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INTRoDUcTIoN
' 'T is now nearly ten years since the first part
~ ~ of the article on the "Infra-red spectra of
polyatomic molecules" appeared in the Ravines

of Modern Physics 'Part I c.ontained a descrip-
tion of the theoretical methods by which the
infra-red spectrum of a molecule might be
interpreted, thus leading to a determination of
the molecular constants. It was intended that
Part II, containing the application of these
methods to particular spectra, would follow

shortly, and, in fact, the greater portion of the
manuscript was actually prepared. It was un-

satisfactory, however, and was never published.
The unsatisfactoriness arose from the fact that
at that time there existed no single polyatomic
spectrum which could be understood with any
degree of completeness. In some instances a
vital piece of experimental datum was lacking,
while in others a further development of the
theory was necessary.

At the present time the situation is quite
changed, for it may be said that there exist
twenty or more spectra which have been ade-
quately explained. The number of these spectra
is now so great that it does not seem feasible in

the space available here to describe each of them
in detail. f The author has elected, rather, to
select five typical molecules, CO&, H20, NH3, the
methyl halides and CH4, and to treat their
spectra quite fully. To some extent these may
serve as examples for many other polyatomic
molecules, although it must be admitted that
certain features which may be essential for the
description of a particular spectrum have not
been included. We think, for example, of the
phenomenon of hindered rotation as it occurs in

ethane or methyl alcohol.
It has been interesting in the preparation of

this article to observe the theoretical advances
and changes in viewpoint which have been made

during the past ten years. It is gratifying to find

that the methods set forth in Part I are still

valid and form the backbone for the analysis of

a polyatomic spectrum. They must be supple-

mented, however, by various additional theories,
such as those describing the resonance inter-

action of frequencies and their overtones, the
vibration-rotation interaction and the effects of

an internal angular momentum.
Let us consider briefly the usual procedure in

analyzing a spectrum. The first step is the corre-

~ The major portion of this article was written while the
author was on leave at the California Institute of Tech-
nology. He wishes to acknowledge his indebtedness to the
sta8 of the Institute, and particularly to Professor Linus
Pauling, for placing all their facilities at his disposal.
During this period the author was assisted by a Fellowship
from the John Simon Guggenheim Memorial Foundation,
which be also wishes gratefully to acknowledge.

1

f Of the recent books dealing with the infra-red spectra
of polyatomic molecules we would like to mention, In-
frared and Barman Spectra by G. B. B. M. Sutherland
(Methuen, 1935};Mokkulspektren by H. Sponer (Springer,
1936) and Vibrational Spectra and Structure of I'olyatomic
Molecuks by T. Y. Wu (National University of Peking,
1939). This last book contains a particularly full account
of the experimental spectra and their interpretation.
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lation of the infra-red and Raman frequencies
with the normal modes of oscillation of the
system. If the configuration of particles repre-
senting the molecule possesses any symmetry
properties, the n normal frequencies may be
divided into a number of symmetry classes of
v hich the ith class v ill contain say n; frequencies.
'I'he vibrations of each symmetry c1ass (the
irreducible representations of group theory) will

have certain properties, i.e., the infra-red or
H.aman activity, the direction of oscillation of the
electric moment, etc. , which will be very useful
in identifying the observed frequencies of the
molecule. The process of classifying the vibra-
t ions and of determining their symmetry proper-
ties nlay be accomplished through the aid of
rrruup theory, and this method in the hands of
'IIII'ilsori, Teller and others has proved to be very
powerful. In Part I similar results were obtained
by what was called the method of limiting force
helds. This method may be described and
rationalized in the following manner. It has been
proved with the aid of group theory that the
division of the normal vibrations into symmetry
classes and that the properties of each class of
vibrations depends upon the symmetry of the
rllolecule and not at all upon the magnitude of
the forces, This fact suggests that we may set
up a rrlodel which possesses the symmetry of
the molecule being discussed, but where the
forces are chosen to be of such a simple nature
that the vibrations and resulting motions of the
systeni may be determined by inspection, or at
te;1st by an easy calculation. These vibrations
will of course be quite different from the actual
vibrations of the molecule since they are derived
fronl limiting or extreme types of force fields.
On the other hand, one may be certain that these
vibrations will possess exactly the same sym-
metry properties as those of the true motion.
It is often possible to find the vibrations for
several different types of limiting force fields and
thus to obtain checks upon the calculation.
"l. he author has found this method to be very
convenient and rapid for determining the sym-
metry properties of the vibrations, as well as
other results, such as the product rule, the sum
of the f, and the activity of the various over-
tones.

A second and a powerful guide in the identifica-

tion of the normal frequencies of a rilolecule
arises from the fact that the forces which bind
together the atoms in one group in a given
molecule are only slightly changed when one
considers the same group in a diferent molecule.
Thus the hydroxyl group possesses a frequency
in the region of 3700 cm ' whether the group
occurs in water vapor or in methyl alcohol.
Similarly, the vibrations of the methyl group
are relatively independent of the molecule in
which the group finds itself.

After the infra-red and Raman frequencies of
the molecule have been identified one may wish
to obtain explicitly the potential function of the
system. This will be a functioil of the r»utual
displacements of the particles fronl their equi-
librium configuration. It is usual to assur»e that
the potential noway be developed as a power
series in the displacement coordinates, The linear
terms are of course absent since these are dis-
placements from equilibriuin. The quadratic
terms are those which determ'. ne the normal
modes of oscillation and will be discussed first.
The cubic and quartic contributions may be
treated as perturbations of the normal vibrations.

A nondegenerate system possessing n normal
frequencies will have n displacement coordinates,
and consequently the quadratic combinations of
these coordinates will require ,'(n) (n—+1)coeffi-
cients. It is easy to show, however, that the
potential of a system having symmetry properties
and for which the normal vibrations may be
divided into symmetry classes, cont iins bu t
—,'P;n;(n;+1) independent coeScients where the
sum is carried over the various symnletry
classes. This means that the symmetry of the
molecule reduces the number of constants which
are necessary to specify the zeroth-order pote»-
tial. As an extreme example we might cite the
case of methane. This molecule has nine degrees
of internal freedom and thus, were it not for
the symmetry, the potential would contain 45
arbitrary constants. However, there are but four
normal frequencies of which v& and v& each belong
to diferent symmetry classes while v3 and v4

belong to a third class. Mte therefore conclude
that the methane potential will act&rally require
but five independent constants.

Although the symmetry greatly reduces the
number of coeScients appearing in the quadratic
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portion of the potential function, in general the
number of constants will be greater than the
number of normal frequencies and hence cannot
be determined by them alone. (The only excep-
tion to this statement is when each normal fre-

quency belongs to a different symmetry class.
This occurs in triatomic linear symmetrical
molecnles of which CO& is an example. ) Several
ways around this difficulty have been devised.
In the first place, if the molecule in question
contains hydrogen atoms, then the corresponding
molecule with deuterium replacing the hydrogen
will furnish additional data for determining the
potential constants. It is assumed that the forces
are not affected by the substitution. In principle
this method could be employed for any isotopic
molecules, but the accuracy is generally very low

except in the hydrogen-deuterium case. A second
source of data which may be useful in fixing the
potential constants is the spacing of the fine
structure lines of molecules which possess axial
or spherical symmetry. The spacing is deter-
mined by the internal angular momentum associ-
ated with the vibrational motion and depends
upon the squares of the potential constants.
It is, for this reason, a sensitive method of
finding the potential. The normal frequencies
themselves depend only upon the square root
of the potential constants; however, the experi-
mental values of the frequencies are known with
higher precision than the fine structure spacings.

In the case of a complicated molecule, the
number of data which may be found by the
foregoing methods is still too sma11 to evaluate
the. general potential. Recourse has been made
to a different procedure which has considerable
physical interest and promise. This consists in
postulating a form for the potential function
which is plausible and which one hopes will
furnish an adequate approximation to the actual
potential. The assumed form will depend upon a
fewer number of constants than the general
potential and consequently these can be evalu-
ated. In the past, three lines of approach have
been used. Studies of molecules such as H29,
NH3 and CH4 containing hydrogen and one
heavy atom have shown that the potential
closely approximates a valence type potential,
that is, it depends upon changes in the bond
distances and changes in the bond angles only.

Thus the normal frequencies of these molecules
may be we11 expressed in terms of just two
constants. On the other hand, the potential
functions of molecules containing only heavy
atoms (for example CCl4), seem better to follow
a central force function. It will be shown that
in the intermediate case of the methyl halides,
a satisfactory compromise between these forms
can be made.

A second approach lies in the assumption that
a complicated molecule may be thought of as
composed of a number of groups of atoms, and
that the potential is the sum of the functions
for each group, together with terms which
determine the binding between groups. I his
method also reduces, the number of constants
which are required. Finally, it is found that the
force constants which describe a group of atoms—say the methyl group —are relatively inde-

pendent of the molecule in which the group
finds itself. The information available at present
indicates that this last assumption holds to
within 10 percent or better. Ke wish to call
attention to the fact that these methods of
introducing a plausible but simplified form for
the potential may only be considered to be
satisfactory when there exist a sufficient number
of checks on the experimental data with which
one may substantiate the assumptions involved.

The zeroth order, or quadratic portion of the
potential function, the evaluation of whose con-
stants we have just discussed, determines the
normal frequencies. These differ slightly —by
from 1 to 5 percent —from the observed positions
of the infra-red and Raman bands because of the
influence of the anharmonic forces. The task of
obtaining the normal frequencies is of ten
dificult one and implies that a rather complete
analysis of the spectrum has been made. Usually
this point has been neglected in the past and
the observed positions of the fundamental bands
have been substituted directly into the equations
for the determination of the potential constants.
The errors which are introduced in doing this
are often surprisingly large. Since the potential
constants are proportional to the squares of the
frequencies the errors will usually lie between 2
and 10 percent but in certain cases, because of
the sens&tiveness of the functions, they may be
considerably larger. In the case of C02 and H~O,



the spectrum is known with sufFicient complete-
ness so that the normal frequencies are well

determined. This is, unfortunately, not so for
either iXH3 or CH4, but a method based on the
product rule and the internal angular momentum
has been devised which we believe allows the
normal frequencies to be obtained from the
observed fundamentals with a fair degree of
accuracy.

The potential function of a polyatomic mole-

cule is actually a complicated function of the
displacement coordinates. As has been men-

tioned, we approximate the potential by develop-
ing it as a power series in the coordinates. The
quadratic terms give rise to an energy constant
Wo which is equal to Pkco;[n, +(d;/2) 1 where d;
is the degree of degeneration of the ith normal
vibration. As soon as the cubic and quartic
portions of the potential power series develop-
ment are considered the problem becomes non-

separable and we employ the usual perturbation
methods. In the simplest case where no acci-
dental degeneration occurs between the fre-

quencies and their overtones it may readily be
sho~n that the energy constant is augmented by
a term of the form

The quantities X;~ are linear functions of the
coefficients of the quartic terms in the potential
and quadratic functions of the cubic coefFicients.

Clearly, the X;I, as well as the normal frequencies

may be determined for a given molecule
providing the positions of a sufhcient number of
the fundamental and overtone bands are known
from experiment. The explicit equations con-
necting the X;I, and ~; with the coeAicients of
the potential function may readily be obtained
but, unfortunately, they will not serve for their
immediate evaluation since there are a greater
number of coefficients than there are relations.
The following procedure may be adopted when

the fine structure of a considerable number of the
bands have been observed and analyzed.

The Hamiltonian of a polyatomic molecule
depends both upon the vibration and upon the
rotation of the system, and is in general not
separable. It may, however, be written as
II=IIg+Hg+Hyg where H~ is a function of

the vibrational coordinates alone and Hg deter-
mines the rotation of a rigid molecule. If the
possibility of internal angular momenta is neg-
lected, Hn=P -"/2Ao+Pp'/2Bo+P„'/2Co where
I', I'p and P~ are the components of the total
angular momentum and Ao, Bo and Co are the
equilibrium values of the moments of inertia.
The term IIyR contains the vibration-rotation
interaction and is usually small enough to be
treated as a perturbation. The effect of this term
in first approximation has been shown by Wilson
and Howard"- to be of the following sort. The
rotational energy levels of the vibrating molecule
will be just those of a fictitious rigid rotator
whose moments of inertia A, 8 and C are linear
functions of the vibrational quantum numbers.
In fact,

1/A = 1/A o+ P a;(n;+d;/2)

The constants a; are found to be linear functions
of the cubic coefficients in the potential develop-
ment. Thus if the fine structure of a sufhcient
number of the bands of the molecule in question
have been analyzed, the effective moments of
inertia and consequently the a; and the Ao, 80, Co

may be evaluated. From the a; the cubic coeffi-
cients of the potential can be calculated. The
cubic coefFicients, together with the X,,A, and ~;
will fix the values of the quartic coefficients of
the power series development of the potential
function. The method which has just been
outlined is unfortunately not very direct, and
the resulting accuracy with which the coefh-
cients are determined is often not great. In spite
of these defects, it seems to be the only feasible
approach at present available towards a detailed
knowledge of the potential function of a poly-
atomic molecule.

Certain modifications must be introduced
when there exists a resonance interaction be-
tween the vibrational levels. This phenomenon,
which was first discovered by Fermi' in a dis-
cussion of the spectrum of CO~, appears to occur
quite frequently in many polyatomic spectra and

may play an essential role. Thus if one frequency
is approximately equal to twice another

frequency 2coI„ these levels may interact strongly
through the term q;qj, ' in the cubic part of the
potential. If the resonance is nearly perfect, as it
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is in COB, the interaction will greatly aiTect both
the positions and the intensities of the bands.
When ~;—3'~ or when co;—~1„ the interaction is

accomplished only through the quartic terms
and quadratic combinations of the cubic terms
in the potential, and its influence upon the
spectrum is therefore usually smaller. This will

be illustrated in the analysis of the water vapor
spectrum.

ln each of the molecular spectra which will

be discussed in this article, we have endeavored,
first of all, to determine the vibrational and

rotational energy levels of the molecule from the
most accurate experimental data which are at
present known. These are then subjected to a
theoretical treatment with the view of obtaining
the molecular potential function as well as the
molecular dimensions. Wherever possible, cross
checks are adduced which serve to verify the
theory which has been employed. In the majority
of instances a very good agreement is found.

The infra-red wave-lengths which appear in

the literature are usually measured in air, and
these have been reduced to vacuum wave-

lengths in order to obtain more accurate values
for the energy levels. The physical constants
were taken from a private communication kindly
furnished by Professor R. T. Birge and we shall
use h =6.624 X 10 "and the mass of the hydrogen
atom m=1.6734&10—'4 g. The atomic weights
of hydrogen, deuterium, carbon, nitrogen and
oxygen used in evaluating the molecular con-
stants were assumed to be 1.00813, 2.01473,
12.00398, 14.00750 and 16.00000, respectively.

CARBON DIOXIDE

The qualitative, as well as the quantitative,
features of the infra-red spectrum of carbon.
dioxide lead unambiguously to the conclusion
that the molecule is both linear and symmetrical.
Molecules of this type possess three normal
modes of vibration, of which one is doubly
degenerate. (See reference 1, p. 292.) The fre-
quency vi corresponds to a motion in which the
oxygen atoms oscillate symmetrically with re-
spect to the carbon. This vibration, since it
evidently possesses no changing electric dipole
moment, will be completely inactive in the
infra-red, but will appear strongly in the Raman

spectrum. The frequency v3 may be described as
an oscillation of the carbon atom with respect
to the oxygen atoms along the symmetry axis
of the molecule. This vibration possesses a
changing electric moment and will be strongly
infra-red active. It may easily be shown that the
fine structure associated with this band consists
of a series of uniformly spaced lines corresponding
to a positive and negative branch, but with no
zero branch. Finally, the vibration v2 consists of
a motion of the carbon atom against the oxygens
in a line perpendicular to the symmetry axis of
the molecule. The motion is doubly degenerate
since there are two directions perpendicular to
the symmetry axis along which the molecular
forces are evidently identical. In the motions
corresponding to both v~ and v3 the distance
between the two oxygen atoms does not change.
The frequency v2 is infra-red active and its fine

structure consists again of uniformly spaced
lines, but with the addition of a strong zero
branch. Since the CO2 molecule possesses a
center of symmetry, those frequencies, which are
active in the infra-red, will not appear in the
Raman spectrum, and vice versa.

These predictions are completely confirmed by
the experimental spectrum of CO2. The infra-red
spectrum consists principally of two intense
bands, one centering near 667 cm ' and the other
at about 2349 cm '. Both bands possess fine

structures consisting of uniformly spaced lines,
but the band at 667 cm ' has a strong zero
branch. Clearly, this must be identified with v2,

while the band at 2349 cm ' which has no zero
branch must be v3. Neither of these frequencies
appears in the Raman spectrum, whose principal
feature is a pair of strong lines at 1285 and 1388.
The average of these lines, 1337 cm ', may be
taken to be the symmetrical frequency v&.

The explanation of the fact that the Raman
spectrum contains two lines rather than one was
given by Fermi, ' who remarked that the first
overtone of the frequency v2 (i.e., 2v2 ——1334
cm ') lies very close to vz. The existence of a small
perturbation would cause these levels to resonate
and interact with each other. The resulting
levels would be somewhat separated from each
other, and the wave functions would be linear
combinations of the original wave functions.
It is easy to show that the potential function of
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ThaLE I. Vibrational energy levels of CO&.

( )t t Jl '& ], 1t a)

(0 1l 0)
(0 20 0)
(1 00 0)
(0 2. 0')

(0 3) 0)
(11, 0)
(0 3, 0)
(0 0, 1 )
(0 40 0)

2o 0)
(2 00 0)
('0 42 0)
(1 2.. 0)
(0 20 1)

1)
(0 40 1)

20 I )

{2 0, 1)
('0 60 1)
(1 40 1')

(2 2o 1)
(3 Oo 1)
{0 00 3)
{0 00 5)
(0 20 5)
(1 00 5)

(8 —H'((}/hc oBs.

667.3
1285,5
1388.4
1335.4
1932.4
2076.6

2349.4
2553.6

2761.3
3609
3716
4859
4981
51(')8
6077
6231
6351
6510
6976

11496.5
12672.4
12774.7

(H —Ir A}!Ac cAf.c.

667.3
1285.8
1388.1
1335.4
1931.9
2077. 1

2004.3
2349.4
2547.4
2675.8
2798.8
2583.4
2762.2
3613.2
3715.6
4852.8
4981.4
5104,3
6074.5
6231.4
6354.4
6518.9
6973.1

11496.5
12672.4
12774.7

( 02 does contain a terni which is capable of
producing the interaction, and an estimate of
its magnitude is in conformity with the observed
separation of the levels. If the resonance is
nearly perfect, as it is here, the stabilized wave
functions will contain «bout 50 percent each of
the original functions. This accounts for the fact
that the two Raman lines are of nearly equal
intensity. .

Let us now turn to the quantitative side of
the problem, The infra-red spectrum of C'O~

contains, in addition to the tv o strong funda-
niental bands, a large number of weaker bands
which are to he ascribed to harmonics and com-
bioation tones of the fundamentals. These have
been the subject of many experimental investiga. -

tions and, in all, sonic twenty-five b«nds have
been located whose positions extend froni 600
cm to 1 2, 775 cril . These latter, which lie iri

the photographic infra-red, were observed by
Adams and Dunhan&' in the light reHected from
the planet Venus, and attest to the great quantity
of CO~ which must exist there. The fine struc-
ture, which corresponds to a simultaneous change
in the rotational energy, has been measured in
nine of the bands, and will prove to he of great
importance in the solution of the problem. Our
immediate task, however, is the location of the

band centers; that is, a determination of the
energy levels of the nonrotating molecule.

The vibrational energy levels noway be labeled

by means of the numbers ni, n~ and n3, which
are to be associated with the frequencies vi, v.
and v3, respectively. The motion corresponding
to v& is doubly degenerate, as has been men-
tioned, and consequently another quantum num-
ber is required to describe the levels. This is

conveniently chosen to be l, and denotes the
angular momentum in units of A which arises
froni the vibrational motion v~. The selection
rules are easily obtained (reference 1, p. 297)
and may be stated as follows. An active infr«-red
band whose fine structure shows a zero branch,
that is, one in which the oscillation of the
electric moment is perpendicular to the sym-
metry axis, will result when An~ is odd, hn3 is
even and Al = ~1. An active infra-red band
having no zero branch (change of electric mo-
ment along the symmetry axis) will occur if An.
is even, Dn3 is odd and Al =0.

One further remark must be made on the
designation of the levels. The very close reso-
nance between vi and 2v2 means that a de-

generacy may be said to exist originally between
certain levels which is later removed by a per-
turbing or coupling term in the potential energy, .

It will be shown that only those levels may
interact which have the same value of /. The
stabilized wave functions of the levels after
interaction are linear functions of the original
wave functions, and consequently the original
method of describing a level (n~, n', n3) ,is , no

longer suitable. This situation niay be taken care
of by enclosing the levels in brackets. Thus the
tv o levels which give rise to the principal
Raman lines are

(1, Og, 0) )
((0, 20, 0) f

The best experinsental deterniinatioiis of the
vibrationa1 energy levels of CO2 are given in

Table I, where the first column identifies the
level, and the second column gives its value as
measured above the ground state. A few com-
ments must be made on the numbers appearing
in this table since they difI'er slightly from those
heretofore used. In the first place, the experi-
mental wave-lengths are measured in air and
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these have been reduced to vacuum by means
of the corrections proposed by Rusch. ~ Secondly,
it will be noticed that a number of levels may
be reached in several ways and consequently
may be eval. uated from a number of independent
measurements. As an example we might consider
the levels

(1, Oo, 0)
(0, 20, 0)

These were determined by Martin and Barker'
as the sum of the transitions from

(0 00 0)—+(0 lg 0) and (0 ig 0)—+ (1, 00, 0)
20'

who in this way found the values 1388.2 and
1285.2 cm —'.* A second method of finding these
levels is from the difference bands

(1, Oo, 0)
(

' '

)
~(00p 1)

as measured by Barker and Adel, ' together with
the frequency (0 00 1) observed by Martin and
Barker and, more recently, by Cameron and
Nielsen. ' These yield 1388.67 and 1285.86 cm '.
The average of the infra-red determinations is
therefore 1388,43 and 1285.53.

Transitions from the ground state to these
levels cannot, of course, occur in the infra-red,
but they are the strongest lines appearing in the
Raman spectrum. They have been measured in
carbon dioxide gas by Dickinson, Dillon and
Rasetti' who found the values 1387.7 and 1285.1,
as well as by Langseth and Nielsen" who
obtained 1388.9 and 1285.8. The averages of the
Raman determinations, 1388.30 and 1285.45, are
in good agreement with the averages of the
infra-red measurements. It is difFicult to estimate
the accuracy, but we should imagine that the
error is smaller than 0.5 cm '.

In a similar manner, the pair of levels

may be found from several infra-red bands as
well as from the Raman spectrum. The various

*A recalculation of the fine structure lines of the bands
at 13.9' and 16.2p, shows that the residuals may be made
substantially smaller by raising the frequency of the band
center of the former by 0.2 cm ' and by lowering that of
the latter by 0.2 cm '.

evaluations are again quite consistent, and the
best averages appear to be 2076.6 and 1932.4
cm '. In this case, the infra-red bands are not
resolved into their fine structure and it becomes
necessary to determine their centers from the
positions of the zero branches. A small correction
(from 0.1 to 0.8 cm ') must be applied to the
observed maxima of the zero branches to find

the true band centers owing to the fact that the
fine structure shows some convergence. The
amount of this convergence will be discussed
later. The correction is equal to the displacement
of the most intense line of the zero branch.
The values of many of the higher harmonic and
overtone bands are taken. from the paper by
Barker and Q'u. "

The data which have thus far been presented
serve to fix the positions of the band centers and
consequently the vibrational energy levels. A
second and a highly important source of informa-
tion lies in the fine structure of those bands which

have been resolved, since through it we may
determine the moment of inertia of the molecule
as well as several of the potential constants. The
fine structure of the fundamental band v3 was
first resolved by Martin and Barker, ' and later,
in considerably greater detail, by Cameron and
Nielsen. These latter investigators were able to
obtain a very satisfactory fit for the positions of
their lines by means of the formula,

v3= 2349.4~0.780J—0.0031J'
where, for the positive branch, J assumes only
odd values, and for the negative branch, only
even values. This peculiar numbering of the lines

corresponds to the fact that only half of the
usually possible rotational states actually exist,
and depends upon the identity of the oxygen
nuclei. It was shown in Part I that the fine

structure lines of the linear symmetrical molecule

FXz should exhibit an alternation in intensityf
of magnitude s/(s+1) where sh is the spin of the
X nucleus. In this case, the alternate lines are
completely missing in confirmation of the zero
spin of oxygen. The numbering of the lines shows,
moreover, that in the normal unexcited state of
the molecule, only those states occur for which
the total angular momentum number J is even.

f Except for those bands where l&0 in both the initial
and 6nal states.
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From this we may conclude that the electronic
wave function describing the normal state must
be symmetrical for an interchange of the two
oxygen nuclei.

Besides the fundamental v3, the fine structures
of six other bands have been resolved. The
fundamental v2 was measured by Martin and
Barker and the lines are well represented bz

v. = 667.3~0.780J+0.00045J'-.

The diA'erence bands

j(0, 2„0)
I (1, o0, o)

which were observed by Barker and Adel &'ield*

960.76~0.7763J—0.00311J'

and
v = 1063.57 ~0.7763J—0.00335J'.

The bands observed in the atmosphere of Venus
were resolved by Adams and Dunham who give
the following expressions:

v = 11496.5 ~0.769J—0.0153J',
v = 12672.4+0.769J—0.0150J'-'

v = 12774.7 &0.769J—0.0156J'-.

It will be advantageous at this point to organize
the data on the fine structure of the bands, and
for this purpose we shall write the formula for
that part of the energy which depends upon the
rotation of the molecule. It will be shown later
that this energy is given by the expression

W~ ——(J'+J—l'-')(h'-'/8&r'A)[1+m&(n&+ 2)+a&(n2+1)+n3(n~+ ,') j, -

where A is the equilibrium moment of inertia, and the constants nj, n. , na give the interaction between
vibration and rotation and, as will be proved, are themselves functions of the potential constants. The
lines of the positive branch of an absorption band corresponding to a transition from the state
n~", n2", n3" to the state n&', n2', n3' are then given by)

g —1 nt" n & "ns"
vJ ni »''»= .v'&&+(k/8 I'~A&C) ( J[2+(xy(n +&n&'+1)+u2(ng" +n2'+2)+as(ns" +n3'+1)$

+ J'-'[n&(n &' —n &) +n (n2' 2n" ) +a&(n 3na—")]I .

The experimentally determined convergences will thus fix the constants o~~, 0.~, o,3, and these may be
set back into the coefficient of J in order that the moment of inertia A may be found. The convergence
of & & gives hc&;3/8~ Ac= —0.0031. This is in good agreement with the harmonic 5& ~ observed in the
Venus atmosphere which yields 5ha~/8&r'Ac= —0.0153. The best average of these values would

appeal to be
kn3/8&r'A c = —0.00307.

I he fundamental v& serves to evaluate n~ and we find

hu2/8&r'Ac = +0.00045.

The formula given above for the rotational energy levels will hold only for those states which shou, .
no resonance interaction, such as v~, vs and 5 v3. It is also valid for the sum of the energies for any
group of levels in resonance interaction, but the calculation of the values for an individual level will be
reserved until later.

The sum of the convergences observed by Barker and Adel for the difference bands will thus allow
us to determine that

(h/8&r'A c) (2aa n i 2c&.~) =——0.—00646.

From the previously evaluated constants a2 and n3 we find

hu &/8~'A c = —0.00058.

* All values are corrected for vacuum wave-lengths.
t' The effect of the term involving P is merely to shift the position of the band center. It will prove more convenient to

lunip this term with the vibrational energy and we shall consequently omit it here.



INFRA —RED SPECTRA OF VOL YATOM IC MOLECULES 183

The sum of the two resonating Venus bands gives

from which
(h/Ss'Ac) (10as+ag+a2) = —0.0306

hn~/Ss'A c= —0.0008.

I'he accuracy of this latter determination is much less than that of the former since we are here
dealing with the difference between two rather large quantities and since the number of observed
rotation lines is considerably smaller. We shall consequently adopt the former value. Although the
arithmetic indicates that e3 is determined to three significant figures and ni and o.2 to two figures, a
careful review of the data shows that the errors involved in each of them might be as large as +0.0001.*

It is now possible to evaluate the constant h/4m'Ac. The term linear in J of the fundamental v3

yields the value, 0.786 while v2 gives 0.782. The sum of the two difference bands gives 0.782 while the
Venus bands yield the two values 0.787 and 0.787. These figures are in accord with the measurements
by Houston and Lewis" of the rotational Raman spectrum of CO2 gas who found the number 0.786.
We shall adopt the average and let k/4m'Ac=0. 785 and thus obtain A =71.30X10 " g cm'. The
distance between the oxygen nuclei then becomes 2.317&10 ' cm.

An analysis of the carbon dioxide spectrum has been made by Adel and Dennison" who succeeded
in correlating the observed energy levels and in determining the potential constants of the molecule.
Our discussion will follow in the main along the lines of their investigation; however it appears
possible to simplify some of the calculations and, moreover, to correct some errors which exist in
their papers. f The method proposed by Wilson and Howard' for the evaluation of the Hamiltonian of
semirigid molecules may readily be adapted to our problem, and proves to be very suitable. f. In this
method a set of rotating axes is introduced which serve as a framework. for the description of the
normal modes of vibration. The rotating axes are defined by the condition that the angular momentum
associated with the normal modes of vibration shall, in first order, vanish with respect to them.
Analytically this means that

where r; is the vector, in the rotating axis system, to the ith particle and r; is the equilibrium value of
that vector.

The coordinates which we shall use in defining the vibratory motion of the molecule are essentially
those appearing in the papers by Adel and Dennison. Let q measure the change in distance between
the two oxygen muclei and be positive for an increase in distance. Let x, y and s be the components of

~ The dif}'erence bands

observed by Martin and Barker afford a certain test of' the self-consistency of the work. These bands lie close to the intense
fundamental ~ and are partially overlaid by it. Nevertheless, the positive branch of the high frequency band and the
negative branch of the low frequency band are clearly resolved and accurately measured. Knowing the fine structure of the
bands

(0 2p 0)
0) (0 Op 1)

as we11 as that of the fundamentals ~& and v3, we readily. calculate the fine structure of the band in question. We find
~= 719.9~0.780J—0.00041J~ and v=61/. 9~0.780J—0.00017J where the only adjustment which has been made has
been to find the best values for the band centers. The agreement between the observed and calculated lines is remarkably
good. In these formulas the J must be an even integer for the positive branch lines and odd for the negative branch, in
distinction to the former cases, since here l goes from j.~ and the symmetry character of the initial and final states is
reversed.

f Some of these errors are merely algebraic in nature, but there are a few which arise from the fact that the Hamiltonian
which was used was not complete. I wish to take this opportunity to thank Dr. Ta-You Wu, Dr. A. Adel and Professor
H. H. Nielsen, all of whom independently discovered certain of the errors and communicated them to me.

f. In its original form the analysis of Wi}son and Howard applies only to nonlinear molecules. However, the extension
to linear mo}ecu}es, as has been pointed out by Sayvetz, reference j.4, is easily accomplished by noticing that one of the
Eulerian angles, P, enters as a constant parameter and may be set equal to zero.
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a vector connecting the carbon nudeus with the center of gravity of the oxygens. These components
are to be taken along the axes of the moving coordinates defined above and s will be chosen to be
parallel to the line joining the equilibrium positions of the oxygen nuclei. The x axis is immediately
fixed providing, in the Eulerian angles which connect the moving axes with a set of space fixed axes,
we let |P be a constant, for example, zero. The calculations will be considerably freer from numerical
constants if at the outset, g, x, y and s are replaced by dimensionless coordinates which are propor-
tional to them. These will be chosen as o, t, », f' where

o = 2zr(zozznc/2h) lq,

» = 2zr(zozzzc/h) 'y
$ = 2zr(zozzze/h) Zx

and f = 2zr(zozzzc/h) 's.

Here cv&, ~2, ~3 are the normal frequencies of oscillation expressed in waves per cm, m is the mass of an
oxygen atom and zz is the reduced mass 2mM/(2zn+ M). c is the velocity of light.

A straightforvard application of the method of Wilson and Howard, leads to the following
Hamil tonian:

II= DI'-+Pp ")—2(I'.P.+-I'fzPo)+(P '+Pe') j/2A(l+ahl/2z c~A'urzl)'-'

+(2a c/h) 3+zp~ +~z(pc+Ps )+uzpr 1+ li ~

In this formula A is the equilibrium moment of inertia of the molecule, P, I'p, I', are the components
of the total angular momentum vector, while p„pzz, p~ may be described as a local angular momentum
taken with respect to the moving axes. More exactly,

P-= Pr» P.t' —
Pzz =PA' Pr& P~=—P« Pz»—

p„may be shown to be equal to I'„. The quantities pz, p„, pr and p. are of course the znomenta
which are canonically conjugate to their respective variables.

The potential energy V is a function of the vibrational coordinates only and has the following
properties. Since the coordinates represent displacements from the equilibrium configuration, V
must be a minimum with respect to each of them. The carbon dioxide molecule possesses a center of
symmetry at the carbon atom and consequently V must be an even function of g. This symmetry
also imposes the condition that U must be a function of the distance p= LP+»'O'. The exact form
of the potential function is of course unknown and recourse will be made to the usual device of
assuming that V is an analytic function and that it may be developed as a power series in the coor-
dinates. It will be assumed that the coe%cients of the higher powers become successively smaller
and may be treated as higher orders in a perturbation calculation. If V is analytic only even powers
of p will appear and of course the center of symmetry guarantees that the same is true for g. These
considerations lead to the following expression,

whet. c
V= V, +~ V, +X-"V,+

i''
o = zzh~(zozzz +zoz p +zozV)

X Vz=he(zzo'+ho p"+col'), -.
X'-' Vz ——hc(do'+ ep4+ff'+go 'p '+ ho 'j '+i'-p ''-f ') . '-'--

'I'he problem of obtaining the eigenvalues of the system is made somewhat simpler if we consider
hrst of all only those terms in the Hamiltonian which do not contain the total angular momenta
I', I'p, I', . This means that we shall obtain the energy 8'y of the nonrotating molecule, which may
be used to correlate the observed band centers as given in Table I. In zeroth order the Hamiltonian
has the form IIo (2o'c/h)(zozp. '+co——z(pzz+P„')+zozpr')+ Vo. The solution was derived in some
detail in Part I, and yields,

Wr"/he = zo z(n z+ ', ) +zoz(no+1) +z-.og(no+ ,')-
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The reniaining terms in the Hamiltonian of the nonrotating molecule are now treated by the

niethod of perturbations and lead to the following result:*

WV/bc ~1(n1+g) +~2(n2+ 1)+~8(n3+ g)+X11(n1+g) +X22(n2+ 1) +X33(n8+ g)

+X~,(/' —1)+X»(n, +-', )(n2+1)+X~3(n~+2)(n3+ ', )+-X23(n2+1)(n3+-', ).

The constants Jig' ' ' X23 are related to the constants appearing in the development of the poten-

)i;il function t~ by means of the formulas,

Xg ) ——$d —15a'/4(v g,

X 2 ——e —b'/2(up —b'/8 (2cog+ (o g) +b'/8 (2(up —(op),

X33——2f c'/2—coi c'/8—(2co~+cui)+c'/8(2co, &o,),—
X« = ——,

' e+b'/8 (2cv2+ ra ~) —b'/8 (2cv, —&o,) —b/8~'A c,

Xym = g —38b/C0y —b /2(2G)2+My) —b /2(2(dg —&dy),

X»=b —3nc/cog c /2(2M'+(dy) c /2(2(d3 601)

X23 = 1—bc/& 1+(4&3/4&2+ ~2/~3)b/8& Ac.

The expression for the vibrational energy just set down takes no account of any possible resonance
between the frequencies and is the result of a second-order perturbation. The first-order change in

the energy vanished since the terms comprising XV& are each odd in one of the coordinates. It is

evident that when co&—2~2, as is the case in C02, the coefficients X», X«and X» may become
indefinitely large and the perturbation method employed breaks down completely.

The procedure employed by Adel and Dennison in the solution of the problem consisted in

treating the first-order perturbation separately, finding the stabilized wave functions, and using

these in a second-order calculation to find the resulting energy of the system. A reconsideration of
the problem shows that this may be accomplished in a more straightforward manner as follows.

We begin with the zeroth-order solution in which XVi=X'V2=0. With these wave functions, the
matrix

~

H~'
~

representing the complete Hamiltonian of our problem may now be calculated. It will

of course contain diagonal elements of order ) ' and X' but no elements in X for the reason cited in the
last paragraph. There will also exist off diagonal elements in ), X, etc. Our problem is to diagonalize
this Hamiltonian and thus obtain the eigenvalues of the system. It is we11 known that these are the
roots of the determinant ~H~' 8s'Wa~ =0. T—he standard method of approximating the roots is to
assume that in the calculation of t/t/;, the remaining roots lV~ are nearly equal to the zeroth-order
energies, namely, lV~ =IIoq~. The result of doing this is to transform from the original determinant
to one in which the off diagonal elements contain only quadratic and higher powers of ). New terms
are introduced into the diagonal elements which are of order ) ' and contain resonance denominators

W,' —5'&'. The method obviously fails in any case when 8' 0—S'&', as has been pointed out.
The difficulty may be rather simply obviated. We may carry out the standard method of approxi-

mation for all such levels for which 8 is not equal or nearly equal to 5 ~'. This leaves us with a
determinant composed of square boxes, centered about the diagonal, which contain those elements
whose unperturbed energies are approximately equal. The diagonal elements are just the energy
levels as given earlier, with the one difference that those terms in X22, Xig and Xi2 which possess
the nearly vanishing resonance denominators are to be omitted. The off diagonal elements outside
the boxes begin with terms of order t' while those within the boxes have terms in ). The final step
in obtaining the eigenvalues is merely to diagonalize each of the boxes separately. This is com-

paratively simple since in our case most of the boxes have only two elements on a side and none
have more than four.

~ The calculation as originally performed by Adel and Dennison contains a few small errors which are here corrected.
The contribution from the term (p~+pj's}/2A(i+~If&/2~c~A&~1&}' agrees with the result computed by %einberg and
Eckart, reference 15, and appears in the constant X23. The term —h/sx At. in X~~ comes from the rotational energy, which
will be discussed later.
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It will be interesting to carry out this process in detail for a particular pair of levels, for example,
the levels

(1, Op, 0)
(0, 2p, 0)

The small determinant whose roots give the energy values is

(Wr' "' —W)/hc
—bj 'C2

b/V2-

(WiP "-p P —W)/hc

The off diagonal term comes from the expression b p p-' which occurs in X V& and is the (1, Op, 0)~(0, 2p, 0)
element. The diagonal elements are just what they would have been, had there existed no resonance.
I he roots of the determinant may be expressed conveniently as W~ = -,'(Wi' pp '+ Wr' "p) ~-', 6
showing that the sum of the two levels is unaffected by the resonance. The separation between the
levels is given by 6= (6p'+AiP) l where Ap is the separation that would have existed without resonance,
namely, 6p ——Wi'" ' —Wr' "'. 5& in this case is easily seen to be &2~b~ hc.

The stabilized wave functions may now be obtained from the minors of the determinant. Thus
if the nonstabilized functions are designated by the symbols (1, Op, 0) and (0, 2p, 0), the upper
state W+ has the wave function, (1, Op, 0)(h+hp)&/(2A)& —(0, 2p, 0)(h —Ap)*'/(2A)' while the lower
state function is (1, 0p, 0)(h —hp)P/(26)P+(0, 2p, 0)(D+hp)l/(25)l. One further ProPerty is easily
proved. If Wr' "' is increased by a small amount 5 and WvP P" by p (this situation occurs when we
consider the rotation vibration interaction), then the upper state W+ will be increased by b(6+6p)/2h
+p(h Ap)/—2A and W by b(A hp)/2A+ —p(h+Ap)/2A

Up to this point we have evaluated the eigenvalues for the energy of the nonrotating molecule.
The final step will be to consider those terms of the Hamiltonian which depend upon the total angular
momenta P, Pp and P„. There are two of these, the first being (P '+Ps')/2A(1+~hi/2prc~A&co&l)-".
XowP '+Ps'+P, ' is the square of the total angular momentum and possesses the eigenvalue

(j'+ j)h'/4pr'. P~ is the component of the angular momentum along the axis of the molecule. It also
is represented by a diagonal matrix whose eigenvalues are Ih/2ir. Consequently P '+Pp' 'is already-
diagonalized and is equal to (J'+J I' )h'/47r'. T—he-term [I+&rh~/2irc~(Appi)&) ' may be expanded
in a power series in o. and each term treated by the usual perturbation methods. The linear term by
combining with the matrix elements of ) VI yields contributions containing the anharmonic constants
a, b and c, while the quadratic term may be evaluated by taking the diagonal elements of 0-'.

The second term in the Hamiltonian may, to the approximation to which we are working, be
replaced by —(P P +PpPp)/A Pand Pp conta. in no diagonal matrix elements (see reference 1, p.
318) and consequently this term gives no first-order addition to the energy. The second-order per-
turbation calculation is straightforward, although rather lengthy, and results in an addition to the
energy constant of

k(~'+ ~ P)h'/1—67r'A'c][(n p+ I)pp /(~'p' ~') +-p(—np+-', )pip/(~, ,' —~,') ].
Collecting these results we 6.nd that the rotational energy of the molecule together with the rota-

tion-vibration interaction may be expressed by means of a formula of the tape given earlier where

ni —— 3h4/'pcAco i+3a &h/p( cApp)iP',

h(Pi P+ 3~pp) /8PrpcA Pip(PP pp PPpp) +bhi/Pr(cA ~ip) i

ap = h(pppP+3~ p') /47r'cA ppp(pp pP &ap') +ch&/7r(c—A coiP) i

The 6rst step in the determination of the
potential constants of' CO2 is to And the numerical
values of the ten quantities ~I, X23 together
with the interaction constant b. The most obvious
way of doing this, namely, to employ the eleven

best experimental data on the band centers, does
not prove to be satisfactory for it may be shown
that small changes in the frequencies (of the
order of the experimental errors) will seriously
affect the values of the constants. A. further
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TABLE II. Potential constants of CO2.

(41= 1351.2
cu2-— 672.2

~3 = 2396.4

a= —30
b = 71.3
c = —250

d= 15
(+0.5

f= 64

g= 1.9
89

i = —25.7

Coy = 1351.2,
cog = 672.2,
o) 3 =2396.4,
b'= 5081,

Xgg ———0.3,
Xg2 ———1.3,
X33= —12.5,
Xgg 1 «7g

Xg2 —— 5.7,
X)3 = —21.9,
Xps ———11.0.

Since there are 23 observed levels which have
been used to obtain 10 constants, there will exist
13 independent checks upon the adequacy of' the
theory. The third column of Table I lists the
calculated levels and it is seen that the agreement
is very satisfactory. Such discrepancies as do

*The fact that b 0 is positive and of this order of magni-
tude is indicated by the observation that the high f're-
quency Raman line is stronger than the low frequency by
a factor of about 1:0.57. See I. Hansen, reference 63, for a
discussion of this point.

datum by which this uncertainty might be
eliminated would be, for example, 60=5"y""
—IVY' '"', namely, the difference which would
exist between the two levels (1, 00, 0) and (0, 20, 0)
had there been no resonance interaction. The
value of 60 may be arrived at from the following
experimental data. The convergence observed in
the difference bands observed by Barker and
Adel together with the convergence of the funda-
mental band vs serves to determine the con-
vergence of the resonating levels

(1 Op 0)
(0 20 0)

The convergence factors o.~, n2 and 0.3 have
already been obtained and thus we may calculate
the convergence which would have existed in the
absence of resonance. These data when substi-
tuted into the appropriate equation yield*
ho ——16.7 cm '. The value of 60 as just calculated
may well be in error by as much as 10 percent and
this uncertainty constitutes one of the unsatis-
factory phases of our discussion of the CO2
spectrum.

The band centers, in conjunction with 60, may
be used to compute the molecular constants. %e
have attempted in each instance to employ the
most accurately known bands or combination of
bands.

exist may be attributed to either of two causes;
on the one hand they are of the order of the
experimental errors, and on the other they are
likewise of the order of the deviations to be
expected from a theory which uses a power series
development.

The convergence factors a~, u2 and 0.3 have
been shown to be functions of the first-order
potential constants a, b and c and may be used
for their evaluation. Substituting the numerical
values for the normal frequencies and for the
moment of inertia we find

ha&/Sn'A c= 0.000684+4.20a X 10 ',
ha2/Sm'Ac= 0 0—003.07+1 40bX. 10—',
has/Sm'&c= 0.000429+1.40cX10 '.

From the observed values for these convergence
factors one readily obtains c= —30, b =+54 and
c = —250 cm '. The second constant b has already
been evaluated far more accurately from the
resonance interaction and found to be b= ~71.3
cm '. The failure to obtain a better check is
puzzling; possibly it has its origin in the fact that
experimental convergence which is here involved
is very small, +0.00045, and is di%cult to
determine precisely.

The second-order potential constants are now
to be found from the expressions connecting them
with the quantities X» to X». The results of this
calculation are collected in Table II and expressed
in waves per cm. It will be noticed that there are
two methods of obtaining the constant e, from
X22 and from X~~, and that the values thus found
fail to agree except in as far as they both give e
to be small. This point will be discussed in the
following paragraph.

The analysis of the carbon dioxide spectrum
has been, in the main successful. A theoretical
derivation of the vibration-rotation energy levels
has been given which is based upon a model for
which the potential function is developed as a
power series in the displacement coordinates.
Thirteen constants, ~~, co2, ao3, a, ~ i and A, the
moment of inertia, are involved. The energy
levels are determined directly as functions of
fifteen quantities ~j.. X~j., ~ ~ X23, b', e~ o.3

and A and it is shown that these serve to predict
with high accuracy the twenty-three band centers
and the seven rotational fine structures which
have been experimentally measured. There ap-
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t), ~ 5650 cm '

Pz ~ I595cm '

g, *5755cm '

Pic', 1. The nornIal vibrations of v'ater vapor.

pears to be no doubt but that an adequate
niethod has been devised for calculating the
vibration-rotation energy levels of the carbon
dioxide molecule. On the other hand, the determi-
nation of the potential constants of the power
series development is much less certain. The two
checks upon the self-consistency of the method,
the calculation of 6 from 0.2 and of e from X22 and

XII, are not well satisfied. AVe feel that this is an
illustration of the difficulty of employing a power
series development for the potential function
which breaks off at a certain order. Since the
potential constants of one order are often quite
unequal (thus in Table II i))d), it seems likely
that some terms of the next higher order wil. l

have an appreciable eAect which should not be

neglected.
As an example of the ability of the theory to

predict the energy levels of the molecule we shall
consider the fundamental band v3 of C"O2'6 which
has been observed by A. H. Nielsen. "The nega-
tive branch has been well resolved but the posi-
tive branch is badly overlaid by the v3 band of
normal CO~. Nielsen finds the band center to lie
at. 2283.8 cm ' (corrected to vacuum). This
quantity may now be calculated from the theory
which predicts that the band center should be at
2283.9 cm ', in nearly perfect agreement with the
observation.

%%' ATE R VAPOR

The rotation-vibration spectrum of water
vapor is very extensive and has been the subject
of many investigations. It begins in the far infra-
red, at about 500', and extends with very few

gaps to about the middle of the visible spectri»«.
It has been accurately mapped from 135' to
5700A. The molecule, which may be represented
hy an isosceles triangle with an apex angle of
about 104'31', possesses a permanent electric
moment and consequently exhibits a pure rota-
tion spectrum. Since no two of the moments of
inertia are equal, the molecule belongs to the
class of asymmetric rotators and accordingly its
fine structure lines will be very irregularl&

spaced; -a prediction which is fully borne o»t by
experiment. The pure rotation spectrum reaches
its maximum intensity around 50@,, from which
point it slowly decreases until at about 15p only
a few lines are observable and these only v ith
long columns of the saturated vapor. At about
8.5p an intense absorption again sets in, this time
due to the outer edge of a fundamental vibration
band.

The water vapor molecule possesses three
normal modes of vibration, which are illustrated
in Fig. i. While all three frequencies should be
both infra-red and Raman active, only two of the
fundamentals, v~ and v3, are directly observed in

the infra-red. These correspond to the intense
regions of absorption centering around 1595.0
and 3755.4 cm ', respectively. The Ran&an

spectrum, on the other hand, contains only one
strong line at 3650 cm ' which must be identified
with vi. Undoubtedly this frequency does appear
in the infra-red, but it is probably rather weak
and is overlaid by the intense absorption due to
I3 which falls close to it. A very qualitative
explanation for the intensity distribution between
the Raman and infra-red spectra is suggested by
the fact that the apex angle in water vapor is
rather obtuse and that for a linear molecule we
have the rigorous selection rules that only v~ is
Raman active while only v2 and v3 appear in the
infra-red.

The absorption of water vapor in the near and
photographic infra-red is strong and is due to the
harmonics and overtones of the fundamental
frequencies. The intensity of the lines decreases
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as we proceed into the visible region until they
can only be observed by using very long path
lengths. They are most accurately measured as
atmospheric lines in the solar spectrum.

VA begin our discussion of the experimentally
determined energy levels of the water molecule

by considering the rotational energy levels of the
molecule in its lowest vibrationa1 state. The
theory of the asymmetrical rotator was developed
in Part I, where it was shown that the eigenvalues
of the levels are given as the roots of certain
algebraic equations and are functions of the three
iiioments of inertia. The states are designated by
the symbol J, where J determines the total
angular momentum of the system. 7 is an index
which runs from +J to —J and denotes the
ordering of the levels as regards their magnitude
within any Jgroup. Each level is furnished with a
symbol (++), (+ —), (—+) or (——) which
fixes the symmetry class to which the state
belongs, The permanent electric moment of the
water molecule lies along the axis of the middle
n~oment of inertia and it was shown that in this
case the selection rules for the pure rotation
spectrum are such that hJ=+1 or 0 add that
transitions may occur only between the sym-
metryciasses (++)~ (——) and (+—) ~ (—+).

In a recent paper Randall, Dennison, Ginsburg
and Weber'~ have measured the far infra-red
spectrum of water vapor under high dispersion
from 18@, to 75@. These observations, supple-
mented by the work of Wright and Randall"
serve to determine many of the rotational energy
levels. The combined measurements do not
extend to frequencies below 74 cm ' and conse-
quently it is difFicult from these data alone to
calculate the lowest rotational states. Fortu-
nately, however, the analyses of the rotational
structure of the water bands occurring in the
solar spectrum which have been made by Mecke"
and his collaborators furnish the requisite infor-
1nation. A careful study of Mecke's work shows
that it is most reliable in its identification of the
transitions between the low lying states and
consequently is particularly valuable for our
purpose. In many cases energy differences be-
tween levels may be determined both from the
solar bag. ds and from the far infra-red measure-
ments and it is found that these agree to within a
few hundredths of a cm —', attesting to the high

TABI 8 III. The rotational energy levels of the zoater molecule,

J H'/hc

0o 0 ++
ii 42.36 +—
1 p 37.14

23.76 —+
2& 136.15 ++
2g 134,88 +-
2p 95.19
2 g 7947 —+
2 g 7008 ++
3s 285.46 +-
3g 285.26
3) 212,12 —+
3p 206.35 ++
3 g 173.38 —+
3 2 142.30
3 s 136.74 +—
44 488. 19 ++
4s 488.19 —+
4g 383.93
4i 382.47 +-
4p 315.70 ++
4 ) 300.33 —+
4 2 275.23
4 s 224.71 +—
4 4 221.94 ++
Sg 742. 18 —+
5g 742.18
Ss 610.34 +-
Sg 610.16 ++
Si 508.80 +-
Sp 503.90
5 g 446.39 —+
5 g 416.00 ++
5 s 399.44 +—
5 4 32650
5 s 325.27 —+
6s 1045.14 ++
6s 1045.14 +—
64 888.74
6s 888.70 —+
6g 757.72 ++
6t 756.78 +-
6p 661.54
6 ) 649.03 —+
6 g 602.71 ++
6 s 552.94 +—
6 g 542.74
6 s 447.17 —+
6 s 446.66 ++
7y 1394.96 —+
7s 1394.96 ——
?s 1216.38 +—

W/hc

1216.38
1059.8'/

1059.68
931.33
927.76
842.51
816.65
782.42
709.44
704.30
586.46
586.25

1789.36
1789.36
1591.11
1591.1. 1
1411.59
1411.59
1255.98
1255.19
1131.88
1122.89
1052.72
1006.19
983.04
885.69
882.97
744.20
744. 13

2225.87
2225.87
2010.19
2010.19
1810.76
1810.76
1631.58
1631.44
1477.46
1475.14
1360.56
1340.70
1283.02
1216.37
1202.04
1080.51
1079.20
920.25
920.25

2702.61
2702.61
2471.83
2471.83

74
?s
?g
71
7p
7—1

? g

7 s

7
7
7
7 7

Ss
87
8s
8;
84
Ss
Sg

Sp
8 g

8 g

8 s
8 4

8 s
8 s
8 7

8-s
9g
9s
97
9s
9s
94
9s
9g
9t
9p

9
9
9 4

9
9 s
9 7

9~
9~

&0ia
10g
10s
107

J~ H'/bc

10s 2254.53
10; 2254.53
104 2054.55
10s 2054.55
10' 1875.72
10t 1875.24
10o 1725.84
10 ] 1 7 19.36
10 g 1614.07
10 s 1581.53
10 4 1538.31
10 g 1446.37
10, 1438.19
10 7 1293.80
10~ 1293.22
10 g 1114.69
10 )p 1114.69
11 g i 3217.73
11to 3217.73
11g 2974.13
1 is 2974. 13
117 2740.?3
11 s 2740.73
11s 2522.46
114 2522.46
1 1 s 2322.25
112 2322.20
1 1. ) 2144.66
11 p 2143.55

2000.24
11 2 ]983.73
11 s 1898.12

1839.71
11 s 1810.79
11 s 1694.32
11 7 1690.74
11 s 1525.31
11 g 1525.02
11 ip 1327.30
11 ig 1327.30
12s 3033.01
12' 3033.01
12 g 1774.85
12 yp 1774.85
12 gg 1558.07
12 12 1558.07
13 gp 2042.51
13 gg 2042.51
13 Ig 1806.94
13 ys 1806.94
14 gs 20/3. 81
14 „2073.81

accuracy of both sets of observations. The results
of this analysis are collected in Table III. The
numbers dier slightly from those previously
given for two reasons. In the first place all the
wave-lengths have been corrected to vacuum,
and in the second place a more complete use has
been made of the information which may be
obtained from the solar bands. The far infra-red
spectrum of water vapor affords a beautiful
example of the application of the theory of the
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asymmetrical rotator. It is shown by Randall,
Dennison, Ginsburg and Weber that the calcu-
lated spectrum agrees almost perfectly with the
observed spectrum both as regards the positions
of the lines and their intensities. An interesting
feature is that the rotational energy levels deviate
somewhat from the positions which are predicted
by the asymmetrical rotator equation. The reason
for this lies in the centrifugal force correction to
the energy levels which may assume values as
large as 280 cm ' for the high energy state 1i~~.
For the lower states where this correction is not
too great, it may be calculated by the method
proposed by Wilson and Howard. ' The compu-
tation is somewhat long but it has yielded good
agreement for those states to which it has been

applied. Empirically the centrifugal force cor-
rection may be found by subtracting the ob-
served energy levels from those which are
calculated by the asymmetrical rotator theory.
This correction will be approximately inde-

pendent of the vibrational state and consequently
the numbers which are found for the normal
state may be employed in the evaluation of the
rotational energies of the higher vibrational
states.

Recently Fuson, Randall and Dennison" have
obtained the pure rotation spectrum of D~O

throughout the region from 26' to 139p. The
lines resemble those of H20 in their chaotic and
irregular appearance but they possess an average
separation which is only half as great. An

analysis of the spectrum was made in the
following manner. A discussion of the effective
moments of inertia of H20 leads to a method of
estimating with high precision the moments of
inertia of the ground state of D20. From these,
the energy levels are calculated from the formulas
of the asymmetric rotator. A correction must
now be made for the centrifugal force stretching
which is based upon the similar correction for
H20. Armed with these trial levels, the spectrum
is calculated both as regards the positions and the
intensities of the lines. It is found that this
calculated spectrum agrees so well with the
observed spectrum that it is possible unambigu-

ously to identify the lines. Small adjustments are
now made which result in further increasing the
accuracy and self-consistency with which the
rotational levels of D2O are finally determined.

TABLE IV. The vibrational levels of mater vapor.

(%3%A@2)

(001}
(002)
(010)
(100)
(101}
(110)
(111)
(120}
(300)
(121)
(301)
(130}
(310)
(131}
(311}
(132)
(140)
(320)

R'/A, c oBs.

1595.0
3151.0
3650
3755.41
5330.8
7251.0
8807.05

10613.12
11032.36
12151.22
12565.01
13830.92
14318.77
15347.91
15832.47
16821.61
16899.01
17495.48

H' j&c CALC.

5330.6
7250.4
8805.52

12148.46
12567.74

15346.27
15834.12
16822.70
16894.25
17482.60

The vibrational states are to be labeled by
means of the three quantum numbers n&, n2 and
n3, and a given level will be designated by the
symbol (n&, ni, n2). In all, some fifteen overtone
and harmonic bands have been measured and
these, together with the three fundamentals
furnish us with the eighteen vibrational levels
which are shown in Table IV.

In a recent paper Darling and Dennison" have
considered the problem of the vibration-rotation
states of the water molecule. We shall here review
the methods which they used and the results
which were obtained. For the details of the
calculation the reader is referred to the original
article. The Hamil tonian function for a semirigid
molecule may be written in the form

The I' are the components of the total angular
momentum while the p are the components of
the angular momentum in the rotating coordinate
system defined by Wilson and Howard. p ~ are
the cofactors of a determinant p which contains
the moments of inertia which are themselves
functions of the normal coordinates. The pj, are
the momenta conj ugate to the normal coor-
dinates ql, .

In the case of the water molecule, there are
three normal coordinates and these are illus-
trated in Fig. i. The potential will be a function

II —, p IJ (P p)p p—p (Pp —pp)p—
+-', Q ~'p~~ 'pu'+ I'.
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of the normal coordinates which, we shall
assume, can be developed as a power series. It
will prove convenient to introduce the dimen-
sionless variables x; which are related to the
normal coordinates q; by the expressions

X,= 22r L46,C/I3j&g;.

The co; are the normal frequencies expressed in

waves per cm; c is the velocity of light. The sym-
metry of the molecule evidently imposes the
condition that V must be an even function of
q3 or x3. If ) is the parameter of the development,
we have

U = V6+ X V1+) ' V2+
where

V /13c =
2 (401xl +5Ll2x2 +463x3 ) 5

~ t 1/I3c 431x1 +432x2 +133x1x2+434x1x2

+A5X/X3 +CX6X2X3 3

X.V2/hc = P 1x1'+P2x2'+ P3x 3'+ P4x 1-x2'

+P5X1'X3'+P6X2 'X3''-

'IA'e may remark that the symmetry condition
would allow )PV2 to contain additional terms of
the sort x,x2x, '-, x,x& and x,'x, . Since these are
odd in at least one coordinate they will not
contribute to the energy, at least in orders up to
the third.

The first problem of the theory is the evalu-
ation of the band centers, that is, the energy of
the vibrating, but not rotating, molecule. This
may be accomplished by setting the components
of total angular momentum I' equal to zero
and calculating the eigenvalues by the familiar
perturbation methods. The result is that the
vibrational energy has the form,

W2/I3c= Q 535(n5+ 2)+Q X-11(n5+-', )(nl+-', ).

The six quantities X~~ are found as explicit
functions of the twelve anharmonic constants
«p6.

An expression of this type was obtained by
Bonner" and applied to the water vapor spec-
trum. The nine quantities cvA, and Xg~ were
evaluated from nine of the measured band
centers; the remaining band centers could then
be calculated and compared with the observa-
tions. The resulting check was moderately good
with one important exception. The fundamental

frequency r &, measured as a Raman line, was
predicted to lie some forty or fifty wave numbers
below its observed position. The solution of this
diSculty appears to lie in the near equality of
the two frequencies cubi and ~3, which may ac-
cordingly give rise to resonance eRects. This
resonance is not of first order since the normal
vibrations co& and co3 belong to different sym-
metry classes. It may easily be shown that the
vibrational levels of the YX2 molecule belong to
either of two symmetry classes which may be
characterized by the evenness or oddness of the
vibrational number n3. It is therefore clear that
the overtone levels which may resonate are of the
sort (n3, n1, n2) and (n3+2, n1 2, —n2).

The matrix elements in the Hamiltonian con-
necting these states are all oR diagonal and they
are all of second order. Thus the calculation of
the XI,g will be unaffected, since these depend
upon second-order elements on the diagonal but
only upon the first-order oR diagonal elements.
This is in contrast to the situation in carbon
dioxide where the resonance eRects are of first
order and consequently much larger. The method
of deducing the final energy levels is now to
diagonalize separately those portions of the
Hamiltonian matrix which contain the elements
in question. The oR diagonal terms of these por-
tions of the Hamiltonian consist of an inter-
action b. A short calculation shows that

53 +2 3 23 =
—2,yk—cLn1(n1 —&)(n3+&)(n3+2) j',

where

2P5 435 /4411+431425/2461+433436/4(24&1 462)

—433436/4(246]+ 462).

There exists also a small contribution to y from
the kinetic energy part of the Hamiltonian but
in the case of water vapor this term is negligible.

The procedure is now quite straightforward.
By using ten data from the table of band centers
we calculate the ten constants. The remaining
eight band centers may then be computed and
compared with the experimental values. This is
done in Table IV where a bracket around two
numbers means that their sum was used in

fixing the constants but not the individual values.
The agreement is seen to be very satisfactory.
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The constants obtained in this manner are

u) g
——3825.32) Xgj = —43.89) Xg2 ———20.02,

~2 ——1653.91, Xpg ———19.50, X)3———155.06,
(v3 ——3935.59, Xgs = —46.37, Xg3 = —19.81,

W, /bc =4631.25.

It is clear that although we have at this poi»t
a @method for calculating any of the centers of
the water vapor bands we are not yet in a
position to evaluate the twelve potential con-
stants ni . Pq since we possess only seven quan-
tities Xg, ~ and y which involve them. Moreover
the actual displacements corresponding to each
normal coordinate are also unknown. These may
however be obtained in the following way. Let
us consider the Cartesian axes x and y whose
origin lies at the center of gravity of the system
and whose y axis is parallel to the line joining the
equilibrium positions of the two X atoms. Ke
now choose the x component of the change (in-
crease) of distance between X atoms to be the
coordinate q. Let y be the y component of the
displacement of the Y atom with respect to the
center of gravity of the X atoms. The final coor-
dinate x is equal to x&+b8, where xj is the x
component of the displacement of the Y atom
against the center of gravity of the X atoms, 8

is the angle between the line joining the X atoms
and the x axis, while b is the equilibrium distance
between the F atom and the line joining the X
atoms. From the conservation of angular momen-
tum it is easily shown that x= (1+yb'/2ma')xi
Here p. is the reduced mass 2mM/(2m+M) and
2a is the equilibrium distance between the X
atoms.

The kinetic energy of the vibrating system

noway be calculated in the usual manner and is

2'r= [p/(1+ p¹/2ma-") jx'+ pj'+ '2ygrj'

The general potential function will contain only
four constants (since it must. be even in the coor-
dinate x) and may be written

2 t '= ax'+ by'+ cg."+2dyg.

The normal frequencies are given in terms of
the roots (lj„=4m'co;2c') of a determinant. and may
be expressed as follows:

X iX~ ——2 (bc ¹)/mp, —
X,+X2—— yb/+2mc/,

) 3
——a(1+pb'/2m'-') /p.

The first minors of the deterniinant yield the
relationships between the displacement coor-
dinates and the normal coordinates q~, q~, q3.

~g = 2758.06, Xgg = —22.81) Xgg ———10.56,
(ug

——1210.25, X22 ———10.44, Xgg ———81.92,
Ql3 —2883.79, X33——24.90, X23 ———10.62,

Wo/hc = 3385.74,
i p i

—42.

The difference between the zero-point energies
of H20 and D&O has recently been measured hy
Rossini, Knowlton and Johnston" using
calorimetric method. Their result of 1243.0~7.6
cm ' is in very good agreement with our spec-
troscopic value of 1245.5 cm '.

The potential constants as well as the con-
nection between the displacement and the normal
coordinates may now be evaluated.

a = 10.612 X 10' dynes/cm, c =3.134,
b = 7.181, d = 3.159

big ——1.1468 n& ',
bye

——0.4391 m —
&,

bg3=0.9283 m ',

bi2 ——0.8276 m 2,

b, = —0.6084 m-'.

'Yn examination of the displace»le»ts for each
normal mode of oscillation reveals that in water
vapor the vibration coj is such that the H atoms
move very nearly along the 0—H bond directions
whereas in the vibration ~~ they move nearly
perpendicular to the bond directions. This
suggests that the potential function is of the
so-called valence type. To show this, the poten-
tial may be rewritten as a function of br~, br~

and by, the changes in the two bond distances
and the bond angle, respectively. R is the equi-
librium O —H distance and the constants are

g bllg1+ bl2g 2)

bolg1+ b22$2)

x = b33q3.

Ihe four potential constants a, 6, t." and d
cannot be determined from the three nornial
frequencies of H2O alone but could easily be
evaluated if w'e possessed the corresponding fre-
quencies for D~O. While the spectrum of heavy
water vapor is not known nearly as precisely nor
as completely as that of normal water vapor it

seems possible to fix the following values of the
D20 constants with considerable accuracy. (See
reference 21 for fuller details. )
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(nen1es) ~OBS &CALC (+&+&& &) boas CALC

(0 0 0)
(0 0 1)
(1 0 0)
(1 0 1)
(1 1 0)
(1
(1 2 0)
(3 0 0}

0.077
.304
.063
.222
.122
.327
,061
.045

0.076
.241
.064
.228
.064
.228
.061
.042

(1 2 1)
(3 0 1)
(1 3 0)
(3 10)
(1 3 1)
(1 3 2)
(1 4 0)
(3 2 0)

0.262
.215
.071
.050
.254
.393
.120
.176

0.226
.207
.057
.047
.221
.386—.004—.006

expressed in dynes/cm. We find

2 V= 8.428(bri'+ br22)+0. 7678R'8y'
+2(0.1051)iiriiirg+2(0. 2521)RBy(bri+ arm).

A strictly valence potential would mean that the
coefficients of bribri and of Rhy(bri+hr2) would
he zero.

&Ve shall now return to the Hamiltonian func-
tion and consider the terms which involve I'
and thereby obtain the rotational eigenvalues
and the vibration-rotation interaction. In zeroth
order these terms yield the familiar expression
for the rigid asymmetrical rotator, P„'/2I~'
+Pp'/2Igg'+P, '/2Ic'. Ig'i, Is' and Ic' are the
equilibriuni values of the moments of inertia
and since the H~O molecule is plane we have the
relation Ic' ——I~'+I~'. A perturbation calcula-
tion on the remainder of the terms in the
Hamiltonian shows that the rotational energy
(when the vibration-rotation interaction is

included) may be developed as a series containing
quadratic, quartic, etc. combinations of the
components of total angular momentum I' .
The quartic combinations, as has been pointed
out by Wilson and Howard, ' represent the
effects of the centrifugal forces upon the rota-
tional levels and are not, in hrst approximation,
functions of the vibrational state. They give rise
to the deviations between the calculated and
observed energy levels which were discussed
earlier in connection with the pure rotation
spectrum of H+. Their influence becomes
almost negligible for the lower rotational states
and we may ignore them for the present.

The principal part of the rotational energy
contains the quadratic combinations of angular
momenta P and may be shown to have the
form

Wn =P.'/2I&+P p'/2Ia+P, '/2I c

TABLE V. Values of 6=Iq-Ig-III for the mater molecule.

This means that the rotational energy levels are
just those which are predicted by the theory of
the rigid asymmetrical rotator but where the
equilibrium moments are replaced by so-called
efkctive moments of inertia. The e8'ective
moments are functions, in 6rst approximation
linear functions, of the vibrational quantum
numbers. Thus

I~ = I~'[1+Q~i~(nk+k) ],
Is =Is'[1++&a(n~+ g)],
Ic=Ic'[1+Qci(n~+ 2)]

The nine quantities ai. ce are functions of the
normal frequencies, the b;I, which connect the
normal and the displacement coordinates and of
the six first-order anharmonic constants n~- . Ofs.

These expressions, which are rather long and
will not be reproduced here, have been calculated
by ShaEer and Nielsen" and by Darling and
Dennison. A very interesting feature is that,
despite the fact that H~O is a plane molecule,
in general Ic&I~+Is. However, it turns out
that 6= I~—I~ —Ig is independent of the anhar-
monic constants e~ n6. This is a very important
point for it means that we may calculate 6 at
once for each band and compare it with the
experimental h. This has been done in Table V.
The calculated numerical value of 6 for the
water molecule is

d = [0.1644(n2+-,') —0.0122(ni+-,')]X10 4',

where the coefficient of (ni+-,') is so small as to
be negligible. The agreement is very satisfactory
and is best for those levels which are best known
experimentally, i.e. , the normal state (0 0 0)
and the more intense solar bands (1 2 0) to
(3 1 0). We regard this as a real and significant
test of the theory of the water vapor spectrum.

The theory also predicts that the effective
moments of inertia should be linear functions of
the vibrational quantum numbers. A study of the
data shows that this is essentially the case,
although small discrepancies exist which are of
the order of the experimental errors. The follow-
ing procedure was adopted. The effective mo-
ments of inertia were obtained from the analyses
of the 6ne structure as given by Mecke. The
small correction produced by the quartic terms
in I' was subtracted. The seven most accurately
observed bands, (0 0 0) and (1 2 0) to (3 1 0),
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were selected and their moments fitted to a
linear formula which was subject to two condi-
tions; first, that Ig'= Ig'+IB', and second, that
the 5 must be equal to the calculated b, . In the
case of resonating levels, such as (1 2 0) and
(3 0 0) etc. , it is necessary to combine the
moments of inertia by means of an expression
which is identical with the equation v hich was
used to calculate the convergence factors for the
various resonating levels in carbon dioxide.

The following result is attained,

I i X10'"=1022.9+0 021.3(nz+g')
—0 101.0(n2+ ,') +-0.0486(n3+ —,'),

I„X10' 0 1 9207+0 0398(n, + )
—0.0249(n2+-,') +0 007 7. (ng+ g),

7, X 10"'=2.9436+0.0611(n,+-';)
+0 0385(n. 2+ ', ) +0.0-441(n 3+ 2)

A comparison between the observed moments
and the moments calculated from the above
formulas sho~s a very good agreement. The
errors appear to be of the order of the experi-
mental errors and are smallest for those bands
which are best known.

The equilibrium values for the moments of
inertia lead to an 0—H distance of 0.9580A and
a valence angle of 104'31'.

It is now possible to evaluate the six quantities
c~ .c3 which enter the theoretical expressions
for the eAective moments of inertia and through
them to calculate the six anharmonic constants

as. The accuracy of their determination
is not very great since the effects which they
produce are small. The six quantities X;k (used
to calculate the band centers) are functions of
the twelve anharmonic constants o, i- .P6. Since
we now know the 0,; it is a simple matter to
obtain the P&. The zeroth, first- and second-order
potential constants of the water molecule are
collected in Table VI. They are all expressed in

the units of cm —'.
One further test of the theory may be made.

The resonance interaction constant y which was
found to have the value iy.b. , =74.46 cm ', is
a function of the anharmonic potential constants.
A substitution yields y,„l,.= —71.5 cm '. This
agreement is remarkably good especially when
one considers the many steps which have been
involved in the calculation.

w1 ——3825.32
op2 = 1653.91
o) 8 =3935.59

Al 322
n2 ———47
A3= 1

a4= 216 Pl —-39 P4= —116
n6= —909 P2= 2 P6= 212
exp —— 160 P3 = 35 P6 ———108

In reviewing the present status of the problem
of the water molecule we begin by pointing out
that methods have been devised by which we

may calculate the many energy states associated
with the vibration-rotational motion. The pro-
cedure consists in first calculating the band
centers by means of the ~&, X;I, and p. Following
this the effective moments of inertia for the
state in question will yield the rotational energies
through the use of the asymmetrical rotator
formula. Finally a small correction due to the
centrifugal stretching is to be applied. While
this correction may be approximately calculated
it would appear to be easier to find it by sub-
tracting the observed rotational energy levels of
the normal state from their computed values.
These numbers are listed in the paper by Randall,
Dennison, Ginsburg and AVeber. ' The results of
the various tests which have been made on the
self-consistency of these methods furnish definite
information on the degree of accuracy which

may be attained.
In addition to allowing us to calculate the

energy levels, the theory evaluates the coeS.-
cients in the series of terms which represent the
potential function. The results show that the
potential is far from being harmonic. The coeffi-
cients of the terms which connect the motions
~~ and cu3, namely, x~x3' and xi'x3' are unusually
large. This no doubt accounts both for the
resonance between the levels (n3 ni n2) and
(n3+2, ni —2, n2) and for the fact that they
appear to be the most intense overtones in the
spectrum. On the other hand, the size of the
anharmonic coefhcients is somewhat disturbing
because it tends to invalidate the assumptions
which underlie the perturbation theory. How-
ever, the results appear to show that the method
of using a power series development is still
applicable to the case of the water molecule.

AMMoNiw

The ammonia molecule has the geometric form
of a regular pyramid. The hydrogen nuclei lie
at the corners of an equilateral triangle while

TABLE VI. Potential constants of the mater molecule.
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the nitrogen occupies the apex of the pyramid.
Since the molecule, which belongs to the class
of symmetrical rotators, has a permanent electric
moment, it exhibits an absorption in the far
infra-red which should consist primarily of a
uniformly spaced set of lines. These have been
observed, erst by Badger and Cartwright" and
later, under higher dispersion, by VAight and
Randall. "The molecule possesses four normal
modes of vibration. (See reference 1, p. 300.)
Of these, v& and vs belong to one symmetry class
which may be characterized by the fact that the
nuclei move symmetrically with respect to the
axis of the pyramid. The change of the electric
moment is consequently parallel to the molecular
axis and these bands are called

~~
bands. i i lies

at 3336 cm ' while the center of the absorption
hand ~3 is at 949.9 cm '. The remaining fre-
quencies, v& and p4, are such that the change of
the electric moment is perpendicular to the
symmetry axis of the molecule. Since the mole-
cule possesses axial symmetry as regards the
normal modes of oscillation both v2 and v4 are
doubly degenerate. v& appears only very weakly
as a group of irregularly spaced lines in the
region of 3p and is badly overlaid by the v&

band. From measurements of the difference
band, s 2

—~3, Barker" concludes that the center
of the v2 absorption should be at 3414 cm '.
The frequency v4 manifests itself as an intense
absorption band whose center appears to be at
1627.5 cm '.

In addition to the energy of rotation and of
vibration just discussed there is a contribution
to the energy of the system which arises from
the so-called tunnel effect. There are two en.tirely
equivalent equilibrium positions for the nitrogen
nucleus with respect to the three hydrogen nuclei.
It is impossible to transform fmm one con6gura-
tion to the other by a rotation, but only by a
finite displacement of the particles such as that
by which the nitrogen passes through the plane
of the hydrogens. It was shown in Part I that
this circumstance will produce a doubling of all
of the energy levels of the molecule. The magni-
tude of the doubling depends markedly upon the
vibrational state. Thus in the ground state the
separation of the levels is 0.66 cm ' in the funda-
mental vibrational state v~ it is about 0.9 cm '
and in v3 it is 35.7 cm '.

The three sources of energy, the rotation, the
vibration and the tunnel eA'ect are of course
interrelated and in a certain sense must be dis-
cussed simultaneously. However, it may be
somewhat clearer to focus our attention on each
one successively. The far infra-red spectrum as
observed by %right and Randall consists of a
series of doublets whose average spacing is about
19.89 cm '. The fact that the lines are double
arises from the tunnel effect since for these lines
only those transitions are allowed which connect
one of the double minimum states with another
of these states. The average doublet separation
of 1.32 cm ' represents twice the separation of
the two lowest tunnel states. In many ways the
pure rotation spectrum of ammonia is similar to
a

~~ type vibration band. The zero branch of this
band corresponds to a transition in which the
rotational quantum numbers do not change but
where the system goes from one of the tunnel
states to the other. This absorption should lie at
0.66 cm ' or at a wave-length of about 1.5 cm
and has been measured experimentally by Cleeton
and VA'lliams" using short electromagnetic waves
pmduced by an oscillator tube. The pure rotation
lines, as observed by Wright and Randall show
some convergence and the center of gravity of
the doublets may be represented by the formula
v=19.89J—0.00178J'. This convergence, which
is caused by the centrifugal force stretching of
the molecule has been treated recently by
Slawsky and Dennison" using the method out-
lined by Wilson and Howard. ' They show that,
in addition to the conventional expression for the
energy of a symmetrical rotator, i.e. ,

Ws ——(J'+J)i'i'/22+K'i'i'(-', C—-', A)

there are additional terms which are pmportional
to powers of (J'+J) and of K'. The coefFicients
of these terms are functions of the vibrational
constants of the molecule. Explicitly for NH&

the correction to the rotational energy is*

b W/bc= —0.000625(J'+J)'+0.000799(J'+J)
—0.000630X4—0.00189K'

+0.000950(J'+J)E'.
*¹teadded in proof.—A substitution. of the potential

constants derived in this article into the Slawsky and
Dennison formula would probably give a more reliable
estimate of the centrifugal force correction to the rota-
tional energy.
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H —H distance = 1.631 X 10 ' cm
N —H distance = 1.014
Height of pyramid =0.377
H —N —H angle =107' 3'

NH3 NDg

3 = 2.814 5.447
C =4.452 8.898

The problem of obtaining the normal modes of
vibration of the pyramidal molecule YX3 is a
simple one, although it will turn out that an
exact evaluation of the potential constants is
more dif6cult. Ke begin by recognizing that
vibrations belonging to different symmetry
classes may be treated separately. Geometric
coordinates appropriate for each symmetry class
will be introduced. (For detailed descriptions and
figures see reference 27.) For the two ll

fre-
quencies we use a coordinate g which denotes a
n~otion of the X atoms in their plane in which
each atom approaches the axis of the pyramid
by the amount f'/3'*. The second coordinate will

be, which measures the displacement of the g

l'he effect uf this contribution is to separate the
rotation lines into groups of multiplets whose
average positions will exhibit a convergence
which is approximately proportional to J'. In
the case of the lines observed by %right and
Randall the multiplet separation is too small to
be distinguishable but it should be easily meas-
urable for the higher members of the series.
The quantitative agreement obtained by Slawsky
and Dennison in fitting the observed lines is
almost perfect.

The moment of inertia A as determined from
the far infra-red lines is 2.814)( 1.0 ". The
moment of inertia about the axis of the pyramid,
C, cannot be found from these lines and is in

fact very difficult to obtain even from the J
vibration bands due to a vibration-rotation inter-
action which will be discussed later. It may be
inferred in a number of ways, (1) from the
solution of the double minimum problem, (2)
from the measurements by Barnes of the far
infra-red spectrum of ND3 and (3) from the ob-
servations by Migeotte and Barker on the
vibration band i ~ of ND3. (We have corrected
these latter observations to give the line spacing
of the molecule in its normal state, namely,
280 = 10.276.) The values obtained by these
three procedures are very consistent and lead
to the following molecular dimensions and mo-
ments of inertia:

atom along the axis arid away fruni and relative
to the X3 plane. Since these two coordinates
correspond to displacements of the particles
which are respectively perpendicular to each
other the kinetic energy is just the sum of the
two kinetic energies. Clearly,

2rll l= ~l."+i",
where ii is the reduced mass 3m3f/(3m+M).
The potential energy will be a general quadratic
form in g and s and consequently will have three
coefficients.

2 Vll = as'+bP+2csf

The normal frequencies of the parallel mo-

tions may now be found in the usual manner

(X;=4s'a);2c')

The perpendicular frequencies are only slightly
more difficult. Let x represent the displacement
of the F atom from a line drawn perpendicular
to the X3 plane and through the center of
gravity of the X atoms. Since there are two
directions possible for any displacement which is
perpendicular to the symmetry axis we must
have a complementary coordinate y. The second
pair of coordinates & and q denote the two
motions of the X3 atoms in their plane which
correspond to the double frequency of the X3
system. A short calculation yields the following
expression for the kinetic energy where k is

defined in terms of the moments of inertia and
the masses k =iiC/2Am

2T ll
=mk(i"-+ i'i) +m((2+ r)-) .

The potential energy is a quadratic form which

is subject to the condition that the coordinates
x, y or $, q must enter equivalently. Thus,

2 ~~ = ~(~'+v')+P(P+ n')+2&(~(+an)

The normal frequencies are then given by

X2+) 4
——n/mk+P/m

X,X,= (~p —~'-') /m'k.

It is evident that the four fundamental fre-

quencies of NH3 will not serve to determine the
six potential constants. However, it wou ld

appear to be easily possible with the additional
aid of the fundamental bands of XD3. The~e
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have been observed by Migeotte and Barker"
who found, ~~=2419, ~2=2555, ~3=747.3 and
v4=1191 cm '. gee shall consider the J vibra-
tions 6rst. Since there are four data and only
three potential constants, there must exist an
interrelation. This relation, often called the
product rule, is that

(s»cd c) 'NH3/(cd2cd4)'ND3 ——(m'k) ND3/(mmk) NH3.

I rom a knowledge of the moments of inertia we
calculate that this ratio should be 3.503. On the
other hand, a substitution of the numerical
values for the frequencies yields the result 3.340.
The reason for this discrepancy lies in the fact
that we have not used the normal frequencies;
but, rather, the frequencies of the fundamental
bands which dier from them by the anharmonic
terms. A similar situation arose in the case of
water vapor, and this example may be worth
citing since there both the normal and the
fundamental frequencies are known. In H~O
the frequencies ~~ and ~2 belong to the same
symmetry class and the product rule is

(cd ccd2) H20/(cdycdg) Dno = (mp)DIO/(mp)H20.

The calculated value of the ratio, 3.592 is just
equal to the ratio of the squares of the products
of or~ and ~2. However, the ratio of the squares
of the products of the positions of the funda-
mental bands is only 3.431.

In general there is no way out of this dif6culty
short of a complete analysis of the overtone
bands which will thus yield the normal fre-
quencies. If one disregards the distinction be-
tween the normal frequencies and the positions
of the fundamental bands, predictions of fre-
quencies will be made which will diRer from the
tru'e frequencies by the order of the anharmonic
corrections, that is by from 1 to 5 percent.
The force constants, which depend upon the
squares of frequencies, may be incorrect by as
much as 10 percent or more.

In certain cases, of which the present instance
is one, it seems possible to estimate the values
of the normal frequencies with some degree of
precision. We begin by writing the relation
between the normal frequency ~; and the position
of the fundamental band v, in the following
manner cd;=v;(1+a;). Clearly v,a; is the cor-
rection due to the anharmonicity. Ke shall

assume that the corresponding quantities co;*

and v;* for the isotopic molecule obey the
equation,

cd,*= v;*(1+a,cd, '/cd c)—v (1+a;v,*/ v,) .
This assumption states that the anharmonic
correction varies nearly as the square of the
normal frequency. A study, both of the theo-
retical expressions for the anharmonic corrections
and of the existing cases where the ro; and v, are
known, shows that the approximation is a very
good one, particularly for such molecules as NH3
and ND3 where all the frequencies transform
with about the same factor. * We possess one
relation between the normal frequencies, namely
the product rule,

(cdmcdc) NHI/(cd2cdc) ND3= (m k)ND3/(m k)Ntlg.

Substitution of our expressions for co2 and ~4,
yields an equation between n2 and o.4.

A second equation may be obtained from the
observed spacing of the hne structure lines of
the perpendicular bands. It will be shown in
detail later that the hne structure spacing Av;

determines the value of a quantity b; which is
proportional to the squares of the potential
constants. By elimination we may thus obtain a
relation between the 8;, the normal frequencies
and the masses. In the present instance this is

Lmk(cd2'+cd4') )NiCg
—[mk(cd2 +cdc)]ND3 (kNH3 kND3)

X [(mba&cd 2'+mb4 cd 4') /(82 + 84 ) ]ND3.

The observed spacings Av; of ND3 give 62= 0.533
=1/84. We thus obtain a second relation con-
necting o2 and n4 which when combined with
the 6rst equation results in the numerical values
o.2 ——0.0610 and o.4 ——0.0356. The normal fre-
quencies ~2 and co4 of NH3 are then 3622 and
1685.4, while those of ND3 are 2670 and 1221.6
cm '. The potential constants a, P and y are
now obtained from a simple substitution and
are found to be 10.494, 4.098 and 4.168&10'
dynes/cm, respectively. )

~ It might have been slightly more logical to let
~; =~s(i —og) and s &~ =au&~(i -cog~as/sos). The difference
between the results obtained with these two sets of ex-'

~

~

ressions lies we11 within the uncertainty of the method,
owever,
f The sign of p is not determined directly but it can be

6xed from the fact that, as Howard~I has shown, the po-
tential function for ammonia must be nearly of the valence
type.



The values of n~ and o,4 appear to be very
reasonable. The type of forces which are present
in the ammonia molecule is not very diA'erent

from that in the water vapor molecule. In the
latter case, since we know both the ~; and v;, we
may calculate the n; directly. The two high
frequencies co~ and cv3 which lie at 3825.32 and
3935.59 cm ', respectively, have the same value
of n, namely 0.0480, while co~ at 1653.91 has
o.2

——0.0369. It will be seen that these do not
diFfer greatly from the corresponding figures for
the n, of NH3 which have just been calculated.
%Ye may remark in passing that if one sets
o.~

——a4 ——n, the product rule alone will serve to
fix the normal frequencies. This procedure while
less accurate than that which we have used,
gives, in the case of water vapor, results for
the normal frequencies with a maximum error
of only 0.8 percent.

The situation with respect to the parallel
frequencies is much more uncertain since the
existence of the double minimum potential
greatly aAects the vibration co3 and makes it
far more anharmonic than would normally be
the case. This is immediately shown by the fact
that in the product rule,

(&v~~3)"-NH8/(co~ca~)'xo, = (mp) wo, /(mp) xH3.

The right-hand side of the expression is 3.392
while the left-hand side, if we use the positions
of the fundamentals, is only 3.078. %e oFfer the
following suggestions for estimating approxi-
mately the normal frequencies. The frequencies
~~ and co2 are of about the same magnitude and
the motions corresponding to both involve essen-
tially displacements along the N —H bonds but
no change in the bond angles. Ke therefore
assume that the difference between coal and vi

will be proportionately equal to the diRerence
hetv een co2 and v2. In this wa& we set coi ——3539
cm for NIH 3 and 2524 for N D 3. The frequency
p~ is very anharmonic because of the double
minimum potential. The Manning double mini-
mum potential, v hich will be described later
furnishes a means of calculating the frequency
for infinitesimal amplitude. A substitution yields
cv3=1051 and 806.6 cm ' for NH3 and ND3,
respectively. The four frequencies which we have
estimated when substituted into the left-hand
side of the product rule give the number 3.338.

Finally we adjust the frequencies ur3 to 1055 and
803,4, respectively, in order to satisfy the product
rule exactly.

With these normal frequencies the potential
constants become a = 3.171,b = 6.811and t..=3.078
X 10' dynes/cm. Again the sign of c is not
determined directly but it must be such that
the forces are approximately of the valence
type. It is apparent, in view of the anharmonic
character of the motion and of the uncertainties
inherent in our estimates of the normal fre-
quencies, that these latter potential constants are
not determined with as great precision as the
constants governing the perpendicular vibra-
tions. However, we believe that we have fur-
nished the means of calculating the normal
modes of vibration of the ammonia molecule
with considerable accuracy. The normal fre-
quencies of the molecules NH2D and ND2H may
be computed using the formulas derived by
Salant and Rosenthal. " The positions of the
fundamental bands might then be obtained by
estimating appropriate values for the n;. (See the
discussion of the deutero-methanes. )

A number of harmonic and overtone bands
have been observed but unfortunately not a
sufficient number to allow a complete analysis
of the spectrum. The few anharmonic constants
which can be deduced are of the expected order
of magnitude. One interesting group of over-
tones are those which appear to form the series
nvi. These extend into the visible spectrum and
may be approximately fit by the formula
v =3397n —6in . The identification of this series
as nvi is somewhat misleading, however, since
there are in reality many superimposed bands
due to the fact that v~—v2—2v4. Thus even the
first member of the series n = 1 contains four
bands, of which two are vq=3336~~, v~ ——3414 J .
The first overtone of v4 also falls in this region
and consists of two components, a parallel and
a perpendicular band. The

~~
band has been

observed both in the Raman spectrum and in

the infra-red and falls at 3219 cm '. It may
interact with vi by means of a cubic term in the
anharmonic potential. The resonance is of the
same type as that in CO2 but far less complete.
The J component of 2v4 cannot resonate with
v~ except through very high order anharmonic
terms.
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The fine structure of the
~~

bands is of the
type to be expected for a symmetrical rotator
(we neglect for the moment the doubling of the
lines which arises from the double minimum
potential) and consists of a strong zero branch
together with a nearly uniformly spaced set of
lines which constitute the positive and negative
branches. The average spacing of the lines,
h/4~'A, is equal to the spacing of the far infra-
red lines and fixes the moment of inertia per-
pendicular to the figure axis. The fine structure
of the g bands is similar to that described in
Part I but exhibits a phenomenon which was
not known at the time Part I was written.
Qualitatively it consists of a series of uniformly
spaced zero branches, each of which is the center
of a group of fine structure lines. In many cases
these latter will combine to give the appearance
of an irregular and chaotic band; in others they
may blend together to form a more or less con-
tinuous background out of which the zero
branches rise. The spacing of the zero branches,
in contrast with that predicted by the older
theory, is not determined by the moments of
inertia alone but is equal to

L (1 —«;) /C —1/A ]h/4~'.

The analysis which leads to this formula was
first proposed by Teller" and later somewhat
amplified by Johnston and Dennison. " The
central idea underlying the theory is as follows.
The normal modes of vibration corresponding to
the J bands, are doubly degenerate and may
be described as two identical harmonic oscilla-
tions at right angles to each other. Such a pair
of oscillators may be combined to give a circular
motion and hence may produce an angular
momentum along the symmetry axis. An exact
analysis shows that the eigen values of the
angular momentum associated with a J funda-
mental v; are +g;k. The quantity g; is not
necessarily an integer and proves to be a function
of the normal mode of vibration. The component
of the total angular momentum of the system
along the symmetry axis must, however, be
~Eh where X is an integer, equal to or less
than J. Roughly one may say that the rotation
of the molecule supplies the additional, and non-
integral, angular momentum which when added
to +g;h produces ~EA. The resulting formula

where

«'= (C/2A-b. )/(1+b, ),
b; = 2mA y'/iiC(mX; —P)'.

The fine structure of the perpendicular bands
of ND3 have been measured by Migeotte and
Barker" who found the values Dv2 ——5.2 and
hv4 ——1.7 cm '. The sum Av2+Av4 may be shown
to be independent of the potential constants and
equal to (3/C —5/2A) h/4ir'. Substituting the
figures for the C and A of N D3 we obtain 6.8
which is in good agreement with the observed
number 6.9 cm '. (Actually hv& and hi 4 as well

as Av2+Dv4 are negative rather than positive
numbers. This merely means that the molecule
nearly resembles a disk in its inertial properties. )
We shall adjust hv2 to 5.15 and 6~4 to 1.65, a
change which is well within experimental error,
in order to preserve the self-consistency of the
solution. The following constants for ND3 may
now be found, |2 ——0 185, g4 ———0 368 and
b2 ——1/b4=0 533 This la.st v. alue was employed
in the determination of the molecular potential
constants.

The low frequency perpendicular band v4 of
NH3 has recently been observed and analyzed
by Barker" who concludes that Av4 for this
molecule is about equal to 3.9 cm —'. From the
potential constants n, P and y together with the
masses, hv4 may be calculated. We find the
value 3.7 cm ' and regard this check as evidence
for the correctness of our choice of constants.
The sum Av2+hv4 can be computed in the same
manner as was done for ND3 and we obtain
12.0 cm '. From this it follows that hv. should be

for the rotational energy is

Wp= (J'+ J)h'/2A+K'h'-(-, 'C —~iA)

~«;Kh'/C+«'h'/2C

and may be shown to predict a fine structure for
a J band consisting of zero branches with the
spacing given earlier.

An important point which was made by Teller
is that the sum of the g; for the fundamentals
belonging to any symmetry class is independent
of the force constants and a function only of
such quantities as the moments of inertia. Thus
it was shown" that for the I'X3 molecule,
«2+ «4 = C/2A —1. The individual «; may be
calculated as a function of the force constants
of the molecule and for the present case,
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about 8.1 cni '. This band v as also studied by
Barker" and he reports a spacing of around
16 cm '. However, the region is so badly overlaid
by the band v~ that in our opinion a hv2 of 8
v ould fit the observed data quite as mell as 16.

The potential function of the pyramidal YX3
inolecule possesses two equilibrium configura-
tions and this leads to a doubling of the vibra-
tional energy levels. In most molecules of this
type, as for example PH3, AsH3, PC13 etc. , the
activation energy, that is, the energy necessary
to pass over the barrier separating the minima
is so high that the doubling of the levels is
unobservably small. In the case of ammonia,
however, the height of the barrier is only about
2070 cm ' and the effect assumes importance. An
exact treatment of the problem, even neglecting
rotation interactions, will involve all of the
normal coordinates and appears to be too con&-

plex for our present methods. An approximation
which uses only the one coordinate q3 may be
justified on the following grounds. The potential
is actually a function of the four normal coordi-
nates and possesses two equilibrium positions
between which there exists a low pass. In general
this pass can be reached by following a path
v hich corresponds to a certain combination of the
coordinates. Now in the present case, the coordi-
nates of the perpendicular vibrations, g2 and q4,

clearly do not lead towards the pass since they
are essentially off axis motions. The coordinate
qi, which defines a motion in which the hydrogen
nuclei move almost exactly towards or away
from the nitrogen nucleus, does not materially
help the system to go from one minimum to the
other. 1'his conclusion is verified by the observa-
tion that the doublet separation f'or the excited
state vi is only slightly greater than that of the
normal state. The coordinate q3, on the other
hand, where the hydrogens move perpendicular
to the N —H bonds, would seem to lead nearly
directly towards the pass, and through this
inotion, the molecule may transform from the one
equilibrium configuration to the other. Experi-
mentally the doublet separation of the excited
state v3 is about 50 times larger than that of the
ground state. We shall accordingly assume that
the motion q3 may be dissociated from the other
normal coordinates. In effect this means that we
divide the potential function into two parts, one

of which depends upon gi. , q2 and q4 and the other
upon q3. This latter function will be represented
by a symmetrical curve having two minima.

On this basis a solution of the problem has been
given by Dennison and Uhlenbeck'4 using the
K-K-8 method of approximation. They found
that for levels lying well under the barrier the
doublet separation 6 for a pair of levels with the
average energy E is given by 5/hv = 1/~A2 where
hv is the energy difference between pairs of
doublets and

p &1

A=exp (1/h))l L2p(V —E)]id~ .

NH3 ND3

0,
0,
1,
1,
2s
20
3g
3Q
4

CALC.

0
0.83

935
961

1610
1870
2360
2840

oss.

0
0.66

932.4
968.1

1597.5
1910
2380

CALC.

0
&0.2
746.0
748.5

1379
1434
1852
2140

oss.

0

745.6
749.0

135&
1429
1830
2113
2495
2868

They found that the function depends strongly
upon the distance between the ivinima and upon
the barrier height but was quite insensitive to
other details of' the potential curve. Their
estimate of the height of the NH3 pyramid was
0.38)&10 cm. The wave functions of the levels
are successively even and odd with respect to
the two minima and it is to be noted that in any
stationary state of the system the probability of
finding the molecule in any one of the two
minima is just 50 percent.

A very interesting exact solution of a one-
dimensional system having a double minimum
has been found by Manning'~ and applied to the
NH3 and NDS molecules. Manning used the
potential V= —A sech' (r/2p)+B sech' (r/2p).
This function is symmetrical and has minima at
&ra where, sech' (r0/2p) =A/2B. The height of
the barrier, at r=o, is (2B A)'/4B abov—e the
minimum. While this potential function has the
correct general form, there is no reason to
suppose that it represents the actual potential of
ammonia. Since, however, the splitting of the

TAsLE VII. Levels for v3 and its overtones.
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levels has been shown to be quite insensitive to
the details of the potential we might suppose that
it will give a good description of the energy levels.
That this is indeed the ease may be seen in

Table VII where we compare the calculated and
observed levels for v3 and its overtones. The
evaluation of the eigenvalues of Manning's
potential is very laborious and we give here the
energy levels as he published them. These employ
the following values for the constants, A = 109,619
cm-' 8=66,551 cm ' 8~2cpp'/8=2. 885X10 '
en~. It is probable that a somewhat better
agreement might be achieved through a further
adjustment of the constants. The quantity p
represents the reduced mass for the vibration in

question. Manning considered that the motion
was principally of the valence type, the hydrogen
atoms moving perpendicularly to the N —H
bonds, and he took p. =4.60X10 "g. From this
assumption the equilibrium height of the am-
nionia pyramid may be deduced to 0.37&10 '
cm. Manning points out that the reduced mass
will vary with the amplitude of the motion and at
the center of the barrier where r =0, p, =4.07
&10 "-' g. If this were the mass the calculated
height of the pyramid would turn out to be
0.40&10—' cm. It seems probable that these two
values represent upper and lower. limits. It will

be remembered that the height as found from
the line spacing of NH3 and ND3 bands was
0.377 & 10 '. Unfortunately even this value is not
too accurately determined since it is a sensitive
function of the spacings.

The energy levels of ND3 may be calculated as
soon as a reduced mass for the motion is chosen.
The constants A and 8 are unchanged and
Alarming takes Ss'cpp'/k=4. 899X10 '. The
agreement with the experimental levels is re-
markably good and might be still further im-

proved by slightly altering the values of the
constants. In our opinion, however, such refine-
ments would not be particularly valuable since
the real difficulty is that the system cannot be so
simply treated by means of a one-dimensional
model. The potential is actually a function of four
coordinates and the wave equation is not
rigorously separable.

The experimental observations w'hich are listed
in Table VII have been taken from several
sources; the lower levels of NH3 are from the

work of Sheng, Barker and Dennison"' while the
values of 2, and 3, for NH3 come from the studies
by Benedict" of the ultraviolet absorption bands.
Benedict also determined many of the other
levels of NH3 and ND3 and his results are in
substantial agreement with those quoted here.

A recent investigation" of the fine structure of
the fundamental v3 of NH3 has shown that the ro-
tation lines are not single, as predicted by the
simple theory, but consist of closely spaced
multiplets. The data may be accurately repro-
duced by assuming that the usual rotational
energy W~ ——(J'+J)h'/22 +E'h'(-,' C—-', A) is
augmented by a bW'which is a linear function of
(J'+J) and E'. This means that the rotation-
vibration interaction may be accounted for by
replacing the true moments by effective moments
of inertia. Since the coefFicient of X' is not the
same in the initial and final states, a line, say the
J~J—1 line, will consist of J—1 components
corresponding to the possible values for X. The
observations yield the following results for the
energy correction 6$' for the states 1„1,and 2, :

(bW) i,/bc= 0.113(J'+J)—0.267E'-',

(bW) io/kc= —0.062(J'-+ J) —0.030E'-,
(5W)2,/bc= 0.24 (J"-+J)—0.54E'.

Qualitatively, these values may be readily'
understood. Thus when J=X the molecule is
rotating about its symmetry axis and the
centrifugal force will tend to lower the barrier
which separates the two equal minima. This
means that the doublet spacing of the two states 1,
and 1, should increase, i.e. , [(bW) i,—(8W) i,jr=a
must be positive. On the other hand, w'hen X=0,
the molecule rotates about a line perpendicular to
the symmetry axis, and the potential barrier
w'ill be raised by the centrifugal force. Thus
[(8W) &o

—(5W) &,jx=o must be negative. It will be
seen that these predictions are indeed verified.
Sheng, Barker and Dennison have attempted a
semiquantitative analysis of the problem which is
based upon the centrifugal force distortion of the
Manning potential. Their calculated values for
bg are in fair agreement with the experimental
values. A complete, quantitative discussion of the
phenomenon appears to be quite di%cult since it
apparently will involve certain details of the
interaction between the various modes of oscil-
lation which are at present not known.
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I HE i4'IETHYL HALIDEs TABLE VI II. Fundamental frequencies of @methyl kalides.

The methyl halide molecule may be repre-
sented by a model in which the methyl group has
the form of a regular pyramid while the halogen
nucleus is situated along the axis of the pyramid
beyond the carbon nucleus. These molecules

belong to the class of symmetrical rotators and,
since they possess permanent electric moments,

they should have pure rotation spectra consisting
of lines with the spacing k/4~2A. These lines will

lie in the far infra-red (say from 200 or 300&

towards longer wave-lengths) and have not as yet
been observed. There exist six normal modes of
~ibration (see reference 1, p. 302); three be-

longing to one symmetry class and three to
another. These symmetry classes are very similar
to those of the molecule PX3 and will be called

~~
and J . In the first of them the nuclei move

symmetrically with respect to the molecular axis
and the change of the electric moment is along
the axis. We designate the

~~
frequencies with odd

subscripts, vt, v3 and v,;~ The remaining fre-

quencies v~, v4 and v6 are such that the displace-
ments of the halogen nucleus, the carbon nucleus
and the center of gravity of the hydrogen nuclei

are perpendicular to the molecular axis.
The vibration spectra of the methyl halides as

observed by Bennett and Meyer' and by Barker
and Plyler'~ exhibit three J bands which may be
readily identified with v~, v4 and v6. There are,
however, four ',

~
type bands. Of these one may

conclude that the two lowest ones are surely v3

ind v; since they are in about the positions one
would expect and show a reasonable behavior in

passing along the series of the methyl halides.
The two remaining

~~
bands lie close to 2900 cm ',

are of about equal intensity and are separated
from each other by about 100 cm '. A.del and
Barker" put forward the reasonable hypothesis
that the frequency v& resonates strongly with the
parallel component of 2 v4 which falls at about this

place. There appears to be no very certain way of
obtaining the true value of v~ short of an analysis
of the complete spectrum including many over-
tone bands. From a consideration of the positions
of the two resonating levels with respect to twice
the frequency v4, Linnett" estimates the probable
value of v~. We shall adopt his figures and have
included them in Table VIII which lists the

V1

V3

Vq

V2

V4

V6

CH3F

2862
1460
1048
2987
1476
1200

CHsC1

2920
1356
732

3045
1460
1020

CH3Br

2930
1305
610

3061
1450
957

CH31

2940
1252
532

3074
1445
885

fundamental frequencies of the naethyl halides.
The fine structure of the parallel bands is

normal in all respects and the spacing of the lines

yields A, the moment of inertia about a line

perpendicular to the molecular axis. Unfortu-
nately this spacing is so small that, except for
meth' 1 fluoride, it has not been accurately
measured. The observations of Bennett and
Meyer on the band v; of methyl fluoride when

corrected to give the Bo of the normal state lead
to the value A =32.94)&10 " for that molecule.

A knowledge of A is of course not sufficient to
determine the molecular dimensions without
additional assumptions regarding the niethyl
group. It will appear when we calculate the
moment of inertia C that the CH3 group in the
methyl halides probably differs only slightly from
i ts form in the methane molecule. We sha 1 1

assume that the C —H distance is uncha. nged
throughout the methyl halide series and is equal
to its value in methane, namely, 1.093)(10 ' cm.
The halide-carbon-hydrogen angle would be
equal to about 109.5' if the structure of the CHd

group were the same as in methane while if the
CH3 were coplanar, as might be expected for the
ion, the angle would be 90'. Linnett estimates
that this angle is proba, bly in the neighborhood of
107.5' and we shall also choose this value for all
the methyl halides. The F—C distance may now
be calculated to be 1.3963.. The electron di8rac-
tion measurements" are in good agreement,
yielding the value 1.42+0.02A.

The spectroscopic measurements of the mo-

ment of inertia 3 of the remaining methyl halides
are not very accurate. Barker and Plyler obtain
A for CH3C1 to be about 50)&10 " while the
doublet separation of the positive and negative
branches of the paralle) bands of CH38r and
CHBI leads to the estimates 89 and 99X10 ",
respectively. It would appear that a more reliable
procedure is to make use of the electron diRrac-
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TABLE IX. Moments of inertia of methyL halides.

CH4
CHSF
eH,CI
CH38r
CHII

«-~DrsT

1.093
1.40
1.71
1.90
2.2

5.33
32.94
58.3
84.3

118

5.33
5.49
5.50
5.48
5.57

tion data on the carbon-halogen distance as has
been done by Sutherland4' and by Linnett. " In
Table IX we present the most probable values of
the moments of inertia as they are now known.

The fine structure of the perpendicular bands
has been mapped by Bennett and Meyer and
found to consist of a uniformly spaced series of
lines which may be identiFied with the zero
branch lines described in Part I. Every third line
is enhanced by the factor 2 due to the spin of the
hydrogen nuclei. The positive and negative
branches associated with the zero branches com-
bine to form a general background of absorption.
The spacing of the zero branch lines varies from
one perpendicular band to the next; a phenom-
enon which is caused by the interaction between
the rotation and the internal angular momentum
associated with the vibration. Thus in methyl
Auoride, hv~=7. 5, Av4=11.5 and hv6=5. 65 cm '.
Just as in the case of the ammonia mole-
cule, the spacing of the zero branch lines is

[(1—f';)/C —1/A jk/4s2 where l;k is the internal
angular momentum. Johnston and Dennison'-'

have shown that the sum of the g; for all three
perpendicular bands is equal to C/2A and thus
the sum of the spacings Zh p, is (3/C —7/2A) h/4s '-.

From the observed Zhv;, which for the series of
molecules CH3F to CH3I is 24.65, 27.15, 28.32
and 28.5 cm ', respectively, together with the
values of A, we may calculate the moments of
inertia C. These are given in the last column of
Table IX. It is seen that they are nearly equal to
the moment of inertia of methane which will be
derived in the next section of this article. The
fact that they are a little larger would tend to
verify the assumption that the X—C —H angle
is indeed somewhat less than the tetrahedral
angle. In fact, the calculated value of C based
upon a C —H distance of 1.093A and an X—C —H
angle of 107.5' is 5.46&(10 ".Actually, however,
we do not believe that the experimental data are

known with sufficient accuracy to be able ade-
quately to substantiate this conclusion.

The analytical problem of finding the normal
vibrations of the Z YX3 molecule has been solved
by Rosenthal and Voge. 44 The general potential
function contains twelve constants and the six
frequencies are given in terms of these together
with the masses and relative dimensions of the
molecule. It is clearly impossible in the case of
the methyl halides to evaluate the twelve con-
stants of the general potential function from the
six fundamental frequencies and attempts have
been made by Sutherland and Dennison, 4' by
Slawsky and Dennison" and by Linnett" to
introduce a physically plausible potential func-
tion which will contain a fewer number of con-
stants. Before describing these we remark that
here, as in the preceding molecules which have
been studied, we have the ever present difficulty
that the data which are known are the positions
of the fundamentals rather than the true normal
frequencies. This means that any predictions of
frequencies which will be made, may well contain
errors of the magnitude of the anharmonic
contributions and that the values of the potential
constants will be correspondingly falsified. We
shall make no attempt to estimate the normal
frequencies themselves. Whenever the spectra of
the isotopic molecules containing deuterium shall
have been measured, it will be possible to make a
solution which follows that made in the case of
the ammonia molecule.

The potential function used by Slawsky
and Dennison and by Linnett is based upon
the following reasoning. (The Sutherland and
Dennison discussion, although quite satisfactory,
treats only the

~~
frequencies. ) Various investi-

gations" "have shown that molecules containing
hydrogen atoms and one other atom such as
H20, NH3 and CH4 possess potential functions
which are nearly of the valence type, that is, the
potential depends principally upon the squares of
the displacements along the bonds and upon the
squares of the changes in the bond angles. On the
other hand, molecules containing several heavy
atoms, as for example CCI4, definitely cannot be
represented by means of a valence potential. It is
therefore reasonable to assume that the potential
of the methyl halide molecules consists of a
valence potential which applies to the methyl
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group and of a»o»valence potential which
describes the forces binding the halogen to the
methyl group. Analytically this may be ex-
pressed in the follov ing manner through the use
of five arbitrary constants. Let fir;, ( = 1, 2, 3), be
the change in distance between a hydrogen
nucleus and the carbon nucleus and let bxo be the
change in distance between the carbon and the
halogen nucleus. bu; is the change in one of the
three H —C —H bond angles and lip; is the change
in an H —C-halogen angle. It is convenient
dimensionally to introduce the normal C —H
distance, namely R, although this has no inHu-

ence upon the resulting frequencies.

The coordinates br, , bxo, fin; and lip; are
redundant and are not appropriate for an ana-
lytical treatment of the normal vibrations. How-

ever, the transformations which connect them
with the nine coordinates employed by Voge and
Rosenthal may be made and the explicit formulas
for calculating the frequencies in terms of the
five potential constants k», k2, k3, k4 and c are
given by Slawsky and Dennison. "Although both
Slawsky and Dennison as well as Linnett use the
same form for the potentia1 they proceed along
different lines in the evaluation of the constants.
Since both methods contain certain virtues and
also certain disadvantages we shall describe the
results of each separately.

Slawsky and Dennison start with the as-
sumption that the potential constants which
relate to the CH3 group, namely k~ and k2, will

remain approximately the same throughout the
series and that they mill have the same value that
t hey have in CH4. The four frequencies of
methane may be represented fairly satisfactorily
by a valence type of potential with ki =4.878 &10'
and k2 ——0.443&10' dynes per cm. The average
deviation between the calculated and the ob-
served frequencies is only 1.5 percent. Consider
first the perpendicular frequencies of the methyl
halides. These are functions of ki, k2 and k3 only.
If k~ and k2 are assumed to have the values which
they possess in methane, there remains but one
constant and this was adjusted by substituting
the observed value of v6 into the equation. In this
way k3 was found to be 0.810, 0.596, 0.536 and

0.463&(10' for the series CH3F to CH3I. The
remaining frequenCieS v2 and v4 Were then CalCu-

lated and a surprisingly good agreement with the
experimental figures resulted. The maximum
deviation was 1.7 percent while the average was
only 0.5 percent. The motion corresponding to
the perpendicular frequencies is completely speci-
fied by k&, k2 and k3 and consequently the internal
angular momenta, the f; and the spacing of the
zero branch lines hv; for each of the perpendicular
bands »say be calculated. The resulting agreement
with the experimental values is again very good,
particularlv when one remembers that the j; are
proportional to squares of the potential constants.
As a typical example of the figures, the Av2, hv4

and Av6 calculated for CH3F were 6.9, 12.0 and
5.5 cm ' whereas the corresponding observed
values are 7.5, 11.5 and 5.6 cm '.

The treatment of the parallel frequencies is less
satisfactory. These are functions of all five
constants and the process employed was first to
substitute the ki, k2 and k3 already found. The
remaining constants k4 and c were then de-
termined with the aid of the observed frequencies

» and v:. The final frequency v& could then be
computed. One difficulty which appea. red upo»
applying the method was that in the case of
CH3C1 and CH3I' the solutions for k4 and c were
complex. The nearest real numbers were taken
and the final agreement between the observed
and calculated frequencies was quite good with
a maximum deviation of 2.8 percent and a n~uch

smaller average deviation.
The advantage of the procedure just outli»ed

consists in its simplicity. The potential function,
with the two constants evaluated from metha. ne,
contains but three arbitrary parameters for each
methyl halide and with these the six frequencies
and the Av; may be calculated. The agreerne»ts
are good. The disadvantages lie in the fact. that
the assumptions are not completely fulfilled. The
fact that the methane frequencies cannot be
expressed exactly with a valence type potential
makes it almost certain that our potential, which
is of the valence form as far as the CH3 group is
concerned, cannot be rigorously correct. This
criticism of course applies equally to Linnett's
treatment since he uses the same potential form.
The second difFiculty lies with the assumption of
the invariance of the constants k~ and k~ through-



I XF RA —RED SPECTRA OF POLYATOM I C MOLECL&LES

TAM, E X. Constants for methyl hehde molecgles.

CHIF
CH3Cl
CHIBr
CHBI

ky I"z

4.7i 0.433 0.792 —0.594 5.64
4.90 0.438 0.587 —0.325 3.35
4.95 0.432 0.529 —0.325 2.83
5.00 0.432 0.460 —0.293 2.32

out the methyl halides. A study of the calculated
frequency v2 shows that in going from CHSF to
CH3I this decreases by 3 cm '. This is a mass
eA'ect due to the changing halogen atom and
depends essentially only upon the assumption of
the invariance of ki, . Actually the observed v~

increases by 87 cm '. This can be understood only
if k~ increases by about 6 percent in going from
CH~F to CH3I. Lastly, a comparison of the value
of the constant c mith the values obtained by
Sutherland and Dennison and by Linnett indi-
cates strongly that the above method of finding
both cand k4 is probably not an accurate one. The
unsatisfactoriness of this determination of c and
k4 is emphasized by the fact that the original
solution led to complex values.

The method which Linnett employs consists in

evaluating the five constants kz, kg, k3, k4 and c
for each of the methyl halides separately by
using the Ave best known frequencies, namely v&,

v4, v6, v3 and v~. It is then possible to calculate the
remaining frequency v& and he obtains in every
case a very good check with the experimental
value. The advantage of this procedure is
that the potential constants so obtained are
undoubtedly more accurate than those found by
Slawsky and Dennison and should constitute a
better description of the molecule. Ke list these
constants in units of 10' dynes per cm in Table X.

A study of the figures shows that the H —C —H
constant k2 is practically invariant throughout
the series but that kj increases by about 6 percent
as expected. From this increase Linnet t estimates,
by using Badger's rule, that the C —H distance
may decrease by about 0.01A. The values of
k&, k2 and k3 do not differ greatly from those
employed by Slawsky and Dennison and it is
thus reasonable to suppose that a recalculation of
the hv; would not essentially alter the numbers
previously obtained.

The only unsatisfactory point in this treatment
is that there exist so few independent checks

which might prove or disprove the solution. The
very good agreement between the calculated and
observed v~ is to a certain extent illusory since
under a potential of the valence type where,
moreover, k&)&k2, the frequency v& is determined
almost directly by the value of v2. In spite of this
remark we feel that the simplified potential
function with the values of the five constants
given above, must closely approximate to the
actual potential function of the methyl halide
molecules. A test of this belief may be made
e henever the experimental spectra of the deutero-
methyl halides are obtained.

METHANE

The methane molecule, the last of the series of
molecules to be discussed in this article, possesses
a very high degree of synimetry. The four
hydrogen nuclei occupy the corners of a regular
tetrahedron at whose center lies the carbon
nucleus. The symmetry of this arrangement leads
to many simplifications in the spectrum as well as
to a number of interesting features which are
characteristic of the degeneracies of the levels.
The system has nine degrees of internal freedom
but there are only four normal frequencies. These
may be described in the following manner. The
motion corresponding to v ~ is such tha. t the
hydrogen nuclei oscillate in phase along the radii
of the tetrahedron, that is, directly towards or
away from the carbon nucleus which itself
remains stationary. v& is a. single frequency and
the excited levels are nondegenerate. Clearly the
electric moment remains zero throughout the
motion and consequently the frequency mill be
inactive in the infra-red. It does appear very
strongly in the Raman spectrum, however, and
has been observed"' to fall at 2914.2 cm '.

The frequency v2 belongs to a diAerent sym-
metry class. The hydrogen nuclei move upon the
surface of the sphere which passes through the
four corners of the regular tetrahedron. The
normal vibration may be visualized as follows.
Two of the hydrogen nuclei, which we might
designate as 1 and 2, approach each other while
at the same time the nuclei 3 and 4 also approach
each other by an equal amount. All the displace-
ments are on the surface of the sphere. Clearly in

depicting the motion one might have chosen other
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pairs of nuclei, that is, 1 and 3, as well as 2 and 4,
to approach and recede from each other. Thus
each hydrogen nucleus moves harmonically along
a two-dimensional surface. This means that v2

will be a double root of the normal frequency
determinant. The excited levels will be degenerate
and it may easily be shown that, if n& is the
quantum number, the degree of degt:neracy is
equal to (n2+I) T.he carbon nucleus, as in the
vibration v~, does not take part in the motion and
the change of the electric moment is zero. Thus
v. will not give rise to absorption in the infra-red
spectrum. It is Raman active but since the
intensity depends only upon the oA diagonal
elements of the polarization tensor we might
expect it to be faint. It has, in fact, never been
observed experimentally, but its first overtone,
which resonates weakly with the intense Raman
line vI, has been measured'8 at 3071.5 cm '. From
the arguments which will be given concerning the
amount of anharmonicity involved in this vibra-
tion it will be estimated that v2 probably lies near
1500 cm '.

The remaining frequencies, v3 and v4, both
belong to the same symmetry class and are
active in the infra-red and in the Raman spectra.
They constitute the two strongest regions of
infra-red absorption and lie at 3018.4 and 1306.2
cm ', respectively. Since there is more than one
frequency belonging to the same symmetry class,
the displacements of the particles will depend
upon the potential constants. The motions corre-
sponding to v3 and v4 may, however, be described
as a linear combination of two limiting types of
motion. These are the motions which are charac-
teristic (I) of a tetrahedron X4 with no central
particle, and (2) of a central particle Y osciilating
against a rigid X4 tetrahedron. Analytically they
may be effected by setting the potential constant
e, which will be introduced shortly, equal to zero.
The first motion is such that two particles, say j.

and 2, are displaced directly towards each other
while the other pair, 3 and 4, are displaced
directly away from each other. By choosing other
pairs, for example 1 and 3 together with 2 and 4,
it is seen that the general motion will allow each
particle to oscillate harmonically in three di-
mensions. The second motion is one in which the
central Y particle vibrates harmonically within a
rigid tetrahedron. This is also a three-dimen-

sional harmonic oscillator. The weights of the
excited states of either v3 or v4 are equal to
-', (n, +I)(n;+2). It must be emphasized that
neither s 3 nor v4 possesses these limiting types of
motions but rather they are expressible as a
linear combination of them. The coefficients of
the linear combination are simple functions of the
potential constants.

The analytical problem of determining the
normal modes of vibration of the methane mole-
cule was first solved by Dennison" using a special
potential function which later investigations have
shown to be not very suitable. A solution which

employs the general potential function and hence
contains five constants, has been made by
Rosenthal. "We shall here sketch the discussion
which is presented in reference 32. The nine
internal coordinates will be chosen as follows.
Let q~, q2. ~ - g6 be the mutual displacements of the
X particles along the edges of the tetrahedron.
Let q~ and q2, q3 and q4, q~ and q6 relate to the
opposite edges of the tetrahedron. The remaining
coordinates x, y, s are defined as the components
of the vector displacement of the V particle with
respect to the center of gravity of the X4 particles.
It is convenient to let the x, y and s axes be the
lines which are perpendicular to the opposite
edges of the equilibrium tetrahedron X4, 1 and
2, 3 and 4, and 5 and 6, respectively.

The vibrational kinetic energy is given by the
expression

2T= p(x'+j'+z')+(Sm/8) Q q;-

—2(m/8) gP q;q&+2(m/4) (q&q&+ q3q4+ q;, q6),

where m and M are the masses of an X and Y par-
ticle, respectively, and where p =4m&/(4m+ M).
The potential energy contains five constants
which may be chosen so that

2 V =a(x'+y"-+s')+b g q,'+2c PP q;qI,
s i&k

+2(d —c) (qqq2+qsq4+qqqs)

+2e[x(q~ —q2) +y(q~ q4) +s(q& —
q&) $. —

The determinant whose roots fix the normal
frequencies is of course of ninth order but the
symmetry properties of the system allow it to be
factored into two first-order deterrninates, the
second of which is squared, and a second-order
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determinant which is cubed. Explicitly,

Xg ——(4b+ 4d+ 16c)/m,
) 2

——(b+d —2c)/m,
&&+&4——a/p+ 2(b —d)/m,

&s4 =2[a(b —d) —2e']/ym.

Ke shall discuss the problem of the evaluation
of the potential constants along the same lines as
those used in the case of the ammonia spectrum.
Mac%ood and Urey48 have observed the fre-
quency v~ in the Raman spectrum of both CH4
and CD4 and report the values 2914.2 and 2084.7
cm ', respectively. Since there is but a single
frequency belonging to this symmetry class,
the product rule becomes very simple and is
((uP) cHz/(cog) cn4 ——(m) D/(m) rr. We shall set
co&=(1+a&) u& and assume that for the isotopic
molecule &v~" = (1+coq*n ~/co~) ~ q*. A substitution of
the numbers yields the reasonable values
+~=0.0397 and coal

——3029.8 and 2143.2 cm—' for
( H4 and CD4.

The treatment of the frequency v2 differs but
slightly from that just given. Unfortunately this
frequency has not been observed directly, but its
first overtone, 2v2, appears in the Raman spec-
trum and has been measured by Mac&ood and
Urey. It will be convement to let 2coq ——(1+2a&)2v2

to indicate the fact that the anharmonic cor-
rection 4a2v~ is of the order of four times its value
for the fundamental. Substituting the experi-
mental values 2v2=3071.5 and 2108.1 cm ' for
CH4 and CD4, we obtain o.2= —0.0474 and
~~ ——1390.2 and 983.4 cm ' for the respective
molecules. The negative value for a2 is somewhat
surprising but perhaps understandable. The
motion v2 is such that as the hydrogen nuclei are
displaced from their positions of equilibrium they
approach the other hydrogen nuclei. This means
that the potential probably rises more steeply
than a parabola and hence the anharmonic cor-
rection to the energy would be positive rather
than negative as it usually is. An objection might
be made to our procedure for finding co2 based
upon the following grounds. 2v2 appears in the
Raman spectrum presumably because it is in
resonance interaction with vt and if this inter-
action is large enough appreciably to affect the
positions of the levels, our method would lose its
validity. We doubt if this is the case for, while the
difference 2v2 —

v& is 157.3 cm ' for CH4, it is only

23.4 cm ' for CD4. Such a small difference
suggests that the resonance interaction is weak,
otherwise it would more widely separate the
levels. The effect of resonance would be to raise
the 2v2 of CD& by a greater amount than the 2v2
for CH4 since the levels lie closer together. This
would tend to reduce the value of n2. Thus if we
could subtract the inHuence of the resonance, we
should make o.2 even more negative than the
value which we have calculated. There is no
certain way to obtain v2 from these data. B~.
assuming that the vibrational energy depends
upon n2 as (n2+1)cv2+X»(n2+1)' we may calcu-
late v2 if 2v2 and co2 are known. We find 1499.4
cm '. This is at best only an estimate, however,
since the energy function is undoubtedly more
complicated. Our method of finding co2 from 2v~

of CH4 and CD4 does not depend. upon this
assumption and should be reliable. Nevertheless,
it would be very desirable to determine v2 more
directly in order to check the somewhat unusual
negative value of n2.

The two active fundamental bands v3 and v4

were first observed by Cooley" who succeeded in
resolving and measuring their fine structure. A
redetermination of v4 under somewhat higher
dispersion by A. H. Nielsen and H. H. Nielsen"
is in substantial agreement as regards the band
center but reveals more detail of the fine struc-
ture. Cooley's data has been subjected to a
careful analysis by Childs" who concludes that
the band centers of v3 and v4 lie at (vacuum wave-
lengths) 3018.4 and 1306.2 cm ', respectively.
The fundamental bands v3 and v4 of CD4 have
been observed by A. H. Nielsen and H. H.
Nielsen" who place their centers at 2259.4 and
996.5 cm '. We let a&, = (1+a;)v; as before. The
four data on the fundamental bands v3 and vz

when set in the product rule (cv&a&4) cH4'/(cu&s&&) Gnat'

=(pm)cn4/(pm)cH4, yield one relation between
o, 3 and a4. A second equation connecting u~ and
n4 may be found from the internal angular mo-
mentum just as was done in the case of the
ammonia molecule. (The magnitude of the in-
ternal angular momentum and its dependence
upon the potential constants will be fu11y dis-
cussed later. ) The solution of these two equa, tions
is a3=0.0459 and 0.4=0.0393. The corresponding
values of the normal frequencies are then
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TABLE XI. The fundamental frequencies of deutero-~ethanes.

CH4

CH.,I~'

3029.8
2914.2
2914.Z

3067.0((
2948.5
29h'Z. l

2234,2'
2170.7
Z 179.6{i')

2189.2~

2128.2
Z141.I

2143.2
2084.7
20h'4. 7

1390.2
1499.4

22 2 =3071.5

1404.7 3

1476.7

1241.2 1393.1 JM

1332.9L', ?)

1259.7 l
IZ99.Z

983.4
1036.4

2r g=ZI08. I

3156.9
3018.4
30IE.4

3156.6 J 2283.6(i
3018.0 2210.1
3030.1 ZZ04. 6

2336.1G 3099.7M 3156.3I.
2260.1 2966.0 3017.8
ZZ55 2974.2 3020

2336.9J 3128.1])
2260.3 2992.0
2268'.6 3000

2336.9
2259.3
ZZ59.3

1357.6
1306.2
1306.Z

1352.0)) 1174.5 J.
1300.8 1144.7
1306.4 1156.0

1277.2G 1023.935 1126.3L
1231.6 994.4 1090.™(

IZ35.1 1035.7 10&0.2

1034.2 I i 1019.5 3
1004.2 987.4

N8'

1026.4
996.5
906.5

cog=3156.9, cv4=1357.6 for CH4 and ~3 ——2336.9,
~4 ——1026.4 for CD4.

The calculation of the potential constants may
now be perfornsed and leads to the following
figures:

a = 8.5681 X 10' dynes/cns, d = —0.4278,
b = 1.6468, e = —2.0104.
c=0.3584,

The sign of e is not directly determined but it
may be fixed by the fact that the forces are nearly
of the valence type. In the vibration v3, the
hydrogens move approximately along the bond
directions while in v4 they move approximately
perpendicular to them.

It may be of interest to calculate the normal
frequencies of the remaining isotopic molecules.
The necessary formulas have been derived by
Rosenthal. " The potential constants which are
employed in the Rosenthal formulas are linear
combinations of our constants. Ke list their
values below.

A = 8.5681 X 10' dynes/cm, D = 1.4216,
8=0.5186, E' =0.3406.
C=0.3048,

The molecules CHBD and CD3H possess the
same symmetry as the methyl halides and there
are accordingly six independent frequencies. It
was shown in reference 1, p. 304, that in going
from the FX4 molecule to the FX~Z molecule the
single frequence ~~ goes over to co~ while the

double frequency cu2 goes into the double fre-
quency cv4. The triple frequency cv3, however,
splits into two parts, the frequencies ~~ and res of
the YX3Z molecule. The remaining triple fre-
quency co4 splits into the single frequency co„.- and
the double frequency ~6.

The degeneracies of the levels are completely
lost in the molecule CH2D2 and there are nine
independent frequencies. In spite of this the
molecule still retains a number of symmetry
properties and the original ninth-order determi-
nant may be factored into one linear, two
quadratic and one quartic determinant. The
corresponding frequencies may be described as
follows. The linear term represents a torsional
type of motion for which there is no change of the
electric moment. It is accordingly inactive in the
infra-red and probably is very weak in the
Raman spectrum. The remaining frequencies are
all infra-red active. One of the quadratic determi-
nants gives rise to frequencies for which the
change of the electric moment lies along the axis
of least moment of inertia while the electric
moment for the other lies along the axis of
greatest moment of inertia. The four frequencies
of the quartic determinant represent motions
whose electric moment changes along the axis of
middle moment of inertia.

We have listed the frequencies of the isotopic
methane molecules in Table XI in the following
way. The first number is the calculated normal
frequency rv, while the number immediately
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below it is the calculated position of the band, v;.
The third number, which is ita1icized, is the
observed position of the band v;. The sources of
the v; of CH4 and CD4 have already been cited.
The v; of CHSD and the three frequencies of
CH2Dq at 1035.7, 1090.2 and 1235.1 cm ' are
taken from the work of Ginsburg and Barker. "
The remaining experimental val ues were obtained
by Mac&ood and Urey48 who examined the
Raman spectra of all the deutero-methanes and

by Benedict, Morikawa, Barnes and Taylor"' who

measured the infra-red spectra of the same
molecules under low dispersion. The assignments
are quite certain except perhaps in the case of
CHRD2.

The method of obtaining the calculated v;

from the normal frequencies ~; was the following.
The anharmonic factor a; of CH4 was multiplied

by the ratio of the normal frequency of the mole-
cule in question to the normal frequency of
CH4 to find the appropriate 0.; to be used. Then
v;=co;/(1+a;). This method is surely of very
doubtful validity, particularly in the case of
CDIH2 where the normal vibrations are quite
different from those of CH4. The method for
estimating the values of v; in the column u~ would

appear to be so unreliable for CH3D, CH2D2 and
(. D3H that we have omitted them. The agree-
ment between the calculated and observed v; is,
on the whole, very satisfactory and quite as good
as could be expected under the circumstances. *

The fine structure of the fundamental bands v3

and v4 was resolved and measured by Cooley. "
The high frequency band exhibits a very regular
structure consisting of a positive, negative and a
zero branch. Cooley's data have recently been
subjected to a careful re-examination by Childs"
who concludes that the average spacing of the
lines in this band is equal to 9.93 cm '. The low

frequency fundamental v4 resembles v3 in that it
also possesses a positive, negative and zero

~A calculation of the potential constants of methane
was made by Dennison and* Johnston, reference 56, which
divers from the one we have given in that the positions of
the fundamental bands, rather than the normal frequen-
cies, were employed. The potential constants, A =7.670,
8=0.476, C=0.341, a~1.278 and 8=0.313)(10 diverge
considerably from those we obtained. On the other hand,
the calculated frequencies of the isotopic molecules are
quite close to our calculated w;. This example seems to show
that the efkct of the anharmonicity may be approximately
absorbed by using what may be called "effective" values
of the potential constants.

branch. The mean line spacing is however smaller
5.74 cm ', and the lines themselves are less
regular. In particular, the lines of the negative
branch are clearly not single but multiple. The
spread of the multiplets and the number of
members of each multiplet, increases with the
distance of the line from the band center. These
effects, which are very clearly shown in the
measurements of v4 by A. H. Nielsen and H. H.
5 ielsen, will be discussed later in this article. For
the present we shall ignore them and consider the
lines to be both single and regularly spaced.

The explanation of the fact that the line

spacing in the two fundamentals is not the same
was first given by Teller" and parallels the dis-
cussion of the line spacing in the perpendicular
bands of molecules having axial symmetry. The
normal modes of vibration corresponding to
either v~ or v4 are degenerate and may be de-
scribed as a three-dimensional harmonic oscil-
lation. This motion wi11 in general possess an
internal angular momentum of magnitude g;k
which has the quantum-vectorial properties of
a spin of magnitude ik, that is, it may orient
itself parallel, perpendicular or antiparallel to the
total angular momentum Jk of the system. The
effect of the coupling between the internal and
the total angular momentum is to split the
rotational levels which would otherwise be single
and equal to B;J(J+1) into three levels corre-
sponding to the three respective orientations of
g;k. These are,

W/hc =B~J(J+1)—2Jl;B;,
W/hc =B;J(J+1),
W /h=cB; J( J+1)+2( J+1) lB,.

B,=h/8s'A;c, where A, is the e8ective moment
of inertia for the state v;. We have omitted a
constant which is additive to all three terms and
which is equal to (fP 2(~)B;—

The selection rules are such that in going from
J-+J+1 (giving the positive branch in ab-
sorption) a transition is made from the ground
state, where 1 =0 and W/hc=BOJ(J+1), to the
hrst of the excited states listed above. When
J~J, a transition is made to the second state and
when J—+J—1 a transition is made to the third
state. Applying these rules one finds that the
band should present a normal appearance with a
positive, negative and zero branch but that
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TABLE XII. Symmetry characters of v~ and v4 for methane.

e;, (i=3,4) CHARACTER

A1
F~
A1+E+F2
A1+ F1+2F2
2A1+2E+ F1+2F2
A1+E+2 F1+4F2
3A1+A 2+3E+2F1+4F2

the mean spacing of the lines should be equal to
(B'+Bo 2f''Bi)—=2Bo(1—f';). The coefficient of
J' (the convergence factor), is (B; Bo).—

The internal angular momentum f;k is of
course determined by the vibratory motion v;

and will be a function of the potential constants.
The formula connecting these quantities has been
derived by Johnston and Dennison" and is

where

i=3, 4. The sum, (3+(4, is independent of the
potential constants, as has been remarked by
Teller, and in the present case is equal to 2.
Childs, from his analysis of the Cooley data,
comes to the conclusion that the most probable
value of Bo is 5.252 cm ' and that &3=0.05 and

f4 ——0.45. These results may be checked from

independent sources. The Raman rotational fine

structure of v3 together with the infra-red fine

structure of the same band yields the very con-
cordant result of (3=0.048.

If Bo——5.252 cm ', the effective moment of
inertia Ao of the normal state of CH4 becomes
5.328&10 ".If we neglect the effect of the zero-

point vibration upon the rotational energy, that
-is, if Ao is assumed to be the equilibrium moment
of inertia, the C —H distance may immediately
be calculated to be 1.0927)(10 ' cm. Ginsburg
and Barker" have measured the fine structure
of a parallel band of CH3D. Their data serve to
determine Bo——k/8~'Ac=3. 8"/9 cm ' where A is
the moment of inertia about an axis which is
perpendicular to the symmetry axis. Childs and
Jahn" have recently observed an overtone band
of CH3D whose center lies at 9020.84 cm '.
They find that 80= 3.878, in excellent agreement
with the earlier measurements. This datum fixes
the moment of inertia A to be 7.215 X10 4' and,

A1, Ae

A1 A1 A2 E
Ag A1 E

A1+A 2+E

F2

Ft

F2
F2 F1

F1+F2 F1+F2
A1+E+F1+F2 A2+E+F1+F2

A1+E+F1+F2

~ Childs and Jahn believe that the difFerence between
these determinations is real. They quite rightly remark
that such a difFerence might well exist since the quantity
which is measured is the efFective and not the equilibrium
moment of inertia.

assuming a regular tetrahedral structure for the
molecule, we find r=1.0934A. The agreement
between these two independent determinations
of the C —H distance is, in our opinion, remark-
ably good and seems to argue strongly for the
essential correctness of the measurements and
their analysis. * We shall adopt 1.093A as the
most probable value of the C —H distance.

The fine structure of the fundamental bands
v3 and v4 of CD4 have been mapped experi-
mentally by A. H. Nielsen and H. H. Nielsen"
who report for the average line spacings hv3 ——4.52
cm ' and b, v4 ——3.42. The sum of these spacings
is equal to 38 and thus the moment of inertia
from these data is 10.57)&10 "and ro ——j..089A.
The agreement is again satisfactory. The lines
of the band v4 fulfill our assumption of single,
regularly spaced lines even less well than the
lines in the corresponding band of CH4 and
consequently these data are perhaps somewhat
less suitable for making a precise evaluation of re.
Knowing the potential constants of methane, it
is possible to calculate the internal angular
momentum associated with the vibrations v3

and i4. We obtain t', =0.168 and f4 0 33——2 a.nd
thus the line spacings should be Av3=4. 40 and
Av4 ——3.54 cm '. The differences between the
calculated and observed values are not much
greater than the experimental errors and we

regard the agreement to be real and significant.
The original measurements of Cooley showed

that the lines of the fundamental band v4 were
complex. The more recent work of A. H. Nielsen
and H. H. Nielsen succeeded in resolving the fine
structure even further and it appears that each
line is in reality a multiplet. The number of
components and their spread increases as one
proceeds away from the band center and the

TABLE XIII. Multip/ication tabLe for symmetry characters.
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lines of the negative branch are more affected
than those of the positive branch. A beautiful
and satisfactory explanation of this phenomenon
has been given in a series of papers by Jahn"
and by Childs and Jahn" and an extension of
the theory has recently been published by
Shaffer, Nielsen and Thomas. ~ The methods
which are used in calculating the perturbations
of the rotational levels are rather complicated
and we shall only sketch brieAy the underlying
ideas; referring the reader to the original papers
for more complete details.

Perhaps the best approach to the subject is
through a discussion of the symmetry characters
of the wave functions describing the levels.
These have been derived in explicit form for
the FX4 molecule by Tisza, "Jahn" and others.
I t will prove convenient to write the wave
function for the complete system as the product
of functions which describe the electronic, the
vibrational, the rotational, the tunnel and the nu-

clear spin contributions. Thus 4'= f.iPvPsPrPs.
This method of treating the symmetry characters
of the system is rigorous even though the wave
equation is only approximately separable. The
tetrahedral symmetry of the molecule imposes
the consequence that any part of the wave
function (for example Pr) possesses one of five

symmetry characters, A j., A 2, 8, I' j or F~.
A function having the character A~ is totally
symmetrical, that is, the wave function is un-

changed when any two of the four equivalent
particles are interchanged. A function with the
character A ~ is antisymmetrical and changes sign

upon an interchange of any two particles. Both
the states A ~ and A~ are single. The character 8,
on the other hand, represents two coincident
states. This degeneracy cannot be removed by
any perturbation, whatever its magnitude, pro-
viding it possesses tetrahedral symmetry. The
characters I'~ and I'2 are nearly alike and each
describes a state consisting of three coincident
levels which again cannot be separated by any
tetrahedral perturbation. We shall first discuss
the symmetry character of each portion of the
wave function separately and then obtain the
final symmetry through the use of multiplication
rules. In the case of CH4, since the protons must
obey Fermi-Dirac statistics, the. total wave func-
tion + must have the character A2 while in CD4,

the character must be Aj. since the deuterons
obey Bose-Einstein statistics.

The electronic wave function describing the
normal electronic state has the character A&.

This may be inferred from the intensities of the
fine structure lines of the band v3 or v4 when
taken in conjunction with the symmetry char-
acters of the rest of the wave function.

The vibrational function Pr will be set equal
to the product P~ifn~g~ig~4 where the number n;

TABLE XIV. Symmetry ckaracters for Pz.

CHARACTER

Ag
F2
E+F2
Ag+ Fl+ F2
Ag+E+Fg+ F2
E+Fj+2F2
A q+Aq+E+ Fl +2 F2
Ag+Eg2F&+2'

CHARACTER

8 Al.+2E+2Fj+2F2
9 Al+A2+E+2Fl. +3'

10 A, +A, +2E+2Ff,+3F
)1 Ag+2E+3F)+3'
12 2Ag+A2+2E+3Fg+3 F2
13 Ag+A2+2E+3F)+4 F2
14 AI+A2+3E+3Fl+4FP
15 2Ai+A i+2E+4Ff+4Fg

is the quantum number of the ith normal mode
of vibration. The function /~i, as one might
suspect because of the high symmetry of the
motion, possesses the character A i for all values
of the quantum number iii. The function /~2 has
the character Aj for n2 ——0 but the character F.
for n2 ——i. Thus the first excited state of the
vibration v2, although doubly degenerate, can
never be split into two separate levels by any
tetrahedral perturbation. The state n2 ——2 is a
triple state and has the character 8+A~. This
means that a tetrahedral perturbation has the
power to split this level into two levels, one
having the character E and the other the sym-
metrical character A~. The Raman line 2v2 at
3071.5 cm ' results from a transition to the sub-
level Ai of 2v2 since this, and not the sublevel E,
may resonate with the excited state v&. The state
n2=3 has the character 8+AI+A2. It may be
shown that the characters describing Pnifn2 will

contain only 8, A& and A2 and consequently the
frequency n&v&+n2v2 is always inactive in the
infra-red.

The Symmetry CharaeterS Of v3 and v4 are
exactly the same and are given in Table XII.
Active infra-red transitions may take place from
the ground state to any level with either the
character Fi or F2. Thus the overtone 4v3 will
consist of three nearly superimposed bands. The
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separation will depend upon the anharmonic
terms in the potential and in general mill be of
the usual order of magnitude of anharmonic
corrections.

In order to determine the characters of any
overtone level n«v«+n~v2+msv3+n4v4 it is only
necessary to know the multiplication table for
the characters. This is gi ven in Table XIII.
As an example, the character of the level v2+v3
is F«+Fg wh~le that of ~3+~4 is A«+8+F«+F. .

The symmetry characters of the wave func-
tions Ps describing the rotational levels have
likewise been given by Jahn and we reproduce
them in Table XIV. The rotational levels are
highly degenerate and, in the absence of any
perturbation have the weight (2J+1)'. Of this

quantity, one factor (2J+1), represents the
possible orientations of the angular momentum
vector Jk in space while the other factor, also
(25+1), gives the number of levels falling to-
gether by reason of the symmetry of the mole-

cule. Thus the level of J=3 is composed of the
states A «+ F«+ F2 and, while A « is single, F«and
F. are both triple, giving a weight of 7.

The symmetry character of a rotational-vibra-
tional level is at once obtained by multiplication.
As an example the state J=4 of the erst excited
vibrational state, n4= 1, is obtained by multiply-
ing the character A~+8+F~+F2 by the char-
acter F~ giving A ~+A ~+2F+3F,+4F2. The
vibration ~4 possesses an internal angular mo-
mentum 145 and this, as we have seen, splits
the rotational level into three levels according as
to whether (4k is parallel, perpendicular or anti-
parallel to Jh. Jahn gives tables which show the
way in which the symmetry characters follow
this division. For J=4, the level where the mo-
n&enta are parallel has the character A «+ F«+ F2.
According to the selection rules given earlier,
this may connect with the ground state J=3
~rh ich likewise has (and must have) the character
Aq+Fq+F~. The level (J=4) corresponding to
the perpendicular momenta is A2+8+F«+F2
and this connects with the ground state level
J=4. The level with antiparallel momenta is
2+F«+2F2 and connects with the ground level
of J=5.

The perturbation caused by the interaction
between the internal (i;A) and total (Jh) angular
momenta split the rotational level into three

parts. The result of this was that the lines of the
band do not have the spacing k/4''A but rather
(1 f—;)h/4s'A H.owever, the lines remain single
as before. An additional perturbation having
tetrahedral symmetry may break the level (J=4,
!~ angular momenta) A &+F~+F2 into three levels
with the respective characters A«, F«and F2.
Thus the line in question, the fourth line of the
positive branch, will divide into three com-
ponents. The other lines will split in exactly the
same fashion and it is clear why the degree of
multiplicity increases with the number of the
band line.

Jahn~ has pointed out that a resonance inter-
action between the rotational levels of the vibra-
tional state v2 and the rotational levels of v4 will

furnish exactly such a perturbation having tetra-
hedral symmetry. He has calculated explicitly
the eRect of these perturbations on the levels up
to and including J=10. The magnitude of the
energy changes depends upon the moment of
inertia, the internal angular momentum and
inversely upon the diRerence v& —v4 between the
band centers. Childs and Jahn" have determined
the intensity of the lines and plot the theoreti-
cally expected appearance of the fundamental
band v4. This resembles in almost every detail
the experimentally observed band obtained by
A. H. Nielsen and H. H. Nielsen. '"- The agree-
ment is very striking and furnishes a convincing
proof of the validity of the theory. XVe may
remark that our estimate of the position of the
fundamental v2 is slightly lower than that em-
ployed by Jahn. This would increase the amount
of the perturbation and also increase the dis-
symmetry between the positive and negative
branches. A study of the theoretical and experi-
mental curves indicates that such a change would
somewhat improve the quantitative agreement.

The perturbation employed by Jahn, namely
resonance interaction between the rotational
levels of v~ and v4, is not the only perturbation
having tetrahedral symmetry which would cause
the lines to split into multiplets, although it is
probably the predominant cause in the case of v4.

ShaRer, Nielsen and Thomas" have recently
completed an extensive and thorough study of
the perturbations which may aRect the vibration-
rotation levels. They calculate the energy changes
for a series of vibrational levels (those which
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give rise to the fundamental and the principal
overtone bands) caused by all the possible
resonance interactions as well as by the cubic
and quartic anharmonic terms in the potential.
The resulting expressions are very complicated
but, when taken in conjunction with further
experimental investigations of the fine structure
of the overtone bands, they should yield interest-
ing information concerning the methane molecule.

The weights of the rotational states, which
must be used in obtaining the intensities of the
fine structure lines, may be found through a
discussion of the symmetry characters of the
tunnel and nuclear spin wave functions. A tetra-
hedron described in a right-hand coordinate
system cannot be transformed into a tetrahedron
described in a left-hand coordinate system by
rotations alone. A finite displacement of the
particles is necessary which is similar to the
tunneling process in ammonia. The fact that
such a tunneling process exists will make each
level double. The doublet separation is unob-
servably small since the potential barrier is very
high. It may be shown that the wave function
Py describing one of the double levels has the
character A ~ while the other has the character A2.

The nuclear spin wave function fs has been
discussed by Kilson62 and we shall quote his
results. %hen the four equivalent particles have
the spin (-,')h, as is the case for protons, the
symmetry character of Ps is 5A~+Z+3F. The
total wave function +=/, ~PrfsPrfs must be

;~ntisymmetrical, that is, it must have the char-
acter A2. The number of ways in which this can
be realized may be counted readily by using the
multiplication table for the symmetry characters.
Thus in the normal state the weight of the Jth
rotational state is f(2J+ l.) where f takes on the
values 5, 3, 5, 1.1, 13 and 11 for J=O to 5,
respectively.

The nuclear spin wave function Ps for CD4
must represent (25+ 1)' = 8l states since the
deuteron has the spin k. The separations between
the 81 levels are of course far too small to be
observed spectroscopically since they depend
upon the weak interaction of the nuclear mag-
netic moments. The symmetry character of fs is
15A ~+6B+18Fand the complete wave function
must have the character A ~. This gives rise to a
diferent set of weights and f in the above ex-

pression is equal to 15, 18, 30, 51, 63 and 66 for
the states J=0 to 5. Thus the intensities of the
band lines of CD4 will differ somewhat from
those of CH4, particularly for those lines near
the band centers. Wilson has given tables from
which the weights of all the rotational levels for
both CH4 and CD4 may be obtained.
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