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The Infrared Spectrum of Carbon Dioxide. Part I
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(Received February 16, 1933)

Previous work by Fermi and by Dennison has shown that
the principal features of the infrared and Raman spectra of
carbon dioxide may be explained by taking account of the
first order perturbation terms in the potential energy
expression. It was not possible to predict the positions of
the levels with any high degree of accuracy, however. The
present paper extends this work by introducing a second
order perturbation. The formula for the second order
energy correction of a general linear symmetrical triatomic
molecule is initially computed. This formula is then
modified in order that it may be applicable to the carbon
dioxide molecule in which resonance degeneracy plays an
essential role. A review is made of the experimental data
which determine the positions of the carbon dioxide

vibrational energy levels. These include the results of a
recent investigation of absorption bands appearing in the
spectrum of Venus, as well as new and as yet unpublished
data found by Barker and Wu. In a11, twenty levels have
been found and out of these, eleven are required to
determine the anharmonic constants of the molecule. The
remaining nine levels may then be predicted, and their
positions are found to agree very accurately with the values
obtained experimentally. A table is given showing the
positions of a number of CO2 infrared bands which while

accessible to observation have not as yet been reported.
The recent work by Langseth and Nielsen on the Raman
spectrum of C02 is discussed.

INTRQDUcTIoN

' 'T is now well known that the molecule of car-
bon dioxide possesses a form which is both

linear and symmetrical, the carbon atom lying
midway between the two oxygens. The group of
normal vibrations of such a system constitute a
zeroth order approximate solution to the motion
which very satisfactorily explains the general
features of the infrared spectrum of the molecule.
The respective modes of vibration of the three
independent frequencies are indicated schemat-
ically in Fig. 1.

C

FIo. 1.

The first of these co~ corresponds to a sym-
metrical motion of the oxygen atoms, the carbon
atom remaining fixed at the center of mass. This
frequency is inactive in the infrared, but will ap-
pear strongly in the Raman spectrum and lies at
about 7.5p. In the second frequency cv2 the carbon

oscillates perpendicularly to the line joining the
oxygen atoms, while the distance between the
oxygens remains unchanged. cv2 is a double fre-

quency, active in the infrared, inactive in the
Raman spectrum and lies at about 15@.The un-

symmetrical vibration with frequency co3 is a
motion of the atoms along the figure axis of the
molecule in which the carbon moves relative to
the center of mass of the oxygens; where again
the distance between the lat ter remains un-

altered during the motion. This frequency which

is active in the infrared and inactive in the
Raman spectrum lies at about 4.7p.

As has been remarked above, this model fully
explains the principal observed features of the
spectrum. %hen, however, the infrared and
Raman spectra are examined more carefully, cer-
tain details appear which cannot be so simply
understood. The Raman spectrum, for example,
consists not of one line but of two lines of about
equal intensity in the region of 7.5p, . Moreover,
many of the combination bands in the infrared
deviate from the positions predicted by combina-
tion relations by rather large amounts (i.e., ap-
proximately 100 waves per cm).

These dif6culties have been completely ex-

plained by a theory proposed by Fermi' and

' E. Fermi, Zeits. f. Physik 7'1, 250 (1931).



SPECTRUM OI' CARBON D IOXI DE

somewhat amplified by Dennison. ' The explana-
tion depends upon the fact that in carbon dioxide
the frequency co& is almost exactly equal to 2or2.

The degeneracy thus introduced produces a first
order perturbation which on the one hand
changes the identity of the levels, allowing two
Raman lines rather than one to appear. On the
other hand, the perturbation yields a first order
correction to the energy (of the order of 100 waves
per centimeter) which accounts for the positions
of the combination bands.

The infrared and Raman spectra of the carbon
dioxide molecule are known with great accuracy,
the errors in the positions of the bands being in
the neighborhood of 1 or 2 waves per centimeter.
The positions of the combination bands predicted
by Fermi's theory fail to agree with the observed
positions by amounts of the order of 10 to 20
waves per centimeter. Clearly, these discrepan-
cies must be due to the second order corrections
to the energy of which no account was taken in
Fermi's theory. It is the purpose of the present
paper to introduce this second order correction,
and to show that with its aid the positions of the
observed lines may be predicted with an error no
greater than the experimental one. This proce-
dure will allow a determination of the anharmonic
force constants which will prove to be of great
importance in determining the general form of
the potential function of the carbon dioxide
molecule.

0 = 2n La)gm/2hg'q

p = 2n. [u,p/h j*r,
$ = 27rLQ)ap/hg's,

The Hamiltonian representing the vibrational
motion may be readily obtained. 4 The symmetry
of the molecule conditions that the Hamiltonian
must be an even function of s and r and inde-
pendent of q.'

In accordance with the series of approxima-
tions to be made on the system, the Hamiltonian
may be expanded in a power series in X, a param-
eter of smallness.

EI= IIO+ XIII+X'EI2.

These functions may be quite readily obtained:

ANALYSIS

In presenting the analysis we shall use the co-
ordinates q, z, r and p which were first introduced
and fully described by Dennison' in the discussion
of the molecule YX~. q measures the relative
separation of the oxygen atoms, s the displace-
ment of the carbon atom from the center of mass
of the oxygens measured parallel to the line of the
latter, while r and y are the polar coordinates of
the carbon in a plane at right angles to the line
of the oxygens, the origin of coordinates lying'
at the intersection.

It proves convenient to introduce the dimen-
sionless variables 0, &, p and p instead of q, s, r
and q which are related to them in the following
manner:

IIQ = (2~ /h) {2~2plr +~3P( +~2pp + (&2/p )pip }+ (h/2) {2&20 +~ p +4 8 }

XIII= (2@26/h)P, 2+h {(6/2)a2+aa +ha p +cog }

F12 = (~3/2&2I) p2Pt2+h {do4+ep +fP+ga2p2+ hog+'zp P'}

The first order perturbing energy )II& contains
two classes of terms. The first class represents the
fact that ~& is not exactly equal to 2~2, and is
proportional to the quantity 6 = ~& —2oo2. In
addition to these terms comes the contribution

' D. M. Dennison, Phys. Rev. 41, 304 {1932}.
' D. M. Dennison, Rev. Mod. Phys. 3, 280 (1931).
'A general treatment of the carbon dioxide molecule

would involve the use of a Hamiltonian containing
rotational coordinates in addition to the vibrational
coordinates. Such a treatment would allow us to obtain not
only the rotational energy, but also the interaction
between rotation and vibration. This problem wi11 be

from the anharmonic potential; namely, all those
terms cubic in the coordinates which fulfill the
necessary symmetry conditions.

The second order energy may likewise be
divided into two parts, the first of which

reported in a later paper; for the present we restrict
ourselves to predicting the centers of the absorption
bands.

~ Actually the symmetry of the system demands merely
that II shall be an even function of s and independent of y.
The fact that we take II to be an even function of r also
implies that we assume that II is analytic.
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([~q/2td2Igp'PP) embodies the circumstance that
for finite amplitudes of vibration, the molecule
deviates slightly from strict linearity. The second
part contains the quartic terms of the anharmonic
potential of vibration. The solution of the system
in zeroth and first approximations has been de-
scribed in detail elsewhere, ' and for our present
purpose it will suffice to add only a few points to
the results already obtained.

The solution of the zeroth order wave equation
may be written in the form

+(,)~& and +(~)~3 are the well-known Hermitian
orthogonal functions with the arguments 0.

and &, respectively. The remaining part
«(p) 2 'e "& has been described as a two-dimen-
sional Hermitian orthogonal function expressed
in polar coordinates. ' Since various matrix ele-
ments of powers of the coordinates will be re-

quired, it will be advantageous to examine this
expression in greater detail. It may be shown
that the differential equation defining it; namely,

j ~ /tip + (~/p) (tl/tip) + (l/p ) (~'/~tp') +[(2&/»2) p'] }+—,rr
= o

is satisfied by the function (here given in normalized form)

Q( )
t t' t r=(Pt) r{( l+ t)tl} ftr r-'r

tl
—r /—L —

(p )s
'

tr

where k= (U2 —l)/2. Lt+tt(p') is the associated
Laguerre polynomial of argument p', from whose
properties it will be comparatively easy to evalu-
ate the necessary matrix elements.

The zeroth order energy constant H/'0" depends
only upon the quantum numbers 2 V&+ V2 and V3,

thus showing that in this order of approximation
the system is degenerate with respect to the
quantum numbers V~, V2, ). We shall let n repre-
sent the former ones and t the additional quan-
tum numbers necessary to define the wave
function +„~.

The first order energy constant 9'&"' is got by
equating the secular determinant

~
(II&)nt

""'
—W&ttt.

"'
~

to zero and solving for the roots wq.

S'&"' depends upon the quantum numbers V&, V2,

V3, and upon l'. It is thus independent of the

algebraic sign of ~/. This last degeneration is not
removed even by the perturbing potential ) 'H&,

for )'H2 is not a function of the coordinate q.
The appropriate stabilized wave functions for
the new levels produced by the first order per-
turbation are the properly chosen linear com-
binations @„,=g tC, t@„t,where the C«are given

by the first minors of the secular determinant
for H/g"'

The second order correction to the energy is
now determinable in the usual way, that is,

gl nr —(II ) nr+pr j (II ) nrt'} 2/{ ~ n Uttr n'}

where the dash on the summation sign indicates
the omission of those terms for which n' =n. This
may be expanded into the form:

gr nr —QC, 2{(II ) ntt+ p {(IIt) n t }2/{~on irU n. })+
+ZZ CrttCr ttL(K)ntr""+Z' j (IIi)ntt"" } j (IIi)n~v"" }/ j DUO" —'fUO" }j~

i

2V~, + V2and V3, nhererefers to V&, U2, and V3as
separate entities. The sum in 8'2"' is somewhat
richer in terms than the corresponding sum

where the 1i, t2, etc. , are the several sets of the
degenerate quantum numbers which identify the
members of the stabilized wave function. In the
case of a triatomic, linear, symmetrical molecule
which is not subject to resonance degeneracy, the

n order ener constant is iven bseco d g
in H/2"' because of the absence of the resonance

W"'=(II2)nt"'+2 {(II&)«"' } /{ DUO" DUO" } phenomenon. Apart from this difference (which
proves to be unimportant), it appears that the

Unlike the resonance case, in which n comprises second order energy constant for the carbon
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dioxide molecule may be expressed as a sum of
second order energy constants for the nonreso-
nant type of molecule multiplied by the quantities
C,&.', plus terms which cannot be treated in this
fashion and which may be called cross products.
A very considerable simplification would be
effected in the systematics of the problem if it
could be shown that the cross products vanish.
For, t/t/'&"' modified by the deletion of terms re-

quired by the resonance degeneracy is a definite
quadratic function of the quantum numbers;
namely,

b {xp+xlVl+x2 V2+x3 V3+xll Vl +x22 V2 +x38 V3

+xl 1P+x12 Vl V2+xl3 Vl V3+x23U2U3 I,

where the coefficients are known functions of the
true anharmonic constants (a, b, c. d, e, f, g, b
and i), the fundamental frequencies (&pl, pp2, tpp),

and the moment of inertia I, and will be enumer-
ated at a later point in the paper. It would thus
be possible to write:

X W2 &+Catt {xp+xlV1+x2U2+x3V3+xllV1

+x22 U2'+x88 U8'+xt 1p+x12 Ul V2+x13 Ul U3

+x23 V2 U3 I '
It is obvious that for arbitrarily chosen per-

turbing potentials )H~ and ) 'H2, the cross
product terms will in general not vanish; and the
above equations will not be valid. The perturbing
potentials for a molecule of the carbon dioxide
type have, however, been assumed to possess
certain special properties; namely, they are ana-
lytic functions endowed with the geometric sym-

metry of the molecule, )Hj contains no power
greater than the third, and )'H2 contains no
power higher than the fourth. A detailed study
shows that these properties of the potential
function cause each of the cross product terms
to vanish. The actual proof of this statement will

be omitted since the analysis, while quite
straightforward, is rather lengthy.

The connection between theory and experi-
ment, and the determination of the anharmonic
constants can be facilitated by the consolidation
of the energies of the zeroth and second orders.
This may be accomplished by means of the rela-
tion g;C, t,

2 =1.For, from this it follows at once
that Wp" =Q,C, t, 'Wp, and hence that

Wp +)1 W2 = ItgtCrt {xt+ Vl Vl+ V2U2+ V3 V3

+xll Vl +x22 V2 +x83 V8 +xltl +x12Vl V2

+x13 Vl V3 +x28 V2 V3 I t'

where
x =xp+2td2+tp8/2,

1'1 xl+2pppy &2 x2+tp2y 3'8 x3+td8.

co2 and co3 are the zeroth'order simple harmonic
frequencies which are the solution to the problem
of small vibrations.

Omitting the cumbersome details of obtaining
the matrix elements' and summing them, the
functional dependence of the coefficients may be
given as follows. (As listed here the relationships
are appropriate for the non resonant type of
triatomic, linearly symmetric molecules, such as
CS2, and their adaption to CO& is achieved by
first discarding all terms containing the denom-
inator a» —2pp2, and then replacing &pl by 2cp2. )

x' =ppl/2+ tp2+ pp3/2+ 3d/4+ 3f/4+ 2e+ g/2+i/2+ h/4+ (11a'/8+ b'/2 +c'/2+ 3ab/2

+3ac/4+bc/2)/tpl+b /2(tpl+2tp2)+c'/4(ppl+2cp3)+hptp/163r Ipt„

11=cpl+3d/2+g+ It/2 —3a(9a/8+ b+ c) /p» —3a /8 2tbp'l/2(tpl+ 2cp2) +b'/2 (Ml —2tp2)

—3c'/8(tpl+2pp8) + /c42( p—pl 2pp8),

8'2 =pp2+3e+ g/e+2/2 b(b+ 3a/2) /tp1 b'/—4(p»+ 2tp2) jhtp8—/16m'Itpp,

3 3 tp3+3f/2 +h/2+3 c(c+6a+ 4b—) /4tpl 3c'/8(tpl+ 2—tp3) +c'/8(tpl 2tp3) +btp8/—8vr2Ipp2,

xll = 3(d —19a'/4tpl) /2,

~ In computing the second order energy constant it is necessary to obtain the matrix elements of the various powers
of the coordinates o, & and p. These may be readily found by referring to the known properties of the Hermitian and
Laguerre orthogonal functions. See for example E. Schrodinger, Ann. d. Physik L4j 80, 437 (1926). Math. appendix,
and E. Fues, Ann. d. Physik 80, 367 (1926).
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x,2 ——3e/2 —f '/2~1 —b'/8(~1+ 2~2) —b'/8(~1 —2~2),

x38 3f——/2 —c2/2cvl —c'/8(coi+ 2cu3) —c'/8(col —2103),

x11
———e/2+ b'/8 (ldi+ 2(o2) +b'/8 (&el

—2c 2),

x12 =g 3a—b/col b2/—4(co 1+2~2)+b2/4(~1 —2co2),

x13 ll ——3a—c/col 3c—'/8(cu, +2cu3) +c'/2 (col —2~3),

X23 =2+ii%3/88r IC02

These equations constitute relations between the
constants which fix the energy levels (and which
we may hope to obtain from observational data),
and the anharmonic constants of the molecule.
The question now arises as to whether these equa-
tions imply any connections between the x's and
v's themselves. Ate have noticed only one such
interdependence, but this will prove to be of
considerable value. x» and x ~ ~ are related through
the first order perturbation constant b and the
normal frequency co2 by the expression x»+3x«

3b2/1—6012 (this is the form in which it applies
to the carbon dioxide molecule). —3b2/16cv2 can
be reduced to a number directly inasmuch as co2

is known to be about 667.5 cm ' while the quite
precise value of

~

b
~

= 72.5 cm ' is given by
Dennison. ' Thus for the CO2 molecule x»+3x«
= —1.47 cm '. The observational data which
help to determine the numerical values of the x's
and v's are the experimental locations of the
infrared vibration-rotation band centers; for,
each such position is given theoretically by the
difference between two energies of the type:

~1 +2 ~ t {x+ vi'Vi+ v2 V2+ v8 V8+xllV1

+X22 V2 +X83 V3 +Xllf +X12 Vl V2+X18 Vl V8

+X23 U2 U3}'.

(Because of the perturbations, the energy of the
ground state is raised by the amount 6/2+x'. )
About half of the extensively known band system
of CO2 is to be employed in this evaluation of the
coefficients, and the latter will then be used to
predict the remaining known bands as well as
bands yet undiscovered. None of the difference
bands will be used in the solution, since they
yield no independent relations, but only com-
binations of those obtainable from the funda-
mentals and their overtones. Hence, the equa-
tions to be used in solving for the coefficients will
be simply those which give the separations of the

energy levels from the ground state, and they
have the form:

(Wl"' —5/2)+Q;C, l,.'{vlV1+ v2 V2+v8U3+Xll, Vl'

+X22 V2 +X8 8 V3 +Xl ll +X12 Ul V2 +X18 Vl V3

+x23V2V3},=

observed position of level, where 8'i ' depends
upon 6, t, and ~b~.

Ke proceed to discuss the adaptation of these
equations to the problem of the carbon dioxide
molecule.

CQRRELATIoN

The data on the infrared spectrum of CO~
come from several sources. Barker, ' and Martin
and Barker' have explored the region between
2.7p, and 15@, mapping a number of bands which
range from the v3+ (vl, 2 v2) combination bands to
the v2 fundamental. Recently, Wu and Barker'
have discovered the overtone 3v3, and have suc-
ceeded in getting accurate measurements on the
bands v3+(4v2, 2v2+ vl, 2vl) at 281 and the bands
v3+ (6v2, 4v2+ vl, 2v2+2vl, 3vl) at 1.6p, . These new
data on the 2p, group of bands displace the older
work of Schaefer and Philipps" whose measure-
ments appear to be in error by approximately
one hundred waves per centimeter. This accounts
for the very large discrepancy between the calcu-
lated positions of these bands (correct to first
order) and the values of Schaefer and Philipps
as noted by Dennison. '

Making a tentative solution for the x's and v's

on the basis of these observations by Barker,
Martin and Ku, it has been demonstrated that
the three doublet bands photogr'aphed by Adams
and Dunham" in the atmosphere of the planet
Venus are indeed to be attributed to the CO2
molecule and are to be identified as Sv3 and 5v3

+(vl, 2v2). Detailed information concerning all
of the known bands of carbon dioxide is collected
in Table I together with the names of the ob-
servers.

In determining the constants, the x's and v's, it
would be possible to equate all the observed

' E. F. Barker, Astrophys. J. SS, 391 (1922).
' P. Martin and E. F. Barker, Phys. Rev. 41, 291 (1932).
' To be published in the near future.
"Cl. Schaefer and B. Philipps. Zeits. f. Physik 36, 641

(1926).
"%'.S. Adams and T. Dunham, Jr., Pub. A.S.P. 44, 243

(1932).
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positions of the levels to their theoretical values
and solve the resulting equations by the method
of least squares. This method appears to be im-

practical, however, for two reasons, first because
of the great numerical labor involved and second
because, as we shall see, the positions of the levels
alone are not suitable for determining certain
of the constants with any degree of accuracy.
Instead the following method was employed.

Two very significant consequences of Denni-
son' s' first order solution are immediately appli--
cable. The first of these is the very accurate value
of ~b~; and the second is the estimate of A.

Though 6 may be uncertain in this order of ap-
proximation, it is nevertheless of a lesser order of
magnitude than

~

b ~, and hence than Wp'. It is
thus feasible to expand Wp' in powers of 6/

~

b ~,

retaining no terms beyond the first power. Direct
use is made of this knowledge in simplifying the
equations discussed below and in obtaining a
preliminary value of 6 for the present solution.

Eleven of the most accurately known and
most suitably placed bands are selected in setting
up the observational equations, and these to-
gether with the relation x22+3x~~= —1.47 cm '
give twelve equations in the twelve unknowns:
v|v2v3 x»x»x33x[[ x/2xQx23 6

~

b
~

. Careful exami-
nation shows that this group of equations are al-

gebraically inconsistent with any set of real
values for the constants. The dik. culty can easily .

be traced to the quantity 5 which is nearly in-

determinate from the energy levels alone. This is
because very small changes in the energy levels
(of the order of magnitude of the experimental
error) cause large Ructuations in 6, even allowing
it to become imaginary. It was thus necessary to
find an alternative method for the definition of
the numerical value of 6, or at least of its order
of magnitude. This method is furnished by the
ratio of intensities of the strong Raman doublet
in C02 in the neighborhood of 1300 crn '. The
experimental value of this ratio has been given

by Dickinson, Dillon and Rasetti" as 2/3. The
amplitudes entering into the intensity expressions
for the Raman lines are proportional to the con-
stants C,~, that is, to the amount in which the
wave function active for the Raman effect enters
into the wave function of the level in question.
The ratio of the intensities is therefore equal to
the ratio of the squares of C, & and may be shown
in this case to have the form (1—6/2'~b~)/(1
+6/2'*~ b~). In this way it is found that 6=17
cm '. Kith this order of magnitude of 6 serving
as a criterion, very small (about ~ cm ') but
arbitrary corrections were made in the observed
positions of some of the eleven energy levels
mentioned above. These corrections were main-
tained as small as possible while keepIng 6 near
17 crn ' and

~
b~ close to 72.5 cm '. The modified

and now consistent equations are given below,
where we have introduced the notation P=

~

b
~

and y = 6/p.

(1) v2+x»+x~~=667. 9 cm ',

(2) 6/2 —P(1+y'/4)/2-**+ (1—y/2') (v&+x») /2+ (1+y/2') (2 v2+4x»)/2 = 1268.3,

(3) 6/2+ p(1+y'/4)/2-*'+ (1+y/2-:) (v, +x») /2+ (1—y/2-:) (2v, +4x»)/2 = 1387.9,

(4) 2 v2+4x22+4x() = 1335.8,

(5) v3+x33 = 2350.1,

(6) 6/2 —p(1+y /8)+(1 —y/2)(vx+x»+v2+x22+x&2+xi')/2+(1+y/2)(3v2+9x»+x~i)/2=1933. 2,

(7) 6/2+P(1+y'/8) + (1+y/2) (v&+x»+ v2+x»+x»+x~~) /2+ (1—y/2) (3v, +9x,2+x«)/2 = 2077.4,

(8) 5 v3+25x38 = 11496.5,

(9) 5/2 —P(1+y'/4)/2' j(1—y/2') (vg+x»+5v3+25x33+5x)3)/2

+(1+y/2') (2v2+4x»+ 5 v3+ 25xq3+ 10x23)/2 = 12672.4,

"Dickinson, Dillon and Rasetti, Phys. Rev. 34, 582 (1929).
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(10) 6/2+P(1+y'/4) /2&+ (1+y/2&) (v&+x»+ 5 v, +25x»+5x») /2

+ (1—y/2'*) (2 vq+4x22+ 5 v3+25xq3+ 10x23)/2 = 12774.7,

(11) 4A/3+ (4v2+ 16xq2+ vg+xqq+4xma) /3+ 2(2 vq+ va+ 4x»+x33+ 2x») /3 =4982,

(12) x22+3x)i = —1.47.

These equations yield the following values for
the molecular constants.

TABLE I. Observed and calculated values for the energy
levels in CO2.

P =72.9 cm '

6 =14.7

vg
——1321.7

, v2=667. 9

v3 = 2362.8

x]] 1

x22 = +0.74

x33 = —12.7

xiii = —0.74

x]2 2+3

x]3= 22. 1

x23 = —20.9

While the twelve equations which have been
used are consistent and hence yield unique values
for the constants, a closer examination discloses
the fact that these constants are not determined
with equal accuracy. Small changes in the ob-
served positions of the bands (of the order of the
experimental error) would sensibly alter some of
them, while leaving others virtually unchanged.
v& and v2 might be out by as much as one wave
per centimeter, but v3 is probably accurate to
about two-tenths of one wave per centimeter. The
anharmonic constants P, x3~, x»+2x23, and
x22+3x~E are known to within a. few tenths of one
wave per centimeter. The remaining constants
are less precisely determined, in some cases only
to order of magnitude.

The positions of any of the vibrational levels
of the carbon dioxide molecule may now be com-
puted with the aid of the constants just deter-
mined. In Table I we have collected the observa-
tional data on the positions of the levels in order
to compare them with our calculated results.
The identification of the levels is given in column
I, while the heights of the energy levels above the
ground state, observed and calculated, respec-
tively, are contained in columns II and III. The
sources of the experimental data are listed in the
last column.

In comparing the calculated and observed
locations of the vibrational levels, the latter
should be divided into two classes. The first of
these contains those bands which are employed
in the evaluation of the constants; the discrepan-

Identi-
fication

V1 U2 V3 l

Position (cm ')
Calculated Observed

Observer
(number
indicates

reference)

010
0200
1 000
0 2 0 2

0301
1 1 0 1

0010
0 2 1 0
1 0 1 0

0 4 1 0
1 2 1 0
2 0 1 0

06101410
2 2 1 0
3 0 1 0

0030
0050
0250
1 0 5 0

667.9

1286.3
1387.9

1335.8

1933.2
2077.4

2350.1

3614
3716

4852
4982
5109

6078
6233
6352
6512

6974

11496.5

12672.4
12774.7

667.5

1285.8
1388.4

1336.2

1933.5
2077.1

2350.1

3610
3717

4860
4982
5110

6079
6233
6353
6512

6978

11496.5

12672.4
12774.7

cies in this group are all of the order of the experi-
mental error, and represent the small arbitrary
additions used to make the simultaneous equa-
tions consistent. The agreement between the cal-
culated and observed values for the remaining
nine levels is extraordinarily good, being better
than the experimental error in eight instances
and poorer in only one (the difference of eight
waves per centimeter in the case of the 4860
band of the 2p group of bands is the only example
of inferior agreement) . This good agreement
which obtains in the second class of levels is
genuine and not fortuitous. It is to be considered
a substantiation of the method of attack used in
the problem, and a verification of the expression
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TABLE II. Positions of some bands which olgkt to be accessible
to exPeriment.

ticular difficulty, and should be as easily ob-
served as the bands at 1.6p.

Identification
Vl Vg V3

Calculated
position (cm ') CONCLUSION

2 3
0 3

8188
8291

0
1
2

5
2 5
0 5

11050
11193

13823
13952
14080

0 1 6 1 14322

0
1
2
3

0

6 5
4 5
2 5
0 5

0 7 0

2 7
0 7

0 9

2 9
0 9

14961
15115
15234
15397

15917

17049
17151

20236

21324
21426

for the energy of the carbon dioxide molecule. "
In Table II are given the positions of some

bands which ought to be accessible to experiment,
but which have as yet not been discovered. The
bands in the visible and photographic infrared
regions of the spectrum will have to be sought in
the absorption spectrum of the planet Venus,
and such a search is being made by T. Dunham,
Jr. , at Mount wilson Observatory. On the other
hand, the bands 3 v3+ (vi, 2 v2) should offer no par-

"In a recent paper Langseth and Nielsen (Zeits. f.
physik. Chemic B19, 427 (1932)), have reexamined the
Raman spectrum of gaseous carbon dioxide, using an
exposure time of one month. In addition to the four Raman
lines previously known, they obtained six very faint lines
which should, presumably, be due to transitions starting
from the three excited levels in the neighborhood of 1300
cm '. The observed positions of the six extremely faint
lines are: 1241., 1305, 1325, 1344, 1369 and 1433 cm '. On
the other hand, the frequencies of the above-mentioned
transitions may be readily computed from our formulae,
and eight very faint Raman lines should appear in the
following positions: 1166, 1248, 1268, 1288, 1390, 1415,
1426 and 1517 cm '. It thus appears that of the eight lines

The second order energy constant for the car-
bon dioxide molecule has been computed. It in-
volves eleven constants whose connections with
the twelve constants defined by the potential
energy is given. It is consequently not possible
to obtain the potential energy function from our
present results, and recourse must be had to
some alternative method. This method consists
in an analysis of the interaction between vibra-
tion and rotation. It may be shown that the con-
vergence in the fine structure lines of the various
absorption bands will yield values for the three
constants of the first order potential function;
namely, a, b and c. A determination of the entire
potential function is thus made possible. This in-
vestigation will be the subject of a second paper,
to appear, shortly in which, also, an attempt will

be made to describe the potential energy of the
carbon dioxide molecule by means of a function
resembling the Morse potential function for
diatomic molecules.

Finally, the writers wish to express their in-

debtedness and thanks to Professor E. F. Barker
and Mr. Ta-You Ku for placing the results of
their investigation at our disposal and allowing
us to publish a preliminary account of them, and
to Dr. T. Dunharn, Jr. for his willing and helpful
correspondence in connection with the Venus
bands.

which should appear, the lines 1268, 1288, 1390 and 1415
blend with the four already known Raman lines; the lines
1166 and 1517 do not fall within the limits of the region
covered by the experimental data, whi1e the lines 1248 and
1426 probably correspond to the two observed lines 1241
and 1433. The lines 1241 and 1433 are classified as als-
serordentlick schmach and hence the discrepancy between
the observed and computed values is not to be considered
as a serious disagreement. There appears to be no place in
the theoretical scheme for the remaining four observed
lines, inasmuch as we have been able to find no transitions
corresponding to these frequencies. It is perhaps possible
that this discrepancy originates in the intrinsic difficulty
experienced in recording faint lines through exposures of
such extended duration.


