MICROWAVE SPECTRUM OF TRICHLOROACETONITRILE

BY A. SUNDARA RAJAN*

(Department of Physics, Muslim University, Aligarh) Received September 2, 1960

(Communicated by Putcha Venkateswarlu, F.A.sc.)

ABSTRACT

The microwave spectra of different isotopic species of trichloroacetonitrile—CCl₃³⁵CN, CCl₂³⁵Cl, CCl, CCl₂³⁵Cl₂³⁷CN and CCl₃³⁷CN—in the region 20,000–40,100 Mc./sec. have been studied both at room temperature and at low temperature. From the measurements of B₀ values of the symmetric tops, assuming the C-C and C-N bond distances, the other two parameters are determined. They are: C-Cl = 1.771 A, C-C-Cl = $108^{\circ} 52'$.

INTRODUCTION

THE microwave spectrum of CCl₃CN was reported earlier by Zeil and Pfrommer¹ and by Baker, Jenkins, Kenny and Sugden². Zeil and Pfrommer observed the transition $J = 6 \rightarrow 7$ and $8 \rightarrow 9$ for the CCl₃³⁵ CN molecule and calculated the C-C bond distance by assuming the other three parameters. The accuracy of their measurement of the lines was reported to be \pm 10 Mc./sec. Baker *et al.*, worked in the region 16,000–27,000 Mc./sec. and reported four lines corresponding to the transitions $J = 4 \rightarrow 5$ to $7 \rightarrow 8$ of CCl₃³⁵ CN and also a few lines corresponding to the transition $J = 6 \rightarrow 7$ of the slightly asymmetric top CCl₂³⁵Cl³⁷CN. The microwave spectra of heavy molecules like CCl₃CN which have low lying vibrational states³ become complicated as the lines due to the rotational transitions in the excited states will appear with good intensity and also may overlap with the lines in the ground state. As the earlier workers did not consider the possibility of the presence of lines in the excited vibrational states, it appeared that a reinvestigation of the spectrum at room temperature as well as at lower temperature would be necessary to properly identify the lines in the ground state from those in the excited states. The spectrum of other symmetric top

[•] Council of Scientific and Industrial Research Junior Research Fellow.

A. Sundara Rajan

isotopic species— $CCl_3^{37}CN$ was not observed earlier. A determination of the B₀ value of this along with that of $CCl_3^{35}CN$ is expected to enable one to determine the molecular parameters more accurately than otherwise. Therefore, a reinvestigation of the microwave spectra of different isotopic species of CCl_3CN was undertaken and the results obtained are reported in this paper.

EXPERIMENTAL METHODS

The sample of CCl₃CN was prepared starting from trichloroacetic acid by the method described by Pierce.^{3, 4} It was first distilled under low pressure from the mixture of trichloroamide and phosphorous pentoxide and later fractionally distilled. Before finally using it in the experiments, the sample was further purified by redistillation.

A 100 Kc. Stark Modulation Spectrograph,⁵ with a $10\frac{1}{2}$ ft. brass X-band Stark Cell made in the manner described by McAfee, Hughes and Wilson,⁶ was used to study the spectra of CCl₃CN. Line frequencies were measured using known appropriate spectral lines as secondary standards, details of measurements being the same as those given elsewhere.⁷ The line width and shape were greatly improved by cooling the cell either with freezing mixture or with dry ice. This enables one to distinguish the rotational transitions of the ground state from those of the excited vibrational states.

EXPERIMENTAL RESULTS

The molecule CCl₃CN is a symmetric top having 12 fundamental modes of vibration. The fundamental ν_8 has the frequency 163 cm.^{-1 3} Therefore, even at room temperature enough molecules can be expected to be in the excited states. At room temperature the lines were quite broad and most

of them showed three components, the central one being the most intense. As the cell was cooled, the component on the lower frequency side of the central one became stronger and the one on the higher frequency side became quite weak, sometimes even unobservable. Hence, two of the three lines observed for each transition have been therefore, attributed to the molecules in the excited vibrational states $v_5 = 1$ and $v_8 = 2$. However, when only two components were observed the one on the low frequency side became more intense at low temperature and it was therefore taken as belonging to the molecule in the ground vibrational state $v_8 = 1$. The recording of the transition $J = 11 \rightarrow 12$ of CCl₃³⁵CN showing the lines corresponding to $v_8 = 0$, $v_8 = 1$ and $v_8 = 2$ is shown in Fig. 1. The frequencies of the lines observed for the ground vibrational state are given in Table I while those for the excited states

Isotope	Transition	Frequency Mc./sec.	
CCl ₃ 35CN	$5 \rightarrow 6$ $6 \rightarrow 7$ $7 \rightarrow 8$ $8 \rightarrow 9$ $9 \rightarrow 10$ $10 \rightarrow 11$ $11 \rightarrow 12$	20,009 · 2 23,343 · 7 26,674 · 5 30,009 · 2 33,346 · 5 36,681 · 9 40,050 · 0*	
CCl ₂ ³⁵ Cl ³⁷ CN	$6 \rightarrow 7$ $7 \rightarrow 8$ $8 \rightarrow 9$ $9 \rightarrow 10$ $10 \rightarrow 11$ $11 \rightarrow 12$	23,111 · 9 26,394 · 8 29,695 · 1 32,999 · 9 36,301 · 8 39,600 · 0*	
CCl ⁸⁵ Cl ₂ ³⁷ CN	$7 \rightarrow 8$ $8 \rightarrow 9$ $9 \rightarrow 10$ $10 \rightarrow 11$ $11 \rightarrow 12$	26,115 · 9 29,400 · 0* 32,650 · 0* 35,900 · 0* 39,150 · 0*	
CCl ₃ ³⁷ CN	$7 \rightarrow 8 \\ 8 \rightarrow 9 \\ 9 \rightarrow 10 \\ 10 \rightarrow 11$	25,818 · 5 29,050 · 0* 32,279 · 5 35,499 · 4	

Table I

Frequencies of the observed transitions in the ground state

* Frequencies measured with a cavity wavemeter (± 20 Mc./sec.). A3

A. SUNDARA RAJAN

are given in Table II. The error involved in the measurements is probably around ± 1.0 Mc./sec.

TABL	ΕIJ	ľ
		-

Isotope	Transition	$v_8 = 1$ Mc./sec.	$v_s = 2$ Mc./sec.
CCl ₃ ³⁵ CN	5→6	20,017.1	20,028 · 9
	6→7	23,353 • 2	
	7→8	26,691 • 9	26,705•4
	8→9	30,027 • 4	30,035•0
	9→10	33,363 • 7	• •
	10→11	36,701 • 7	••
CCl ₂ ³⁵ Cl ³⁷ CN	6→7	23,127.3	••
	7→8	26,426.0	
	10->11	36,335 • 2	••
Cl ³⁵ Cl ₂ ³⁷ CN	7-→8	26,142.3	

Frequencies of the lines observed in the excited states

Baker et al.,² reported lines at 22914, 22992, 23055 and 23138 Mc./sec. and an unresolved group between 23080 and 23120 Mc./sec. which they attributed to sets of different asymmetric top transitions of the molecule $CCl_2{}^{35}Cl{}^{37}CN$ for $J = 6 \rightarrow 7$. The first four of these were not observed in the present experiments. An unresolved group between 23090 and 23135 Mc./sec. was observed, which is probably the same as the one between 23080 and 23120 Mc./sec. reported by Baker et al. This group appeared to have two broad envelopes, each of which probably have a number of unresolved lines. The maxima of these are at 23112 and 23127 Mc./sec. The first one became more intense than the second at low temperature. Similar results were obtained for other transitions of $CCl_2{}^{35}Cl^{37}CN$ and also of $CCl_{}^{37}CN$. The envelope having the maximum intensity at low temperature is taken as the one belonging to the molecule in the ground state while the other is taken as the one belonging to the excited state. The results obtained for these molecules are also included in Tables I and II.

The rotational constants B₀ for the molecules CCl₃³⁵CN and CCl₃³⁷CN have been obtained from the simple equation $v = 2 B_0 (J + 1)$ as the centrifugal stretching constants D_{J} and D_{JK} can be assumed to be zero since their effect on the spectra could not be observed for the lines measured. The B. values are given in Table III.

B ₀ (obs.) Mc.) sec.	B ₀ (cal.) Mc./sec.	I° _ð (obs.) amu A²	I°, (cal.) amu A ²
$1,667\cdot 3\pm 0\cdot 2$	1,667.6	303 · 17	303 · 11
1,613·8 ± 0·2	1,614 • 1	313.22	313-15
	$B_{0} (obs.) Mc. sec.$ $1,667 \cdot 3 \pm 0.2$ $1,613 \cdot 8 \pm 0.2$	B_0 (obs.) Mc./sec. B_0 (cal.) Mc./sec.1,667.3 \pm 0.21,667.61,613.8 \pm 0.21,614.1	B_0 (obs.) Mc./sec. B_0 (cal.) Mc./sec. I°_{b} (obs.) amu A2 $1,667 \cdot 3 \pm 0.2$ $1,667 \cdot 6$ $303 \cdot 17$ $1,613 \cdot 8 \pm 0.2$ $1,614 \cdot 1$ $313 \cdot 22$

	TABLE I	II		
Rotational	Constants	anð	I°ъ	Values

MOLECULAR STRUCTURE

Zeil and Pfrommer,¹ assuming the three parameters C-Cl, C-N and angle C-C-Cl, gave the value of C-C as 1.47 A. Baker et al.,² with the B value of CCl₃³⁵CN, the computed values of A,B, C for the CCl₂³⁵Cl³² and the assumed distance of C-N suggested the structure as C-N = (1.158 A), C-C = 1.46 A, C-Cl = 1.77 A and angle $Cl-C-Cl = 109^{\circ} 56'$. The structure had also been determined by thermodynamic⁸ and electron diffraction⁹ methods.

Molecular Structure							
	(C-Cl (A)	CCCl	C-C (A)	C-N (A)	Ref.	
This study	•••	1.771	108° 52′	(1•46)	(1 · 158)	••	
Zeil et al.	۰.	(1.767)	(110° 24′) [*]	1 • 47	(1 · 158)	1	
Baker et al.	••	(1 • 77)	109° 56′*	1 • 46	(1 · 158)	2	
Janz et al.	•••	1 •761	112°	1•48	(1.158)	8	
Rao, C. N. R	•••	1 • 76 ₅	109° 30′	1 • 46 ₅	1 • 16 ₅	9	

* This angle refers to Cl-C-Cl.

The parameters given in brackets are the assumed values.

A. SUNDARA RAJAN

As only two B_0 values for the symmetric top species were measured and as the asymmetric top lines were not resolved, it was necessary to assume two parameters to determine the complete structure of this molecule. As the isotopic species studied involve only the substitution of chlorine isotopes, it was felt better to assume the bond distances of C-C and C-N to determine the other two—C-Cl and angle C-C-Cl. The C-N bond distance was taken to be 1.158 A, a value obtained in the case of similar molecules,^{10, 11} as it is known to be considerably independent of the substitution at the C atom. The C C distance is assumed to be 1.46 A as in CH₃CN. With these parameters, the other two were calculated and are given in Table IV along with those obtained by earlier workers. The B_0 values calculated for the symmetric tops CCl₃³⁵CN and CCl₃³⁷CN from these parameters are included in Table III.

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Dr. Putcha Venkateswarlu for suggesting this problem and for his guidance throughout the course of this work. He is also grateful to the Council of Scientific and Industrial Research for the award of a fellowship. Sincere thanks are also due to U.G.C. for a bulk grant to develop the Microwave and Radio-frequency Spectroscopy laboratories in this Department.

REFERENCES

1.	Zeil, W. and Pfrommer, J. F.	Z. Elektrochem., 1957, 61, 938.
2.	Baker, J. G., Jenkins, D. R., Kenny, C. N. and Sugden, T. M.	Trans. Faraday Soc., 1957, 53, 1397.
3.	Ultee, C. J. and Edgall, W. F.	J. Chem. Phys., 1957, 27, 543.
4.	Pierce	See reference 3.
5.	Gordy, W., Smith, W. V. and Trambarulo, R.	Microwave Spectroscopy, John Wiley & Sons, 1952.
6.	McAfee, Jr., K. B., Hughes, R. H. and Wilson, Jr., E. B.	Rev. Sci. Instrument., 1949, 20, 821.
7.	Sastry, K. V. L. N.	Proc. Ind. Acad. Sci., 1960, 51 A, 301.
8.	Janz, C. J. and Wait, Jr., S. C.	J. Chem. Phys., 1957, 26, 1766 L.
9.	Rao, C. N. R	J. Am. Chem. Soc., (to be published).
10.	Kessler, G., Ring, G., Trambarulo, R. and Gordy. W.	Phys. Rev., 1950, 79, 54.
11.	Sheridan, J. and Gordy, W.	J. Chem. Phys., 1952, 20, 591.