wave function depending upon the rotation of the molecule. Using the
wave functions describing the symmetrical top we shall give their symmetry
character as a function of the quantum numbers J,K and M. The symmetry
is independent of ~V. For %=0, the functions have the character 0. for even
values of J and P for odd values. When KW0, as we have seen there exist two
nearly coincident states the one corresponding to +X and the other to —X.
If X/0 and is divisible by 3, one of these nearly coincident states has the
character n, the other P. If EWO and is not exactly divisible by 3, the two
nearly coincident states have the characters y and 6 respectively.

tg, h)' '(6,gJ
.'(6, y) l

'
(g,b).

j
'5 0

2 2

2
2 0

',(f;h)
,'(b, g)'a,
.p.

2 1

2 0

1 1

1 0

0 0 ta ('

!p.
Fig. 28.

These results may be combined with the symmetry character of the vibra-
tional part of the wave function and are illustrated in Fig. 28.

Vl V2 V3 V4, 1., I4. The vibrations v&and v4correspond to isotropic vibration in a plane and conse-

sequently we shall describe them with polar coordinates and thus employ the additional numbers

l& and l4. Let us now introduce a perturbing potential which shall have three-fold symmetry and
compute the perturbed energy constants. This procedure is not a difficult one and it leads to
exactly the same splitting of the higher energy levels as is given by the above method of the
symmetry characters. Moreover we may determine which transitions are to be associated with
which directions of the electric moment with the view to finding which bands are

~~
and

which J . Again the results are in agreement with those which we will obtain in the next para-
graphs through the use of symmetry considerations. The whole computation is quite similar to
that employed by Dennison and Ingram" in investigating the harmonics of the methane mole-
cu)e. It is however considerably simpler since the geometric symmetry is here three-fold rather
than tetrahedral.
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Two cases need to be differentiated. In the first (a) the vibrational part of
the wave function has the symmetry {&},(the case of symmetry {s}may be
obtained from it by reversing the upper and lower symbols) and in the second
(b) the vibrational part has the symmetry {I~",I}. Since there are so many
nearly concident levels we have in Fig. 28 drawn all levels as single, relying
on the symbols to illustrate their multiplicity.

The possible transitions will be those in which two levels having the same
symmetry character may combine. Thus the fundamental v& or v3 in which
both vibrational states have the character {&j or {s}will have a fine struc-
ture corresponding to changes of X by some multiple (including zero) of 3.
The fundamental v& or v4 will have a fine structure in which the letter X may
not be a multiple of 3 in both the initial and final states. These rules found
from the symmetry are quite consistent with the general selection rules of the
rotational energy, for i i and v3 are

~ { vibrations and hence 6J = + 1, 0 and
DX =0, while v2 and v4 are J and have a fine structure given by 6J= + 1,
0 and 5%=+1.

'{A'e might continue one step further with the possible applications of this
theory. The first harmonics 2v& and 2v4 are, as has been said, composed of two
nearly superimposed bands, with an intensity ratio depending upon the an-
harmonic constants. * The one has as its upper state the symmetry {P, ",3}
and hence it will have a fine structure entirely similar to that of the funda-
mental v2 or v4, that is, it will be a J band. The other band has as its upper
state the symmetry character {&} and hence its fine structure will be entirely
similar to the fundamental i i or i i and it will be a

~~
band. Similar considera-

tions may be applied to any overtone of the system YX3.
Hund has not explicitly discussed the symmetry properties when each of

the X atoms possesses a spin sk/2ir but the extension is very easily accom-
plished. Each single state will now consist of (2s+1)' states whose energy
levels we may suppose to coincide. Let there exist a magnetic field relative to
which the spin vectors of the X nuclei may be oriented. (2 s+1) states have
the same components of spin for each of the three particles 1, 2 and 3. The
spin wave functions for these states are symmetrical for an interchange of any
two nuclei and hence have the character n. There will be (2s+1)6s states in

which two of the nuclei have the same components of spin along the field axis
with the field component of the third nucleus different. A simple computation
shows that one third of these states or 2s(2s+1) have the symmetry character
a, the remainder having the degenerate characters y or 6. Lastly there are
2s(2s+1)(2s —1) states in which all three nuclear components of spin along
the field axis are different. Of these one sixth have the character u, one sixth
P and two thirds the characters y or 5. Of all the (2s+1)' states then, -', (2s+ 1)
(2s+3)(s+1) have the character o., —,'(2s+1)(2s —1)s the character P and
—',(2s+1)(s+1)(8s) have the degenerate character y or 6.

As we have said, the introduction of a spin s to the X nuclei makes of each
* The separation of these bands will in general be large enough to be clearly observable

since it depends upon the anharmonic forces and not upon magnetic forces as is the case in the
nearly coincident levels caused by the spin.
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hitherto single level, (2s+1) nearly coincident levels. Their separtion is
certainly of much too small an order of magnitude to be observable and con-
sequently the eR'ect of the spin is to change the weights of the states. This
is illustrated in Table V for the cases s = ~, -,'and 0 for those states having the
vibrational symmetry character I&j or Is j. (The extension for the vibrational

TABLE V.

3 3
3 2
3 1
3 0

P yor8

7 2 7 ' 2 7 8
7 2 7 2 7 8
7 2 7 2 7 8
7 ' 1 7 1 7 4

s=$

P yor5

74 74 78
72 72 7127272712
7 ' 2 7 ' 2 7 4

s=0

P yorB

72 72 70
70 70 74
70 70 74
7 ' 1 7 1 7 0

2 2
2 1
2 0

5252585 ~ 252512
5 2 5 2 5 8 5 2 5 2 5 12515154525254

50 50 54
50 50 54515150

1 1
1 0

0 0

3 2 3 2 3 8 3 2 3 2 3 1231 31 34 32 32 34
1 ~ 1 11 14 12 12 14

ll

30 30
3 1 3 ~ 1

11 11

3 ~ 4.
3 0

1 0

symmetry character I I~'3j may be easily performed). The first two columns
of the table give the J and E designation of the levels. The remaining num-
bers in the body of the table give the number of coinciding levels having the
symmetry characters n, P, y or 5. This number of levels is written for conven-
ience as the product of two numbers, the first of which is (2J+1). Again it
appears to be more convenient to give numbers proportional to the number of
levels rather than the exact numbers themselves. The proportionality factor
for any given value of s is of course a constant.

Let us now consider only those states which have the character n or the
character p, that is, those states which are either totally symmetrical or
totally antisymmetrical in the three equal nuclei. (Exclusion principle). The
number of coinciding levels, or the weight of a state for s = ~ is just equal to
that which it would be if the three X nuclei were slightly different so that no
symmetry considerations would enter. That is the weights of the n or P
columns are (2J+1) for X= 0 and 2(2J+1) for XW 0. In the o. and P columns
for s =-,' we notice that the weights may be described by saying that they are
equal to the weights for s = ~ except that they are multiplied by two for those
levels for which X is an exact multiple of 3 (including zero). This table will be
used to explain why every third line in certain of the bands of the methyl
halide molecules is enhanced over its neighbors by a factor of 2.

In the n and p columns for s =0 we notice that the weights are different
from zero only when E is a multiple of three. These considerations would
become of value if the fine structure of any molecule possessing the group 03
were known.
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5. The molecule ZYX~.

The remarks that have been made in the last paragraphs may be extended
almost without change to include the molecule ZFX3 where the Z nucleus
lies along the axis of the YX3 pyramid. The frequencies v&, v3 and v& have just
the symmetry characters of the frequencies v& and u3 of the FX3 molecule,
namely I~} or I~ . The frequencies v&, v4 and vq have the vibrationaI sym-
metry character I,"I}.The structure of any overtone band may be easily
found by employing the rules given for the FX3 molecule. The weights of the
rotational states have just the same dependence upon the spin s of the X
nucleus.

The problem does however become much more complicated when the Z
atom becomes an X atom, forming the methane type molecule YX4. The
symmetry characters of the levels of such a system have been treated by KV.

Elert" but the complexity is so great that we shall not here give any adequate
summary of his work. KVe shall only remark that his treatment shows that
the fine structure lines of the fundamental bands v3 and v4 do not show any
marked regularity in the enhancement of the lines caused by the spin of the
X nucleus. An enhancement eHect does exist but it is neither very pronounced
nor obviously regular. (Every fourth line enhanced for example. ) This result
is in agreement with the experimental data regarding the methane spectrum.

The question of the structure of the vibrational levels V3 or V4 ——0, 1, 2,
3, 4 has been considered by Dennison and Ingram" using a perturbation
method. They found that while the levels V3 or V4 ——0, 1 are single, the other
states have three-fold, four-fold and seven-fold levels respectively. It is quite
certain that these results of the perturbation calculation could also be ob-
tained from symmetry character considerations following the work of Elert
and Hund.

"%'. Elert, Zeits. f. Physik 51, 6 (1928).


