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ON 0-TYPE DOUBLING AND ELECTRON SPIN IN THE
SPECTRA OF DIATOMIC MOLECULES

BY J. H. VAN VLEcK

ABsTRACT

1. The distortion due to molecular rotation causes the width of a spin multiplet
to depend on j, and tends to uncouple the spin axis from quantization relative to the
axis of figure, thus bringing about a gradual passage from Hund's case (a) to (b).
Another rotational effect is the "sigma-type doubling" of spectral lines due to removal
of the degeneracy associated with the equality in energy of left- and right-handed
axial rotations in stationary molecules. The present paper treats these two effects,
especially their interrelation.

2. As a needed mathematical preliminary we calculate the perturbing matrix
elements due to the components of angular momentum perpendicular to the figure
axis, which are neglected in the usual treatment of the rotating molecule as a sym-
metrical top. This calculation would be similar to Kronig's and Wigner and Witmer's
were it not for inclusion of the spin. This is handled by Pauli's scheme of two wave
functions per electron; especially his method of transforming them from one Cartesian
system to another by the Cayley-Klein parameters. The results also hold with Dirac's
"quantum theory of the electron, " as Dirac's quartet of wave functions transform
under a rotation like two independent Pauli pairs. Although the orbital and spin
angular momentum operators look superficially different, it is shown that their
gyroscopic effects enter additively as commonly supposed, and that in the first ap-
proximation the effect of the spin is to make the rotational energy (except for an
additive constant) that of the symmetrical top with o.~+0., in place of 0~.

3. Neglect of the relatively small sigma-doubling yields identically the formulas
for the rotational distortion of spin multiplets which Hill and Van Vleck obtained by
a different, alternative method that used Hund's case (b) rather than (a) as the un-

perturbed system.
4. Singlet P states should exhibit a sigma doubling proportional to j(j+1) and

D states ordinarily a negligible doubling. Our technique of calculation differs
slightly from that of Kronig, who obtained a similar result for singlet spectra (as did
Hill and V. V, with a simple model), in that the degeneracy is removed in the final

rather than in the initial approximation.
5. In 'P states the spin profoundly modifies the sigma doubling. In case (b)

both spin components should exhibit equal doublings proportional to jp(jk+1), but
in case (a) the PI~& sigma doubling should be negligible, but the P&~2 fairly large and
proportional to j+1/2. Formulas are developed for the sigma-doublet width which ap-
ply throughout the range between (a) and (b). The pronounced doubling of the
Pig2 component in case (a) is due to a rather complicated superposition of the rota-
tional distortion on the magnetic coupling between the components of spin and
orbital angular momentum which are perpendicular to the axis of figure.

6. 'S states. A similar superposition explains the so-called "rho-type doubling"
in 'S states whereby levels of like ji, but unlike j differ by small amounts proportional
to jI,+1/2. This explanation differs from the usual interpretation of this doubling as
due to magnetic moment developed by orbital motions, and seems to give a slightly
larger effect.

7. 'P states. In case (b) all three components should have equal doublings pro-
portional to j&{jr+1)but in (a) the Pq and P& doublings should be respectively in-
dependent of j and proportional to j(j+1), while the P2 is negligible. The large
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splitting of the I'0 component, whose exceptional behavior is due to its having 0-=0,
is due largely to magnetic action effective even in a stationary molecule, and so has
a different origin than the usual sigma doubling due to rotational distortion.

8. A summary and comparison with experimental data taken from Mulliken's
following paper are finally given. There is a striking agreement between theory and
experiment on the type of variation with j in the various cases, especially the asym-
metrical behavior of the various multiplet components in case (a). The theoretical
orders of absolute magnitude are also confirmed, as evidenced by the reasonable
values of the frequencies which must be assumed to give the observed separations.

I. INTRQDUcTIQNi

S TATIONARY MOLECULES. To calculate the electronic, though not
of course the rotational and vibrational, levels of a diatomic molecule

one can, to a first approximation suppose the nuclei at rest. This has been
shown by Born and Oppenheimer. ' Such a fictitious molecule with fixed
nuclei we term stationary. Its "parallel" components of orbital and of spin
angular momentum ordinarily have quantized values ~& and 0, We through-
out measure angular momentum in multiples of the quantum unit fi/2ir,
and also for brevity we always speak of the "parallel" or "perpendicular"
component when more explicitly we mean the component which is parallel
or perpendicular to the axis of figure connecting the nuclei. (Unless other-
wise stated, it is supposed that the nuclei are far enough apart so that the
resultant field which they together exert on the electrons departs appreciably
from central character. If this "non-centralness, " as we shall call it, were
not large compared to the magnetic interaction, only the sum 0.=0.&+0.„
rather than oi and 0, individually, would be quantized. ) Two features of
stationary molecules which are of particular importance for the present paper
are the following: (1) with given o i different values of the quantum number
0, generate a "spin multiplet, " which arises from the so-called magnetic
interaction between the spin and orbital angular momenta. (2) The energy
is invariant if the signs of both a.

& and 0., are simultaneously reversed, which
merely converts a left into a right-handed rotation about the axis of figure,
or vica versa. The energy levels +a &, +0, and —o &,

—0, are thus a degenerate
pair.

Rotating moleclles. Besides introducing primarily the familiar rotational
and vibrational energies, the motion of the nuclei modifies the e&ects (1) and
(2), as first suggested by Hund. ' The study of these modifications is the
purpose of this paper. As regards (1), the energy due to magnetic inter-
action is no longer the same as in a stationary molecule, but depends on the
amount of rotation j. This is the phenomenon of the rotational distortion
of spin multiplets, which was treated in the old quantum theory by Kemble. '
If this distortion is large, the parallel component of spin angular momentum

' A preliminary account of the present paper was given in abstract 36 of the June 1928
program of the American Physical Society (Phys. Rev. 32, 327, 1928).

' Born and Oppenheimer, Ann. der Physik 84, 457 {1927).
' F. Hund, Zeits. f. Physik 30, 657 (1926); 42, 93 (1927).
4 E. C. Kemble, Phys. Rev. 30, 387 (1927).
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no longer has a quantized value 0,. Instead in the limit of negligibly weak
magnetic interaction compared to rotation, which is Hund's case (b), the
orbital electronic angular momentum is compounded with that due to nuclear
motion to form a resultant j&, and then jI, and s are compounded to form a
resultant j. The other limiting case of relatively strong magnetic inter-
action, where the parallel component of s is quantized, constitutes Hund's
case (a). (See diagrams, p. 253 of ref. 5). As regards (2), it is found that
the degeneracy associated with the pair of states +0&, +0, and —o&, —0',

is removed by the rotation. The attendant separation of otherwise coincident
energy levels and splitting up of spectral lines constitutes in Mulliken's
terminology the phenomenon of "sigma-type doubling, " and is not to be con-
fused with the much coarser spin doubling found in molecules having s = 1/2.

Previous m ork. After Kemble's4 ingenious pioneer work in the old quan-
tum theory, Hill and Van Vleck' calculated formulas for the rotational
distortion of spin multiplets in the new quantum mechanics, using Hund's
case (b) as the unperturbed system. Their paper will be referred to as
"Hill and V. V." Its last section gave an elementary treatment of sigma-
type doubling in singlet spectra, using Hund s case (d) as the initial system.
By (d) is meant that the non-centralness is so small compared to rotational
distortion that not even the parallel component of orbital angular momentum
is quantized. The present paper uses (a) rather than (b) or (d) as the original
system from which perturbations are figured. In the problem of multiplet
distortion this use of (a) simply furnishes an alternative and about equally
good method to that of Hill and V. V. , but in the treatment of sigma-doubling
it permits a much more accurate representation of the details of the mole-
cular dynamics than did the over-simplified though very convenient model
used in Hill and V. V. 's last section. The theory of sigma-type doubling in
singlet spectra has also been discussed in two papers by Kronig, ' and has
also been studied by Wigner and Witmer. ~ Kronig's first paper, which was
previous to Hill and V. V. , demonstrated the possibility of sigma-doubling
and developed selection rules, previously formulated empirically by Hulthen, '
which govern the combinations of the various types of levels. Kronig's
second article calculated the magnitude of the frequency separation of the

5 E. Hill and J. H. Van Vleck, Phys. Rev. 32, 250 (1928). This paper used the notation
o-z, k instead of the present a&, l. Their choice of arbitrary phases is diferent from ours and
would require insertion of a minus sign in our Eq. (31). With our choice the two elements of
the transformation matrix T given in their Eq. (38) would be reversed in sign.

' R. de L. Kronig, Zeits. f. Physik, 46, 814; SO, 347 (1928). Unless otherwise stated, all
references to Kronig's equations, etc. , are to his second rather than first paper, and by Kronig
symmetry or antisymmetry we mean even or oddness under his transformation (15). The
writer is indebted to Professor Kronig for the opportunity of seeing his second manuscript in
advance of publication.

E. Wigner and E. E. Witmer, Zeits. f. Physik 51, 859 (1928), especially footnote, p.
860. To avoid duplication with Kronig they do not publish the details of their calculation of
the sigma doubling.

8 E. Hulthen, Zeits. f. Physik 46, 349 (1927); also R. S. Mulliken, Phys. Rev. 28, 1202
(1926).
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sigma-doubling components, and also gave a more accurate formulation and
more elegant proof of the selection principles than in his first paper. The
present article will not attempt to treat these selection rules, but only the
doublet widths, as the combining properties of the terms are nicely covered
in Kronig's papers, as well as analysed for a simple model by Hill and V. V.
The previous work shows that it is indeed possible to divide the levels into
two classes x and y (Kronig's "even" and "uneven" terms) such that the
only possible transitions are those connecting an x and a y state, so that two
x or two y states never combine in the absence of external fields. One sigma-
doublet component is, of course, of the x-type and the other of the y, the
component of higher energy being alternately x and y as j progressively
increases by unity. We show in footnote 9 that the extension of the selection
principles to include the electron spin occasions no dif6culty.

Kronig's papers did not consider the electron spin, nor did the part of
Hill and V. V. on sigma doubling, and an essential feature of the present
article is that it treats the theory of sigma-doubling inclusive of spin. This
is an important increase in generality, for some of the most striking sigma-
doubling phenomena are found in other than singlet spectra, and are in-

Huenced by the spin in a very interesting way.
The following section 2 of the present paper is primarily mathematical

in character and is fairly distinct in content from the remainder. It consists
of the calculation of the matrix elements which are neglected in treating a
molecule in Hund's case (a) as a symmetrical top, and which are responsible
for both the rotational distortion and sigma-doubling phenomena. To a
considerable extent this calculation parallels Kronig's though made in-

dependently. It, however, includes the spin, and gives some details, such
as are involved in passing from our Eq. (10) to (29), which Kronig omits,
but which do not seem trivial. Although the Anal result (29) of section 2

is vital to later sections, we have tried to make these fairly readable with-
out a thorough perusal of section-2.

Quantum number notation Our nomen. clature is in the main the same as
in Mulliken's well known series of papers. The recent Hund-Wigner-Witmer
scheme appeared too late to be feasible. The numbers 0.~, a, and 0.(=0~+0,)

9 Although Kronig did not consider the spin, the invariance of the wave equation under
a "reflection" such as is embodied in his Eq. (15) and from which he derives the selection rules,
still holds even when the Pauli or Dirac spin operators are included. For it is readily seen that
the transformation x =x, y = —y, z =z, which is our system of coordinates is equivalent to the
g, q, g, p, part of Kronig's transformation (15) demands the reversal of the sign of the operators
s, s, but not s„, just as it does the reversal of the orbital angular momentum operators 1, =2' '
(yB /Bz —zB /By) and l, but not l„. Further our Eqs, (9—10) show that the orbital and spin
angular momentum operators enter in identically the same fashion in the wave equation, and
as we have seen that they both transform in the same way in Kronig's reflection (15) it
follows that inclusion of the spin does not destroy the invariance. But with its inclusion
Kronig's number n must signify the total rather than just orbital parallel component of
angular momentum, as the total is now what is involved in the symmetrical top. The observed
combination of two x or two y levels cannot be attributed to the spin as conjectured by Hill
and V. V. , and is presumably due to perturbing external fields.
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measure respectively the parallel components of orbital, spin, and total
electronic angular momentum. Molecular spectral terms are classed of the
S, I';, D;, Ji; type according as Og ——0, 1, 2, 3. The value of the subscript i
is that of 0. and fixes the multiplet component. j and jI, measure the total
angular momentum of the entire molecule, respectively inclusive and ex-
clusive of spin. (j& is used only in Hund's case b.) The magnetic quantum
number m quantizes the component of j in the direction of an axis s' fixed
in space. s is the spin quantum number which determines the spin angular
momentum and has:the values 0, 1/2, 1, . . . in singlet, doublet, triplet. . .
spectra. l is roughly equal to the orbital electronic angular momentum,
which is constant only if the non-centralness is negligible. Unlike the recent
Hund-Wigner-Witmer scheme, this 1 does not include the essentially nuclear
contribution due to molecular rotation. v is the vibrational quantum number,
and n denotes the totality of electronic quantum numbers other than the
0's. We throughout use the letter 8 to denote the expression k'/8s'Der
All symbols written in bold-face type in section 2 are operators, and in
later sections are vectors.

2. CALCULATION OF THE PERTURBING MATRIX ELEMENTS

Stationary 3IIolecules. We suppose the reader familiar with Pauli's"
scheme of representing the spin in a system of f electrons by means of 2~

wave functions

@'a1 ~ ~ a~ p C'P, a2 ~ ~ af p C'a1P, ~ ~ af )
' '

) ata2, P) 1

P jP2a3 ' af 1 1 a1 af 2Pf—1Pf P ) P1P2 Pf

The subscripts nq and J8q correspond to the spin axis of the kth electron being
quantized respectively parallel and antiparallel to the z-axis, which we
throughout suppose to coincide with the axis of figure of the molecule. If a
solution could be obtained in which each individual spin axis was quantized
separately relative to the s-axis, only one of the wave functions (1) would
need to be different from zero, but usually the magnetic interaction between
the spins and the orbital angular momentum makes this impossible, and so
requires 2f simultaneous wave functions (1), the square of the modulus of
any one of which can be regarded as the probability of the corresponding
orientation of the spin axes. A stationary molecule will have 2j simultaneous
wave equations of the form

(Ho Wo) C', , . . . ;&
= 0 with f„=aq or Pq. (2)

where H, is an operator function of the coordinates x„,yi
s, sr of the f electrons, and also of the Pauli spin operators s„s», s&, sf, corresponding to the x, y, s, components of angular
momentum of the various electrons. These operators have the following
properties:

W. Pauli, Jr. , Zeits. f. Physik 43, 601 (1927), especially p. 620 ff. Our spin operators
(3) diAer by a factor 1/2 from Pauli's, as his unit of angular momentum is h/47r,
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1aSIcgC o opI ~ 2 4 try e ~

1'
sA, „C.. .p, . . . =+—,i4. . . , . . . ,

sg, 4. . .p, . . . = —
~ C'. . .p
1

The inter-nuclear distance r will also be involved as a parameter in H, . To
include explicitly the coordinate arguments, usually omitted for brevity,
we would thus write the first wave function, for instance, of (1), as
@a& ' ' 'ay (x&& ' ' ' &yl) ' ' ' &sb ' ' ' &sf& r)

Rotating molecules. The wave equations for an actual molecule with
moving nuclei are"

h I9 8
Hp ————r'—+cot 0—+——+cosec'8—— —O' P, , . . .; ~ =0

Sm'Mr' 8 r 8 r 80 80' 8 co

(i~ =n~ or P~') (4)

where 0 and co are the polar and azimuth angles specifying the position of
the axis of figure relative to a fixed coordinate system x', y', s', and where
M is the "reduced mass" M& M2/(M&+M&) of the nuclei. On the other hand
Hp is most readily expressed in terms of the x, y, s reference system which
has the s axis parallel to the axis of figure, and which hence travels with the
nuclei. H p is, of course, the same function of these moving coordinates, and
related operators, as in (2). It would, of course, also be possible to express
Hp in the fixed reference system, but then Hp would involve 0 and co explicitly
inasmuch as the axis of figure is in general obliquely located in this system,
and its position is involved in the potential energy binding the electrons to
the nuclei. We suppose the mutual potential energy Z& Z& e'/r of the nuclei
incorporated in H, and hence it does not appear explicitly in (4). Without
loss of generality we may suppose the x axis to lie in the x'y' plane. Then the
moving and fixed axes are connected as follows

x = y' cos a&
—x' sin cu, y = s' sin 8 —(x' cos co+ y' sin cu) cos 8

s = s' cos 8+ (x' cos o&+y' sin cu) sin 8.

Following Born and Oppenheimer, ' also Kronig, ' but with the generali-
zation to include spin, we now seek approximate solutions of the form P=
C' x (r, 8, co) where C'(xi, sf) is what we shall term an "internal" wave
function, i.e. a solution for the stationary molecule, and x is a.function of
the nuclear coordinates alone. In performing the explicit differentiation
with respect to the polar coordinates in (5), C must be regarded as a function

"The origin of all coordinate systems we suppose to be at the molecule's center of mass,
which we assume is at rest. We thus neglect the molecule's translational energy, which enters
in a trivial additive fashion. Also we neglect the difference between the center of mass of the
molecule and of the nuclei. The inclusion of this difference would add only small terms of the
order m/cV times the ordinary rotational and vibrational energies, where m is the mass of
an electron.
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of r, 0, co as this differentiation is to be performed under the assumption
that the electronic coordinate axes are fixed in space, and by (5) the trans-
formation from the moving axes used in (I—2) to fixed axes will cause the
entrance of 0, co.

It is particularly to be noted that in (4) we use a set of subscripts in-
volving the n's and tl's rather than n's and P's. This is to indicate that we
are using an x', y', s' rather than x, y, s system of reference for the Pauli
wave functions, . . . i.e. referring the quantization of the spin relative to
the fixed rather than moving system. This is, of course, necessary because
(4) presupposes a fixed system of reference. It is thus necessary to transform
our spin solution from the n, P to the n', P' system. Without this trans-
formation we would neglect entirely the gyroscopic effect of the spin on the
molecular rotation. The desired transformation is accomplished by means
of the Cayley-Klein parameters and is explained in Pauli's paper. Pauli's
angles 4', 0 are the same as —(&e+-',s.), —0 in our system and his third
Eulerian angle 4 is zero, as we suppose the x axis to fall in the x' y' plane.
He formulates the transformation scheme for one electron, but the extension
to any number furnishes no difficulty, as there is a simple superposition of
the coefficients for the individual electrons, as already given by Neumann
and Wigner. " The generalized Pauli transformation scheme, with one minor
correction which appears necessary, " is

where the summation extends over the two values ni, and P~ for each ii„
and

with

(7)

A (ne', ni, ) = cos -', Oe '"»,

A(Pe', ni) = —i sin ,'ee'»'-
A(isq', t4) = —i sin ', ee '"»-
A(Pq', Pi) =cos —,'He'"».

0 is an abbreviation for ie+-',-ir. By means of (6—7—8) the differentiation
of the internal wave function with respect to co and 0 may now be performed.
Thus

BC' Bxz 8 Byj, 8 Bsl, 8 1—-=Z + + 4' i4' g—c—'
8co Bx BM 8y BM Bs 2

"J.V. Neumann and E. Wigner, Zeits. f. Physik 47, 203; 49, 73 (1928)."It is necessary to interchange Pauli's S and S . In other words the coefficients in his
development (12a) of the p "s in the p's are S», S12, S2i, 5» ——a, y, p, 5, rather than the inverse
~*, P*,p*, 8*. It is easily verified that without this correction the matrices which he defines at
the bottom of p. 609 do not transform in the fashion (11), p. 612, from one coordinate system
to another. Apparently the reason for the modification is that Ss,S gives the elements of
s In the n', p' system rather than s, ' in the a, p system. The same correction is apparently
needed in otherliterature, though not in Darwin's paper' on Dirac's theory, which has the same
modification as ours.
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where c&' equals +1 or —1 according as if,
' equals n&' or P&', and where we

have for brevity written C' for C;, . . . ;, . The first right-hand term results
because by (5) the arguments x&, , sq of 4 involve cu and the second
term results from the dependence of the coefficients in the expansion
(6) upon cu. This second term can be simply expressed by means of the
Pauli spin operators, as by (2) —,'O'Zcz'=ps, z'4' where s,z' is similar to s,&

except that it refers to the primed system. If we use (5) and the relation
s.~' = s,A, cos 0+s„I,sin 0 we find that

8C'/8&v= —i(P, cos 8+P„sin 8)4'

with

P, = Q [—i(x&8 /8y& —y&8 /8xk)+s„]

and analogous definitions of P and P„. The operator P, corresponds to the
total combined orbital and spin electronic angular momentum about the
z-axis, i.e. , the axis of figure.

In like manner it is easily seen that 84 '/88 = —iP,C ', and consequently
the complete wave equations (4) become

JIO —— ——r'—+ cot 8 ——iP + ——zP,

2

+ cosec'0 ——i sin 8P„—i cos 0P, —5' P;, . . . =0.
BM

(10)

Here in the differentiations with respect to 0 and co, only the explicit de-
pendence of 4 on 0, co is to be considered, and not the implicit effects resulting
from the appearance of these angles in the transformation from the moving
to the fixed system. In case 4 = 4x(r, 8, co) this means that 8/88, 8/Bco operate
only on the factor y, but this restriction on the form of + is unnecessary.

It is possible to construct a solution of the customary form'4

18;, . . . = 4 '(x g, , sr ~ r) R(r) N(8, y)

if one neglects certain terms, viz. ,

h'i
cot 8(P, iP„P. iP,P„)+2 c—ose—c 8P„+2P, P;,—. . . (12)—

8~'Mr' 89

and the "high frequency" part of the expression

h' 84' O'C' 2r' 8R' 84'
(P,'+P ')4' —2r——r' Rzs

8~'3fr2 Br 8r' R Br Br
(13)

In verifying Eqs. (12—15) it is well to remember that the I' operators do not commute
among themselves in multiplication, but being functions only of the internal coordinates,
do commute with all functions, operator or otherwise, of the variables r, 0, cv. Because the
I"s do not commute, P,P 4' is by (20) (0+1)&,C' rather than cd,C', with an analogous
formula for the y component.
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i.e. the part of (13) which vanishes on averaging over the frequencies con-
nected with the "electronic" quantum numbers n, r. The construction of
such an average consists in discarding all matrix elements not diagonal in
n, o. The matrix elements of (12) are entirely of this type, as the elements
of P„P„are entirely of the form Air = + 1 (see Eq. 20 below), while P, has
only 60 =0, and hence (12) disappears on averaging over the frequency
connected with o.. Now by a well known theorem in perturbation theory,
high frequency terms which average to zero contribute only to the second
and higher order energies. Hence, if all the internal electronic (including
soin) frequencies are really high, i.e. large compared to that of molecular
rotation, one can as a first approximation neglect (12) and the fluctuating
part of (13). One then finds that the factors in (11) satisfy respectively
the

differential

equations (1) and

h 8 8—r' +W—Wp(r) Wrot (r) Wip(r) P. = 0
8x'3fr' Br Br

(14)

h'
cot 0—+—+ cosec' 0 ——io cos 0 n+ Wrote =0

87r'Mr' 80 80' Bco
(15)

In writing (15) we have utilized the relation PP' =oC", as the total com-
bined orbital and spin angular momentum of the electrons about the axis
of figure has the constant quantized value 0 in a stationary molecule. The
term Wip (r) in (14) denotes the time average" of (13) over the internal
motion of the electrons. As the coefficient of u in (13) involves neither 0

nor &u, W» (r) is independent of the rotational quantum numbers j, pn, and
the effect of W» (r) is very approximately merely the same as changing the
internal energy levels Wp by relatively small amounts Wip (r,).

Eq. (14) is that governing the vibrational excitation of the molecule,
which the present paper does not purport to treat. About all we shall need
to know is that its solution R falls off in a rapid, exponential fashion from
the maximum magnitude of R at r=ro. Here ro, the "equilibrium inter-
nuclear distance, " is the value of r which minimizes Wp (r,), or more ac-
curately in a moving molecule 8'0+8'„t+ W~3. The characteristic values
of (1) and (15), also the average of (13), involve r as a parameter, so that
Wp+ W of + Wip plays the role of a sort of potential function in (14).

Eq. (15) is that of the "symmetrical top. " Reiche and Rademacher, "
also Kronig and Rabi, "have shown that its characteristic values are

Wror. =B[j(j +1)—p'] (B = Ip'/SvrPMr')

"This time average is, of course, a diagonal element of the matrix which represents (13)
for the internal motion of the electrons, The diagonal elements coming from the first and third
terms of (13) do not in general vanish, but those coming from the second and fourth terms can
be proved equal to zero."F. Reiche and H. Rademacher, Zeits. f. Physik 39, 444 (1926); 41, 453 (1927)."R. de L. Kronig and I. I. Rabi, Nature 118, 805 (1926); Phys. Rev. 29, 2|)2 (1927).
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The energy levels (16) were also derived yet earlier by Dennison" with
matrices. If we use one of the formulas for Jacobian polynomials, " the
characteristic functions of (15), normalized to unity, are

(d+.s+p)!(1+.dys+2p)! "'d"
N„,(t, ~) = — [—&"+~(1 t) ~—+*]ef-"

p!(d+ p)!(s+p)!2~t"(I t) —dV

where

(17)

t= —,'(1—cos 8), s=
~

m+0 ~, j=s(d+s)+p, d=
~

m —o
~

. (18)

The quantum numbers j, m, etc. are as explained at the end of section 1.
The derivation of (16) without the electron spins is an old story. ' ' Our

new result is that it is valid with spins, a now denoting the combined spin
and orbital angular momentum about the axis of figure. The reason for this
is, of course, that Eqs. (9—10) show that the spin and orbital electronic
angular momenta modify the equations of molecular rotation in exactly
similar additive fashions. This identity of the spin and orbital gyroscopic
effects seems only reasonable, and has commonly been assumed in band
spectra without proof. It is, however, perhaps of some interest to have
verified this similarity by use of the Pauli spin wave functions, for the spin
effects are transformed from the fixed to moving coordinate systems by
means of a method of expansion involving the Cayley-Klein parameters,
wh ch is at least superficially different from the method of transforming
the orbital eRects by the simple substitution (5) in the coordinate arguments.
(This apparent dissimilarity in the spin and orbital transformations could,
however, be removed byusingWinger's" group theory treatmentof rotations. )
It is, of course, necessary to give o., j, m all half-integral values in molecules
with an odd number of electrons. This clearly does not affect the analytic
character of the t part of the solution, for by (18) s, p, d still remain integral,
and so the hypergeometric series encountered in solving (15) still reduces
to a Jacobian polynomial for the characteristic values (16). At first sight
it appears as though the factor e' " with half-integral m in (17) would

destroy the single-valuedness of P;, '. . . . However, Eqs. (7—8) show that
the explicit expansion (6) of 4' introduces factors of each term of the form
e" "where g is an odd or even integer according as is the total number f
of electrons. Thus by (11) the appearance of the half-quantum numbers
associated with the spin does not destroy the single-valued, analytic char-
acter of the wave function, contrary to the impression which is obtained'
when the simple symmetrical top model is used without investigating the
transformation properties of the Pauli wave functions. The persistence of
characteristic functions of the form (18) shows that the Honl-London in-

tensity formulas, ordinarily proved rigorously only for singlets, also apply
to multiplet spectra provided the motion is close enough to Hund's ideal
case (a) so that the neglected terms (12—13) are unimportant. Otherwise

'8 D. M. Dennison, Phys. Rev. 28, 318 (1926).
"Courant-Hilbert, Methoden der Mathematischen Physik, p. 7S, Eq. (5S').
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(as in his case b) the "unperturbed" characteristic values and functions
(16—1'/) cease to be good approximations (cf section 3).

We must now seek to take into account the omitted terms (12). This is
probably best done by calculating the matrix elements. Doubtless there
are readers of the category who have a peculiar abhorence of any mention
of the word "matrices, " but the perturbation theory even in the purest wave
language is substantially equivalent, and the matrix elements can be re-
garded as simply convenient designations for certain quadratures involving
the wave functions which are inevitably encountered, as they are the co-
efficients of the development of ff in a series of orthogonal functions. The
neglected part (12) may be regarded as adding a perturbative potential
("Storungsfunktion") whose matrix elements are

&&(rtooj; rt'o'o'j') = g jI ~I 1t „, . . ;fp;,;... ;dx, . der'drdtdoo (19)
~ ~ z r

where a denotes the totality of subscripts novj rrt, while fig is an abbreviation
for the entire expression (12). As previously, the sum is over the two values
az' and Pq' for each iy', and P;, . has the unperturbed value (11). We
throughout suppose each of the factors of (11) norma ized to unity, and use
the asterisk to denote the conjugate imaginary. As stated in the intro-
duction, the single index n designates all the electronic quantum numbers
other than 0., while v is the vibrational quantum number. Although we are
now taking into account (12) we continue to neglect the periodic part of
(13). We do this as (13) gives exclusively elements which are not only in-

dependent of the amount of rotation j, but also are diagonal" with respect
to o. Hence the periodic part of (13) is of no interest in the rotational dis-
tortion and sigma-doubling effects considered in the present paper,

We shall consider separately, and in order, the effect of integrating in

(19) over the electronic or internal coordinates x~, , zr the vibrational
coordinate r and the rotational coordinates t, co. The eAect of the internal
integration, which is to be construed as including the sum over the various
spin wave functions, is to replace the P operators by the matrices P, (no;
n'o') (g =x, y, or z) giving the components of total electronic angular momen-
tum in a stationary molecule. The z-component, as mentioned in the intro-
duction is a diagonal matrix of the form P, (no , no) =o. "The elements of
I', and P„vanish unless 0' =0'+ 1, and are of equal absolute magnitude owing
to the parity of the two coordinate axes perpendicular to the hgure axis.
Their phase relations are such that

P,( o;re'o+ 1)= + t'P„(rto;n'o+ 1). (20)

These are all well-known selection principles connected withquantization

'0 The diagonality with respect to 0 of the matrix elements corresponding to the first
term of (13) follows from the phase relations (20). Such diagonality of the remaining part of
(13) is an easy consequence of the fact that 4 involves the angle p& defined in footnote 21,
only through the factor e"&1.
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about an axis of symmetry, and are readily established" from the fact that
there is an ignorable coordinate connected with rotation about such an axis.

The effect of integrating over r is to replace h' P„(no; n'o'')/8+'Mr' by

(BP„)(mov; e'o. v ) = J1 R„„(P„(vcr;m'o)h. '/8w Mr ]R„,„.r'dr (21)

with B=6'/8~'Mr', and with an analogous formula for the x component.
If the electronic quantum numbers n, a do not change except for different
orientations of the spin, then as the forces exerted by the spin moment are
relatively small, the equilibrium internuclear distances will be very nearly"
the same in the initial and final states, and R, and R„'„'will belong to the
same set of orthogonal functions which vanish except in the vicinity of a
common maximum point r=r, Th. is makes (21) very approximately a
diagonal matrix with respect to v whose elements are

(BP„)(mo;e'a') =-6(v, v. ')P„(eo. ; e'o')Bo, Bv h'/8w'Mr p'—— (22)

where P,(no; n'o') and P„(no; e'o'') (which unlike P„depend on r) are to be
evaluated with r =r, . The expression 8 equals unity if its arguments are
equal and vanishes otherwise. If the orbital electronic quantum numbers
are different in the initial and final states, the equilibrium moments of
inertia in these states will differ, and R„„and R„, will belong to different
sets of orthogonal functions, so that (21) cannot in general be simplified.
However, it may happen that the. vibrational excitation in the state n is
small. Then as first mentioned by Condon" in discussing Franck's theory
of electron jumps in molecular spectra, the amplitudes associated with

"Let pJ, , sf„pq be the cylindrical coordinates of an electron, referred to the axis of figure

of the molecule, and let p&=@&—@1(k=2, , f). If, first we neglect the spin, then it is easily
seen that the internal characteristic functions are of the form e' &1f (y2, , p1, sq, . ) {cf.
Kronig ). Without the spin P equals', and on shifting to our cylindrical coordinates the differ-
ential operators for l etc. given in footnote 9, it is found that because of the exponential
factor the matrix elements of l, /„ vanish unless 0'-=0-+1 and that the phase relations are as
given by (20). If we now seek to include the spin, we must add the Pauli spin operators to the
orbital differential operators to get the total angular momentum operators. The selection
rules are then easily proved to remain valid in virtue of the definitions (3) and the fact that if
the total angular momentum is conserved, C;, involves p1 through a factor e"l~& where
0-& =0 —

~ Zcq with c& defined as after Eq. (8).
Most of the literature (including the orginal Heisenberg-Jordan paper) has +i where we

have + i in (20). This would mean that in the state o- the wave function had (neglecting spin)
a factor e ' ~1 rather than e'~41, which appears legimate only if the momentum operators are
defined as ik8 /Bg rather than h8. . /2'Bg or if the matrix elements are defined as having the
asterisk attached to the second rather than first wave function of (19), but these are not
the usual conventions such as we use. The formulas for the matrix elements of the spin angular
momentum which Pauli gives at the bottom of p. 609 show that his convention on phases is
the same as ours, so that (20) applies to both orbital and spin ef;ects (in this connection one

.must be careful to examine the sign of Pauli's (s„) rather than his operator s„).
"Throughout the paper we neglect the slight dependence of the moment of inertia on

the spin quantization o-„also its dependence, likewise slight, on j due to centrifugal expansion."E. U. Condon, Proc. Nat. Acad. Sci. 13, 462 (1927).
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transitions to other electronic states n will be appreciable only if they have
such large vibrational excitation that R„, falls off relatively slowly away
from its maximum at r =ro, and so "overlaps" the sharp peak of R„.at ro ~

In such a case one can without much error take the bracketed factor in (21)
outside the integration, evaluating it at r =ro, and then (21) simplifies into

(BP„)(nav; e'o. 'v') =BP„(eo;n'a'.)a(nv; e'v') (23)

where the a(nv; n'v') are the coefficients of the development of R„„ in the
R„„, i.e. , the values of the right side of (21) when the bracketed factor is
deleted. Since both the R„, and R„, are normalized orthogonal sets, the
a's form a unitary matrix, making

ga(nv; e'v')a*(ev"; e'v') =8(v, v"), a(nv; e'v') =a*(e'v'; ev)
v'

In view of all the foregoing, Eq. (19) now becomes

o ( j; ' +( )'.)=o)) )(; .
' +( ') ~(f g(t, )did (25)

with
1

g(t, (o) ud"s''o" — (a+ 1)(1—2t)+i +2t'—(~(1 —t)'(2—ud, „t'"(1—t) '(' a~ at

where d", s", p" are the values of d, s, p associated by (18) with o, j, nt,
and d', s', P' are those associated with 0 + 1, j', I'. The integration over co

shows us immediately that m=m'. The integration over t is slightly more
Pi%cult, but is readily effected if one uses the following relations

Hi(eo vj; e'o + 1v'j') = Hi*(n'o + 1v'j'; navj) (26)

d Ud, 1 s d (d+s+ p) (p+1)
U dao + Ud ls lv+) (27)——

dt 2 1 —t t t(1 t)—
1 s d (p+s) (d+ p+1)+—~d,„—— — U~+I. I.p
2. 1 —t t t(1 —t)

Eq. (26) merely expresses the Hermitian property, which is to be expected
with proper normalization, and halves the number of terms to be calculated.
Since the matrices (BP) are surely Hermitian, (26) is obtained by partial
integration of (25) without using the special properties (17) of the u's. The
relations (27) are identities following from the definition (1/), with the
notation E/ for the function (2or)'" ue '" which has no factor involving
comd. By means of (26—27) the integrand of (25) can be reduced, after inte-
grating over ~, to an expression of the form CU~, „,U~,„„where C is inde-
pendent of t but not of d, s, p&, p;. In virtue of the orthogonality and normali-
zation of the U's, the integral of such an expression is C when P~=P2 and

"The factor (27t-)'I' is included to make U normalized to unity when the normalizing
integral is taken over t alone, whereas that for u is to be taken over both & and'co. We suppose
the normalization relative to the element of integration dt rather than sin0d0 =2dt.
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zero otherwise. The values of p&, p2 and the manipulation in the reduction,
depend on the particular form assumed by the connecting relations, (17)
which is influenced by the signs and relative magnitudes of m and 0. The
first and second forms of (27) are respectively useful according as zr is numeri-
cally greater or smaller than m. When, however, one shifts back to the
o,j, m notation the result is in all cases (barring a trivial question of signzz)

H, (n'os; n'v. 'vj'') = 0 unless v.'= a+ 1, j '=j (28)

H, (novj; 'n+v1 jv) =2(BP„)(nov; n'u+1v')[(j+ —,
' —o)(j+,'+o)]1"—' (29)

where v denotes the mean v+1/2 of the initial and final values of v. This
is the final answer, and is essentially similar to Kronig's, except for some
simplifications resulting from our use of (20), etc. The diagonality with
respect to j expressed in (28) could have been suspected from kinematical
considerations, as a precession of the entire molecule about the "invariable
axis" of total angular momentum such as is associated with the quantum
number j will not affect the magnitude of the interaction between the elec-
tronic and rotational angular momentum. The complete independence of
(29) of the magnetic quantum number zn is, of course, due to the arbitrariness
of spacial orientation.

Dzrac's "quantum theory of the electron "Ostensib. ly we use throughout
Pauli's scheme of two wave functions per electron. According to Dirac's
newer "quantum theory of the electron, ""there are presumably four wave
functions per electron, although the extension of the Dirac theory to systems
with more than one electron has yet to be given. It is, however, only reason-.

" If the rotational characteristic function is defined in precisely the fashion (17) a minus

sign must be inserted before the right hand side of (29) in the domain tn)0. Such a differ-
ence is of no consequence, as by examination of (25) it is seen that the sign can be made positive
throughout by altering the sign in the definition of some of the characteristic functions. This
is legitimate because they have each an arbitrary phase factor of modulus unity. To make the
sign positive throughout, as assumed in writing (29), the characteristic functions u which must
be used are u'=( —1) u for m) o and u'=( —1)~u for 0 &m, where u is defined as in (17).
As it is easily seen from (29) that ud, „(t) (—1)"u.d„(1—t), it follows that u'(j, o.,m, t) =
( —1)™u'(j, —~, m, 1 —~). In the rotational characteristic functions u" which Kronig uses he

supposes that u"(j, 0-, m, I) =(—1)™+~u"(j, —0, m, 1 —f). This implies that u"=u for
0/m &0, u" = (—1)'u for 0 &a/m &1, u" =(—1) u for 0/m)1. Such a definition inserts a
negative sign into the right side of (29) for 0(0 and with Kronig the right side of (29) changes
sign with rJ. There is thus agreement with Kronig when the phase factors are considered, and
his combination relations, of course, apply when we are careful to discriminate between the
symmetric and antisymmetric states. He does not, however, mention these peculiarities of
sign in his definition of the characteristic functions.

It is to be noted that (29) does not involve the spacial quantum number m. This is just
what we should expect, as the energy cannot depend on spacial orientation in the absence of
external fields. If this independence of orientation be accepted at the oustset, it is only neces-
sary to make the calculation for one particular value of m. As Witmer notes in connection with
a somewhat different problem, (Proc. Nat. Acad. Sci. 13, 60, 1928) the special case j=m is
particularly easy, since here by (18) P =0. It is, however, a rather satisfying check to have
verified that m does drop out in the general case."P. A. M. Dirac, Proc. Roy. Soc. 11'7A, 610; 118A, 351 (1928).
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able to suppose that an extended theory would possess the following features:
(a) the terms representing the kinetic energy of the nuclei enter in the
Hamiltonian, at least very approximately, in an additive fashion with the
ordinary electrostatic potential energy term, " (b) that the transformation
co%cients in rotation can be obtained as in Eq. (7) by superposition of those
of individual electrons separately, and (c) that operators corresponding
tospinsof individual electrons are defined as in the one-electron case. The
supposition (a), of course, neglects internal spins of the nuclei, but this is
presumably a very high order effect still shrouded in obscurity. If one grants
these premises, the use of four rather than two wave functions per electron
occasions no difficulty in our work, for in a one-electron system each quartet
of Dirac wave functions is separable into two pairs such that the members
of each pair transform under a rotation independently of the other pair,
and in exactly the same fashion as Pauli's two wave functions. " Thus by
(b) even if we use 4r rather than 2i wave functions, each one of them in the
x', y', z' system is still expressible in the fashion (6) as the sum of only 2

wave functions in the x, y, z one. The passage from (6) to (10) proceeds as
before because according to Dirac the spin angular momentum operators
s,& etc. work independently on each pair of the quartet in just the Pauli
fashion. After Eq. (10) there are no modifications worth mentioning except
that in the formula (19) for the matrix elements we must, of course, (unlike
Eq 6) su. m over all 4s wave functions. The final formulas (16—17) (28—29)
ensue, and so all the results of the present paper hold with the Dirac theory.

3. ROTATIONAL DISTORTION OF SPIN MULTIPLETS

In a stationary molecule the motion of the spin angular momentum s
is very approximately that of a regular precession about the axis of figure.
Following Heisenberg and Jordan's work" on the Zeeman effect, we may then
take the non-vanishing matrix components of s to be

+is.(o,o, +1)=s„(o., ; o., +1)=-,'Ls(s+1) —o,(o, +1)j"' s, (o, ; o,) = o. (30)

Actually, as will be shown on p. 492, the inHuence of the perpendicular
component of orbital angular momentum distorts the precession and hence
formulas (30), but this is a higher order effect important only in the later
sections on sigma-doubling. In considering the effect of the molecular
rotation on the spin motion, we need use only the spin part of the angular
momentum P„ in (29). Actually P„=s„+f„but very approximately the
terms coming from the orbital part t are independent of 0'. and have ~« = + 1

The writer is indebted to Dr. J. R, Oppenheimer for this suggestion regarding the ad-
ditivity of the nuclear and potential energy terms."Cf. C. G. Darwin, Proc. Roy. Sec. 118A, 656 (1928}.

"Heisenberg and Jordan, Zeits. f. Physik 3V, 263 (1926}. They applied to the spin the
formulas for angular momentum first derived in the following reference. Besides the reversal
of the sign of 2 explained in note 21, we use x,y axes differing by 90' from Heisenberg and Jor-
dan' s, so that our x,y are the same as their y, —x. We do this because it is convenient for the
elements of the y component to be real in our work.
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rather than 60, = + 1. Using the independence of moment of inertia of
spin expressed in (22), we may now consider the perturbation matrix (29)
to be

XII(o, ; a..+ 1) =8 [j(j+1) —(a &+a,) (a&+o, + 1. ) ]'~' [s(s+ 1)—a.,(a., + 1)]"' (31)

The diagonal elements of the magnetic plus rotational energy are

&a(o. ; a.) =f(a.)+Bj[(j+1) (a~+a.—) ']+&[s(s+1) a']— (32)

Here f (o,) is the ordinary so-called "magnetic energy" of interaction between
the spins and orbital angular momentum. Of course f depends on the other
electron quantum numbers n, o.

&, besides fT„but these are fixed within a
rnultiplet and so not listed as arguments. If the ordinary "cosine-law" of
coupling between s and the component of l parallel to the figure axis is
applicable, then

f(a,) =A a,a, (33)

The second term of (32) gives the ordinary "symmetrical top" rotational
energy (16). The third term of (32) is the contribution of s to the mean
value II'qa of the expression (13). As P, =s,+I„ the erst term of (13)
involves s, and from (30) s '+s„' is a diagonal matrix s(s+1) —o,', ,while
the average of s,l or s„t„is zero, at least with the independence of spin and
orbital precessions presupposed by (30). We have discarded the balance of
8'~3, as it is independent of 0„.

If the frequency of molecular rotation is small compared to the spin
multiplet frequency intervals, the energy can be developed as a power series
in the ratio X' = 2I/A, then small, of the orders of the molecular and magnetic
energies. Well-known perturbation formulas" show that then the energy
is to terms of the order )"

I
K(a. ; a.+I) I'

I
a, (a, ; o.—I) Ia

W = Ha(a, ;a,)+-
hv(a, ; a,+1) hv(o, ; a, —1)

(34)

The denominators hv(o„&r, ') =IIa (o, ; o,) —H, (o.,'; o, ') can by (32) be taken
as f(o,) f(o, ') to —an a.dequate approximation since they enter only in second
order terms The val. ues of the JI elements in (34) can immediately be
substituted from (31—32). If we then assume (33), the formulas so obtained
for the three levels of the triplet case s= l are those already given more
explicitly on p. 261 of Hill and V. V. An interesting thing to note is that by
(31) the two last terms in (34), which are the corrections for rotational
distortion, involve j only through a factor j(j+1)+C where C is independent
of j but not of the multiplet component. This means that for any s the
eRect of rotational distortion is approximately, assuming the coupling always
remains nearly type (a), simply to change the constants A' and 8' in the
conventional formula A'+2I'j(j+I) for molecular energy levels. As the

"Born, Heisenberg, and Jordan, Zeits. f. Physik 35, 587 ff (1926).
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constants by which j(j+1) is multiplied in the correction terms of (34)
depend on O„A' and 8' will have different values in the various multiplet
components. Thus the apparent moment of inertia, deduced from experi-
mental values of the constants A' and j3' without care to resolve the rota-
tional distortion, i.e. the last two terms of (34) from the first term, may have
entirely different values in the various multiplet components, even though
the true moment of inertia is very nearly the same. One further point is
that regardless of whether the multiplet is "regular" or "inverted" the
largest apparent moment of inertia 8' always goes with the spin component
of largest energy f He. nce comparison of the different values of 8' will not
tell whether a multiplet is regular or inverted.

It is to be emphasized that (34) is a good approximation only if the
rotational distortion, which increases rapidly with j, is so small that Hund's
case (a) (explained in the introduction) is a good approximation. An anala-
gous development in I =1/X', valid instead near Hund's case (b), is given in

Eq. (23) of Hill and V. V. In the general intermediate case between (a) and
(b) standard matrix transformation theory shows that the energy levels are
the roots of the "secular" determinant

~
H(s, ; 0,') —fi(0, ; 0,') w

~

= 0 o„a,'= —s, , s (35)

which yields an algebraic Eq. "for S' of order 2s+1. For the doublet case
s = 1/2 this reduces to the simple formula"

&= 2 If( k)+f(—k)]+&f(i+2)' «']+ I—[473'(i +I'-)'+~&(~& 473«)]"' (36)—

with AZ denoting the spin doublet width f(1/2) f(—1/—2) for a stationary
molecule. If we assume the "cosine" law (33), which we now see is unneces-
sary, (36) is identical with Hill and V. V's formula (27) obtained by an
entirely different method, in which the unperturbed system had the spin
loosely coupled in Hund's fashion (b) and included the rotational rather
than magnetic energy in the unperturbed Hamiltonian. In the doublet case
the transformat'ion matrix T associated with the determinant (35) can
immediately be determined, and the effect of rotational distortion on in-
tensities thereby determined by the familiar matrix formula q= TqoT
The formulas for T are similar" to Hill and V. V's Eqs. (37—38) and the
original unperturbed case (a) amplitudes g, are, of course, the II6nl-London

3' It is doubtless possible to establish the general identity of the determinantal Eq. (35)
with the corresponding Eq. (20) of Hill and V. V, , instead of verifying numerically the agree-
ment, as we do, only in the special cases s =1/2, 1. Perhaps methods similar to those given by
Schlapp (Proc. Roy. Soc. 119A, 313, 1928) would be useful."Eq. (36) can be derived in a semi-theoretical manner without going through the labor
of calculating the perturbing matrix (29) or (31) if we assume the diagonal elements to be given

by (32), and if we grant that the off-diagonal elements are linear in B and independent of f.
Then in the doublet case the magnitude of the needed perturbing element HI( —1/2; 1/2)
is uniquely determined by the requirement that the formula for W yielded by the determinant
(35) shall reduce to the well-known result W=Bj&(jf,+1)—Bo-I' in the limit f=0 (Hund's
case b).
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ones given in Eq. (2) of Hill and V. V. The reader is referred to their paper
for discussion of the superiority of (36) over the old quantum theory, and
especially of intensity relations, including allowance in the latter for the
fact that in electronic transitions the magnetic coupling strengths will be
different in the initial and final states. As first noted by Mulliken, " Eq.
(36) reduces rather fortuitously to the old Kramers-Pauli formula when
DE=2,8o.~. The reader is referred to his paper for comparison of (36) with
experiment.

4. SIGMA- TYPE DOUBLING IN SINGLET STATES.

We shall first treat sigma-doubling in states which have zero resultant
spin angular momentum and which hence belong to the singlet spectral
system. Our procedure is superficially different from Kronig's, as we use
an unperturbed solution corresponding to a constant angular momentum o.

about the figure axis (i.e. a wave function involving the cyclic angle p, de-
fined in footnote 21 only through a factor e"4',) whereas Kronig uses a wave
function which is a linear combination of those corresponding to angular
momenta +o and —o.. In a one electron system this means that Kronig
uses sines and cosines where we use exponentials. Kronig's method is prob-
ably the more elegant, as by dividing states into two classes which do not
combine with. each other in the Hamiltonian function he is able at the out-
set to remove the degeneracy difhculties coming from the identity of energies
for +o and —o in the stationary molecule. It is, however, an alternative
method, possibly of some interest, to keep as long as possible a solution
corresponding to a constant angular momentum of uniform sign relative
to the axis of figure. In fact the procedure is illustrative of a perturbation
method when degeneracy is encountered only in higher approximations.
We shall seek to develop the energy as a power series in 8 = fv'/8m'Mr', as
is legitimate if the rotational frequencies are small compared to the internal
electronic frequencies of the molecule. To a first approximation, i. e. terms
of the order 8, there is no difhculty with sigma-type degeneracy, as the
perturbing matrix elements given by (29) have only Ao = + 1 and so do not
connect the states +o. and —o. if o. is an integer. We can then use the per-
turbation theory of non-degenerate systems, which tells us that to a first
approximation the perturbing elements (29) have no effect on the energy,
owing to the absence of diagonal elements, while the corresponding tr'ans-
formation matrix is S= 1+Si'4 with

S&(evvj; v,'v'vj') =H&(eavj; v'a'vj')/hv(vvvj; v'o'vj') (37)

where v'=v+1 and hv(n&wj; n, 'o''vj') =H, (vvvj) H, (n'v'v—j'), while H& is

"R. S. Mulliken, Phys. Rev. 32, 388 (1928).
'4 Ke write our series development as 1+51+ ~ ~ rather then the more usual I+X51+ ~ ~ ~ .

The customary form could, of course, be obtained by multiplying the right side of (29) by ~.
This, however, is unnecessary, for although B, being a matrix, cannot be used as an ordinary
parameter, nevertheless the power to which its elements are raised identifies the order of
approximation.
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given by (29). The unperturbed energy Hs we now and henceforth suppose
inclusive of the vibrational and ordinary "symmetrical top" rotational
energies associated with Eqs. (14—15—16), as well as of the internal energy,
whereas in section 2 we'used Hp to denote just the internal energy of a
stationary molecule. Use of (37) makes the transformed Hamiltonian

5(Hs+EIr)5 '

a diagonal matrix only to a first approximation, i. e. , if we keep the portion
I&p+ S]IIp IIpSl which is of order 8 or lower, and discard the remaining
portion,

&pS&' —Ss8pSy+SlII l.
—HiSs+ .

To solve the problem to a second approximation we can regard this part as
constituting a new perturbation matrix, which we may call" H"), and which,
if we do not go beyond 8', will involve elements of the form Ag =0 and
Aa = + 2. We can now, provided 0 &1, again apply the perturbation theory
of non-degenerate systems and find another, superposed, canonical trans-
formation, which will make the Hamiltonian a diagonal matrix to terms
of the order )3'. . . . . This process could be repeated indefinitely were it
not for the complication that after applying the transformation of order
8' ' we find that when we set up the new perturbing matrix H(" of order
8", it will contain "degenerate" elements of the form H"'(nnvj; n —ovj)
connecting states which up to this stage have been of identical energy.
The explicit formula for these elements is a bit formidable appearing, but
with the aid of conventional perturbation theory is seen to be" "

H(")(n v; n, —v)

H1(nav; n'o —1v') H1(n'o- —1v'; n "o-—2v") ~ ~ ~ H1 (n*, —o-+1v*;n, —o. , v)

h ~ v(nav; n'a —1v')v(nov'; n"o —2v") v(nov; n*, —a+1, v*)

"Our H('), ~ ~ ~ are not the same as Born, Heisenberg and Jordan's H2, ~ ~, as our expres-
sions result from applying successive transformations to a Hamiltonian originally of the form
Ho+H&, whereas they consider the more general problem in which the perturbative potential
has at the outset terms of higher order H2, ~ ~ ~ ." In writing (38) and following expressions we assume the given number a to be positive.
This involves no loss of generality, as one end or other of the range o., ~ ~,—o under con-
sideration must be positive.

The product in the numerator of an expression such as (38) can be calculated neglecting
entirely the sigma-type degeneracy for the "inner levels" o.—1, ~ ~ ~, —tT+1. In other words
we can use in the numerator the values of the matrix elements which would be obtained
without making for each of the inner levels transformations analogous to (42), even though
the degeneracy phenomenon is encountered for the inner levels at earlier stages of approxima-
tion than for the outer ones. The reason for these statements is that the sigma doubling does
not usually appreciably aA'ect the frequencies in the denominator, and a sum of the form
Pss(nk)k(km) over a set of degenerate levels k is invariant under a transformation T wholly
within the set provided n, m do not belong to the set. (To prove the latter proposition we need
only note that a(nk) = (TaoT ')(nk) reduces to (uoT ') (nk) and b(km) to (Tbo) (km) if m, n are
not in the set k undergoing transformation. The desired invariance is then a consequence of
1' 'T=1.)



J. II. VAN VI.ECE

where the superscript * is an abbreviation for 20.—1 primes. Here and hence-
forth we suppress the index j which is involved in all the elements but which
remains constant as they are diagonal in j.

At this stage we must use the perturbation theoryfor degenerate systems.
We need consider only the interaction between a pair of states nov and n —ov,
as the interaction of this pair' with states outside this pair gives only non-
degenerate elements and a contribution to the energy of the order 8'+'.
Thus the term W' ' of order 8" ) in the energy is a root of the determinant

H &"'(no v; na v) —W &"

H&"&(n —o.v; nav)

H" '(nov; n —a. v)

H&" (n —ov n —av) —W'"& =0 (39)

Now

H&"(nov; nav) =H&"&(n —av; n ov), — (40)

as up the present stage there has been no discrimination between positive
and negative values of o, since simultaneous alteration of the sign of both
the initial and f&nal values of o in (29) does not change the matrix elements
(29) except possibly for phase factors involved in the P's. These phase
factors do not affect the energy as this depends only on the absolute value of
the matrix elements. Thus the two roots of (39) differ from each other by
an amount

hho=2[II"'(nov n —ov)H&"'(n ov; nav)]"—'=2
~

EI&"'(nav; n an) ~— (41)

Eq. (41) shows that the interaction between positive and negative values
of 0. causes a cleavage of pairs of energy levels which would otherwise
coincide. This is the phenomenon of "sigma-type doubling. " The width of
a doublet is given by (41) to terms of lowest non-vanishing order in 8, and
the doubling is thus an effect of order P', as previously found by Kronig. '
Hence the doubling should be much narrower for D or F than for I' terms.
In fact only in P terms is it ordinarily discernible. Obviously S states should
show no doubling, as with 0. =0 there can be no question of resonance be-
tween positive and negative values of 0.

The transformation connected with the determinant (39) "scrambles
together" the angular momentum values +cr and —o, so that it is incorrect
.to identify one component of a sigma-type doublet with an angular momen-
tum +0. about the axis of figure, and the other component with an angular
momentum —0. Instead in either component this angular momentum
continually changes sign, and has the average value zero, but its square is
always approximately o'. The mathematical basis for these statements is
that owing to (40) the transformation matrix" associated with (39) has the
elements

S"~'(n avnov) =S'"&(n &rv; n ——av) = 5&"(nav; n av)—
= —S&~'&(n —ov; nav) = (1/2)'&~ (42)
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The transformation given by (42) is superposed on the transformation
S= 1+S,+Sp+ introduced in the first 20 —1 orders of approxi-
mation made prior to the encountering of the degeneracy. However S„
S2, ~ S2. l become infinitesimal when 8 does, whereas the elements
(42) retain finite values. The new wave functions O'„,„=P„,„S(n'&r''v';
n&rv)+'„. „are thus approximately (4'„,.++'„,„)/2"&2, i.e. linear com-
binations of the wave functions corresponding originally to left and right-
handed rotations about the axis of figure. These sum and difference com-
binations are precisely those used by Kronig as the starting point of his
perturbation calculation.

'P states. An explicit formula for the diagonal elements of H in (39)
would be exceedingly cumbersome with arbitrary values of o., far more so
than the expression (39) already derived for the off-diagonal elements.
The primary interest is in the doublet widths rather than the absolute value
of the energy, and (41) shows that fortunately this width does not involve
the calculation of such diagonal elements. In 'P states, however, 0 equals
unity, and the sigma doubling effect appears in the second approximation
in,8. Here it is easy to calculate the absolute as well as relative energies,
for the well-known expression" for W2 in non-degenerate systems" shows
that now the diagonal elements of (39) become

H&" (elv i v1v) =H&'&(m, —1v; I, —lv)

= Z f I
H&(v1v; I'v'v')

I
'~I&v(Nlv; &i'&r'v') I (43)

n, 'o'' v'

where a'=0, 2. Using (28), (38) and (42), we see that the roots of the deter-
minant (39) are now

W& "&= —2C+(C+Ci)j(j+1)
with

—2C+ (C+C,)j(j+1) (44)

I (BP„)(N1v; I'2v') I' (BP„)(e1v;e'Ov')'
Ci = 8 — — — (45)

hv(llv; '&2i)v„„~evens hv(&&1v; r&'Ov')

where the summation over the S states e'0 is to be extended over only
those of the even type. The expression for C& is similar except that the
summation is over the odd S states. We classify an S state as "even" or
"odd" according as its internal wave function 4„., is invariant or changes
sign when one makes the transformation x;9=- x;, y; = —y, , s, = s; (i = 1, f)
This division of S levels into two types is suggested by Kronig's papers. '
He shows that all S wave functions have either the even or odd property,
as otherwise there would be two independent wave functions belonging to a
single 5 state. Before making the tranformation (42), we can without loss

" Because of the degeneracy encountered in the second approximation, the expression 8'2
calculated on the assumption of a non-degenerate system is not the actual second order energy,
but does equal the diagonal elements of II in (39).
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of generality suppose that%'„, (x, y, s) =g'„, .(x,—y, s) as in the beginning
we supposed that the states +0. and —0. differed only in the sense of rotation
about the axis of figure. The operator l„=i g(s; fi /»; —x;& ./8s;f)
is invariant with respect to the transformation under consideration.
Furthermore in singlet spectra P =I, and hence (19) shows that P„(n'0;
n, —1) has the same or the opposite sign from P„(n'0; n1) according as the
state n 0 is even or odd. This, taken with the Hermitian property (28) of the
matrices, shows that each term in the sum (38) is real, and that (44—45) do
indeed follow from (38, 39, 43). In certain simple systems it may happen
that S states are all of the even type, making C& =0, though this is not true
in the general case. In a molecule with one electron, for instance, the S
wave functions are all even, as they are of the form 4„.( p, z), where p, z are
cylindrical coordinates (cf. footnote 21).

The important thing to note about Fq. (44) is that it shows that the
width of a P sigma-type doublet is (C, —Co)j(j+1), and therefore approxi-
mately propotional to j.' Also when (44) is added to the original energy
values as'sociated with (14—16) to obtain the complete energy, we see that
the inclusion of the terms in 8 does not impair the ability to represent the
dependence of the energy on j in a rigid molecule by an expression of the
form A'+8j'(j +1), but the constant 8', and hence the "apparent moment
of inertia" computed therefrom, will have different values in the two doublet
components.

If the vibrational excitation is small in the state n, though not necessarily
in the state n', the formulas (45) may be simplified by the use of (23—4).
Then"

n'rr'

and the summation over v' in (44) can be eliminated, as ordinarily the
dependence of ~ on v' can be neglected in comparison with its dependence
on n'. Still further simplification of (45) can be eifected if we assume that
the orbital angular momentum has a constant magnitude and precesses
uniformly about the axis of figure, and that further the moment of inertia
is independent of o.. These assumptions we will henceforth for brevity refer

" It is to be clearly understood that without the simplification resulting from (23—24) the
matrix (BP„) is not identical with the product of the ordinary band spectrum constant
B=h2/821-2I and the angular momentum matrix P„, but is rather the product of the two
matrices B=h'/87r'Mr' and P„. The expression for (BP„)is given by (21) and of course involves
the initial and fInal states symmetrically. Similarly in the matrix Al, used in later sections,
beginning with Eq. (54), A is not a constant but rather a matrix proportional approximately
to 1/r', as the magnetic coupling energy is proportional to this power of r in atoms. Simplifica-
tion by means of (23—24) is necessary before A can be identihed with the ordinary constant of
proportionality in the multiplet width, In section 3, however, A could be considered as a
constant in (33) etc. as we did not there consider the interaction of the given P spin doublet
with any other electronic states; this amounts to taking diagonal terms in the matrix A. The
expressions AB, Bp, etc, to be used in section 5 starting with Eq. (58) denote the diagonal
elements of A or B for an Sor P state.
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to as the hypothesis of pure precession T. hey are not good approximations
except when the valence electron (or electrons) is in such a large orbit that
it exerts little bonding power in holding the nuclei together. However, the
hypothesis of pure precession is convenient and justifiable at least in esti-
mating the order of magnitude of the C's. When it is made the components
of / are dis, gonal in u, and given by expressions identical with (30) except
that 1, 0 ~ replace s, 0,. We then find. "

C = 8'(/s+/ 2)/hv—(1,2), C, =28'/(/+ 1)/hv(1, 0), Cs = 0 (46)

If we further suppose /=1, and that in a stationary molecule W(o.) =Au'
(i.e. that the coupling of / to the axis of figure is proportional to the square
of the cosine between / and this axis) we have a model so simplified that it
is the same as that used in Hill and V. V.'s section on sigma-doubling,
which employed a different method using Hund's case (d) (loose coupling of
/ relative to the rest of the molecule) rather than case (a) as the unperturbed
system. Eqs. (44—45) are then identical with their corresponding formula
(third line of their Eq. 43). Incidently, with these final simplifications a
closed formula (2nd and 3rd lines of Hill's and V. V. 's Eq. 42) can be obtained
with either method, including all powers in 8, instead of using successive
approximations as we do and stopping with 9'.

D states Here by . (29), (38) and (40), the dependence of the doublet
separation on j is of the form

h/6=d(j 1)j (j +1)(j+2—) (47)

as already mentioned by Kronig. ' The constant d is of the order 3 and with
the hypothesis of pure precession

d = 284(/ —1)/(/+ 1)(/+ 2) /h'v(2, 1) 'hv(2, 0)

5. SIGMA DOUBLING IN 2P STATES

In section 3 we considered the rotational distortion of spin multiplets,
but omitted the superposed sigma-type doubling, as we disregarded the
perpendicular component of orbital angular momentum. In section 4 we
treated sigma-doubling without spin, which is legitimate only in singlet
spectra. We must now handle the more complicated problem of the mutual
interaction of the spin and sigma doubling effects. Here the latter effect
does not appreciably influence the former, but the former may completely
change the latter. This is true because sigma-type doublets usually have
small widths compared to the separations in spin multiplets and in rotational
energy sequences, and so cannot greatly modify these separations. On the
other hand, the angular momentum due to spin can profoundly alter sigma
doubling, so that often the latter is entirely different in 'P states from what

'0 As the present section relates to singlet spectra, there is now no distinction between the
vectors P and 1. Without the hypothesis of pure precession, however, the vector / does not
have a constant scalar magnitude [l(/+1) ]'~'.
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it is in the 'P. In general the behavior is quite distinct depending on whether
we have Hund's case (b) or (a).

Case (b). In Hund's ideal case (b) the only effect of the spin is to cause
a precession of j&, which is the total angular momentum exclusive of spin,
about the inclusive total j, but this precession is so slow as to be negligible
if the spin forces are very weak. Hence with perfect case (b) the effective
angular momentum is that exclusive of spin, and the interaction between
orbital angular momentum and molecular rotation is identical with that in
a singlet molecule of total angular momentum jI,. The sigma doubling is
then the same for all components of a spin multiplet, and identical in magni-
tude with that calculated for singlet states except that jI, everywhere replaces
j. These results hold for any multiplicity. In particular we see, using (44),
that in case (b) I' states, the various spin components having the same
value of jz should exhibit equal sigma doublings proportional to jl,(jr+1).

Complicationsin case (n). As the phenomena in Hund's case (a) are more
complex, we shall in the balance of this section confine our attention to 'P
levels, as they are the simplest multiplets and probably the commonest.
In view of the perturbation theory given in section 4 it doubtless at first
thoughtappears as though the 'Pu~ component(o, = —1/2, o =o~+0, =1/2)
should exhibit a sigma doubling width of the first order in 8, and the 'P3/2

component (o, =1/2, 0 =3/2) one of the third order, as one transition of
the type Ao = + 1 involved in the perturbing matrix elements (29) suffices
to connect the states o. =1/2 and o = —1/2 whereas the superposition of
three such transitions is needed to connect +3/2 and —3/2. This, however,
overlooks the fact that with the spin the criterion for terms with sigma-

type degeneracy is not just 0 = —o but is instead is the more strigent con-
dition 0., = —a., ' 0~ ———0.~'. If we neglect all interaction between the com-
ponents of s and l perpendicular to the axis of figure, the spin and orbital
angular momenta will precess about this axis at different, uncoordinated
rates, so that the matrix elements of /„ will be all of the form Ar~ ——+1,
~o, =0, whereas those of s„will all have Ao.

~
——0, Ao., = +1. As P„=s„+I„

the perturbing matrix elements of (29) become entirely of the forms

Aa ) = + 1, 60, =0 and Acr ) ——0, 60, = + 1 (48)

Three transitions of this character are needed to connect 0., = —1/2, o ~
——+1

with o, = +1/2, o ~
———1 and so without interaction between the perpendicu-

lar component of s and that of / we would obtain a doubling for the 'Pi/2
component of only the third order in 8, the same as for 'P3/&. This is contrary
to the experimental fact that the 'PI/~ state often shows a much larger sigma
doubling than the 'P3/2 The reason for this observed dissymmetry is that
actually there is always interaction between the components of s and l
which are perpendicular to the figure axis. This can be seen in the following
way:

Digression on Hmnd's case (c). Suppose the interaction between s and l
were so large as to overpower the "non-centralness" defined in the intro-
duction, but that the effect of non-centralness is still large compared to the
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rotational distortion. Ke then have a situation which Hund' dubs case
(c). The parallel components of s and I will cease to be separate quantum
numbers, but the sum of these components will still have a constant quantized
value 0, and the vector resultant of s and 1 will have a quantized magnitude
i analogous to the usual inner quantum number. We use the notation i in
place of Hund's j, as we reserve j for the total molecular angular momentum.
If 2 executes a pure precession about the axis of figure, the elements (29)
become of the type Ai =0, 60 = + 1 the complication of the separate parallel
quantizations o.

& and 0, now disappearing. Sigma-type doubling is encoun-
tered when 2=2', 0 = —O'. Consequently the state 0 =1/2 should exhibit
a sigma doubling width of the first order in B, and proportional j+1/2, but
the state 0 = 3/2 one of the third order, and proportional to(j —1/2) (j+1/2)
(j+3/2), as can be seen by using Eqs. (29), (38), (41). Explicit formulas
for the factors of proportionally could immediately be written down, but
we shall not give them, as such strong interaction between s and l as to give
case (c) is a rare, if not purely academic occurrence, and as formulas for
illustrative special cases of (c) have already been given by Hill and V. V.
in their Eq. (43). They used another method of calculation already described,
and computed the doublet widths on the assumption of a binding force
proportional to cos' (2, ir), with 2=1/2, 3/2 (0 in their notation), the values
to be expected as the resultant of s=1/2 and 1=1. The important thing
to note is that the component 0 = 1/2 exhibits an enormous sigma doubling
of the same order of magnitude as the rotational energy intervals themselves.

Actual case (/3). Ordinarily Hund's case (a) represents the true state of
affairs much more accurately than his case (c), but any interaction between
the perpendicular component of s and that of / may be regarded as at least
the beginning of a transition from case (a) to (c). Hence we can understand
qualitatively why the P&/2 state should exhibit a larger doubling than the
I 3/2 ~ Quantitatively this is due to the fact that owing to the interaction
between the perpendicular component of s and that of l the matrix P„will
indeed have elements, though small, of the form D~. = +1, Do ~

= —2 which
connect o, = —1/2, oi ——1 and 0, =1/2, oi ———1 in one transition 60 = —1.
The magnitude of these elements is calculated in a following paragraph
and proves to be proportional to the product of 8 and the magnetic inter-
action energy, making the sigma doubling of the Pj/& state not exceedingly
large even though of the first order in B By (29) an.d (41) the formula for
the width of this doublet is

Bi/2) h/1v =/3(j+1/2) with /3 —4
I
(BI'.)(P i/2, I' 2/2)I-(49)

The corresponding width for the P3/2 state may be calculated neglecting
entirely the interaction between s and l, as here unlike in P&/&, this inter-
action does not make the doubling of lower order in B. This width is by (29),
(38), and (41)

B3/2) h/1i =b(j —1/2)(j+1/2)(j+3/2) (50)
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If we make the hypothesis of pure precession (p. 489) for s, but not neces-
sarily for l, the value of the constant b is by (30)

b=16B Q[(—1)
I
(BP„)(P;S)

I
/hv(P; S)hv(Pgtg ', Pgt2)] (51)

S

In writing (49), (51), and all future equations, we for brevity index the
matrix elements with respect to the spectroscopic nomenclature of the
initial and final states, instead of the q'uantum number, as indicated in the
following scheme

S1/2

~ n 1n, al, fT„V S )0) 2 pP j

+—3/2
(52)

n, 1~v, n, 1, ——,, v, n, —1,—,, p, n, —1, ——,, v
1

Otherwise it would be necessary to list four initial and four final indices,
since we must now specify 0', in addition to the quantum numbers n, 0, v

used as indices in section 4. The distinction between positive and negative
subscripts, we may caution, has no direct meaning in terms of observed
spectroscopic levels, but is only associated with the quantization at the
outset of the calculation. Actually the sigma doubling finally scrambles
together the positive and negative values, the really vital type of classifi-
cation being with respect to Kronig's' symmetry and antisymmetry. The
summation over S is to be understood to extend over both all vibrational
quantum numbers v' and all electronic quantum numbers n' giving rise to
S states. The omission of subscripts from the arguments as in (51) means
that the spin does not appreciably influence the amplitude or frequency
under consideration. In writing (51) we have neglected terms with two PS
frequencies in the denominator and have utilized the fact that

(Bl„)(P;S)(BI„)(s;P )=( 1)
I

(Bl )(P; S) I (53)

where the exponent S of —1 is to be taken as an odd or even integer according
as the S state is odd or even in the sense explained just below Eq. (45).

Calcllatr'on of (BP„) (&~tu,'& uu). This calculation is needed to estimate
the order of magnitude of the constant a in (49) and may be made by per-
turbation theory assuming that the "magnetic" interaction energy between
s and 1 is small compared to the effect of non-centralness. Let us further
suppose that this interaction obeys the cosine law. The interaction between
the components of s and I which are parallel to the figure axis merely con-
tributes a constant term (33) in the energy which has already been utilized
in section 3, and which gives the bulk of the energetic effect of the coupling
between s and /. The contribution of the perpendicular components vanishes
as a first approximation on averaging over the electronic frequencies, and
so is a higher eff'ect which may be considered as introducing a perturbation
matrix"

IIv„=A [s t s.l, ] =A [r,l,+—svlv] (54)
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This is, of course, not to be confused with the other perturbation matrix
(29) giving the effect of rotation. As there is hitherto no coupling except
through the parallel components, we can apply the phase relations (20) to
s and l separately instead of to P and furthermore take the elements of /~

or I„ to be entirely of the first form (48) and those of s„s„to be entirely of
the second form. Hence by (20) and (48) the elements of (54) are all of
the form 60.=0, as we should expect. The transformation matrix corre-
sponding to (52) is 1+ST+ with

Sg(Pyy(2, ' Syg(2) = 2(As„l„)(Pyg(g,' Syv g)/hv(P; s) (55)

The transformed matrices for BP which are corrected for the perturbing
effect of (54) are given by QBoP OP—& IIo~ o+Q,j3oP o .PoP o5„0+, . . .

and no longer retain the form (48). Instead we find

(II2'„)(j„,; r vn) = r. p. of 2 Q [(—1)~(at„)(r;s)(III„)(s; s)/h&(P; S) ] (56)

where we do not bother to attach zero superscripts to the right hand ele-
ments. We have used the Hermitian property (26), and (53) which applies
to A as well as B, and use r. p. to denote the real part in case the ampli-
tudes are complex. If the vibrational excitation of the given P state and the
eA'ect of vibration on the energy are small, the vibrational quantum number
implicitly involved in the sum in (56) (cf. Eq. 52) can be eliminated by using
considerations analogous to those involved in (23—24). In writing (56) we
have employed simplifications which result from applying the hypothesis
of pure precession to the motion of s, permitting us to use (30) with s = 1/2.
We are usually well justified in applying this hypothesis to s but not to l.
If, nevertheless, we do apply it to /, we have a rough simple formula which
is very convenient for estimating orders of magnitudes, etc. , as then the
right side of (56) reduces to a single term and the constant a in (49) thus
becomes

a = 2AB [I(I+1)]//hv(J'; 5) .

At this point we must note that in discarding the periodic part of (13),
in particular the first term of (13) in our work in section 2, we have (since
P„=l„+s„)omitted a term of precisely the same form as (54) except that
A is replaced by 2B. This neglected term ought really to be included, and
has the effect of replacing A in (54—56) by A+ZB. This modification could
be neglected in the preceding study of case (a), where B/A is small by hy-
pothesis, but is vital for the forthcoming work where we consider the entire
range from (a) to (b), as otherwise the formulas do not have the proper
limiting values for case (b)."

"This contribution from (13) introduces an interaction between the components of s and l
which are perpendicular to the figure axis even without the supposition of magnetic forces,
and shows that even without such forces the 'P1/2 component should show a sigma doubling
without going to the third approximation in B as stated on p. 490. This is a purely academic
point, as by definition there is always a strong magnetic interaction in case (a). In writing
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General caseintermediate between (a) and (b). In treating this more com-
plicated intermediate case, where the magnetic and rotational energies are
comparable, we shall first consider the interaction between the P levels
under discussion and only one particular electronic S state. The results
of the interaction with the others can later be obtained by summing over all
values of the electronic quantum numbers which yield S states. This pro-
cedure neglects entirely the inHuence of the D states, but they have only a
negligible influence on the rotational distortion and sigma doubling phe-
nomena of the I' levels. With this restriction to one electronic S state,
which of course has two spin components we must consider the mutual
perturbation of the six levels (52). Assuming as a starting point ideal case
(a) quantization as in section 3, we find that the matrix elements in the
Hamiltonian connected with these six levels are as follows

H($1/2 $1/2) H(S I/2 ~—1/'2) —BS(j (j +1)+4]+E=n

H(/'g/g, r, /, ) =H(I' v(p,' E g/g) =B/ [j (j+ I)+~]—~A/ =P

H(I'3/2 ', &3/2) =H(&—3/2 ', &—3/2) =BPj[j(+1)—&/4]+2AP= 7
H(Sf /2S —f/p) H(s, (, , sl/2) BS(j+ ,) = (—1-)

H(I'~/2 '
&~/2) = H(I' 3/2

' /'-~/~) = B-/ [(j—2) U+ ~) 1"'= &

H(Pg/g, ' S y/g) = (—1)~H(I' g/2 Sg/9) —2(BI )(I'; S)(j+-',) = ( —1).'f

H(B&/& ~&/9) ( 1) H(+—3/& ~—&/&)
= 2(BI.)(&; &) [(j—2)(j+4)]"'=1

H(J.', (2, &g/Q) ( 1) H(P f/2 i S y/0) =(AI—„+2BI„)(J.' i &) =0.

(58)

Here, as elsewhere, the exponent of —1 is to be taken as an even or odd
integer, according as the S state under consideration is "even" or "odd" in

the sense explained on p. 487. For convenience of later reference the various
matrix elements have been designed by Greek letters, with the sign con-
ventions which subsequently prove most convenient. The I' state is taken
as the origin for measuring internal electronic (or more precisely internal
electronic plus vibrational) energy, so that this part of the energy will have
a value E=h/~(P; S) different from zero, either positive or negative, often
the latter, in the 5 state. With this observation the values given in (58) for
the diagonal elements n, P, y follow from (32—33). The values of the purely
spin elements 8, e follow from (29—30) or (31), and of the purely orbital
elements f, q from (29). We suppose the magnetic interaction between the
components of s and / perpendicular to the figure axis not incorporated in

the unperturbed or diagonal part of the energy, as this has permitted us to
calculate the other matrix elements as though the motion of s and / were
completely independent, rather than perturbed by the transformation (55),
a considerable simplification. Instead this interaction, when supplemented

{58),etc., we have not included explicitly the part B{l'+l„') coming also from the first term in

(13), as this merely has the effect of altering slightly the "electronic" energy levels, and is

incorporated by altering slightly the energy difference 8 of the S and I' states.
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by the correction explained in the preceding paragraph, gives rise to the
matrix element 8. The specific value given for 0 follows from (54) with this
modification, and the assumption that the motion of s satisfies the hypothesis
(30) of pure precession, but that the motion of 1 conforms only to the type
form (20).

The secular determinant analogous to (35) for the matrix elements (58)
connecting the six levels (52) could immediately be set up, and would at
first appearance yield a sixth order algebraic equation for W. This equation,
however, factors into two cubics because of the possibility of separating
energy levels into the symmetric and antisymmetric types introduced by
Kronig. ' This separation is accomplished by introducing the following
transformation matrix S

S(Xq, Xg) = (—1)xS(X, ; X,) = (—1)xS(X, ; X q)

= —S(X, ; X,) =(1/2)'t'

where X=P or S, and where if = —1/2 or 1/2, and also —3/2 or 3/2 if X =P.
The exponent X of —1 is an even integer if X represents any I' state or an
"even" S state, and is an odd integer if X represents an "odd" S state. As
explained in connection with the somewhat similar transformation (42)
this transformation is tantamount to using wave functions of Kronig's
symmetric and antisymmetric types rather than those with exponential
factors representing angular momentum of constant sign about the axis
« figure. After the transformation the secular determinant factors into two
third order determinants one of which is

(59)

with ~=o, +~, p=8+g. The other is identical except that it has K=0,

p =0—(. As a check on the work, it may be verified that when the magnetic
interaction is zero, making A = 0 in (58) these two cubics each factor into a
quadratic and linear equation as follows:

( (E+Bsj i, (j s,+ 1)—W] (Bpj a, (j s,+ 1) Bp W]——
—8 (B/„)(P; S) ' js,(j,,+1)} X (B~j„,(j s,+1)—Bp —W} =0 (60)

with j js+1/2( —1)', j&,=j+1/2( —1) . The equations for W furnished
by (60) are exactly those which would have been obtained by neglecting
spin, as we should expect for the limiting case (b). Such equations for W
neglecting spin have not previously been given explicitly, but are obtained
by considerations closely related to those in our derivation of (44), the
difference being that the interaction with one S state is treated in an exact
secular fashion rather than that with all states by methods of successive
approximations. The behavior (60) furnishes the clue to the adiabatic
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correlation of energy levels in cases (a) and (b), which is indicated schemati-
cally in the following diagram:

J =
z

Xt

F'p;

3 5
2

tx Xt

Py,

Xt tX
I I I

/

(&„,)

xt

Xt
/'

/
//

/
/

/

(
/

Xt

J
=

z

xt
2 3

tx Xt

;3
2

tx xt
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2

The symbols && and t represent states having the two different types of
Kronig' symmetry. These diagrams may be regarded as supplementing
the previous derivation of the correlation given by Hill and V. V. which
did not include the sigma doubling phenomenon but to which the reader is
referred for discussion and references exclusive of it. If the interaction with
the spin is supposed to completely disappear in case (b) the two components
of' the spin multiplet coalesce in energy, as indicated by the coming together
of the heavy and dashed lines corresponding to P&/2 and P&/2 levels respec-
tively. It is to be noted that in the P&/2 levels the two sigma doublet com-
ponents representing different symmetries cross over" in going from (a)
to (b) except the anomalous component j= 1/2 in regular multiplets. This
means that for any particular j)1/2 there is an appropriate value of the
ratio of rotational to magnetic energy which makes the P&~2 sigma doubling
vanish. The so-called "non-crossing" rule does not apply to these components,
as they do not "combine" in the energy or secular determinant although
they do spectroscopically. As shown by Kronig, the only spectral lines which
s,re "allowed" are those which connect levels X and t with opposite types
of symmetry. ' This rule is clearly to be distinguished from the fact that
in the Hamiltonian or secular determinant the only non-vanishing matrix
elements are those connecting states of similar symmetry. The reason for
this difference is that the energy terms are symmetrical, the electrical
moment antisymmetrical as regards Kronig's transformation (15).

Ordinarily the difference in energy between the S and P state is large
compared to the width of the spin doublet. If this is true, as we assume
throughout, and if we are interested only in the roots corresponding to P
levels, we can to a good approximation set K —S' equal to a constant —hv

4' Our symbols are essentially similar to those of Wigner and AVitmer, and are not the same
as the system used in Kronig's first paper and a preceding one by Hulthen.
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(I', S) in the determinant (59), which then yields a quadratic equation for
W. If we neglect terms above the first order in 1/tw(P; &), which inciden-
tally is required to make the approximation legitimate, the solution for g
is then

2W=P+p+ BpX+ {I/hv(P; 8) ] [ii/i "+qq*

+B~ 'X '[(/3 7)(j/—* nR*)—+21 ~6*+2/ "~"~]I (61)

X'= [(/3 —y)'+4ee*]//Bp'= [li(h —4)+4(j+-')'] X=Ai/Bp (62)

The fii.st three right hand terms give Hill and V. V.'s formula, our (36), for
the rotational distortion of a spin doublet. The remaining terms are cor-
rections for the influence of the S state, whose most interesting effect is the
introduction of sigma-type doubling. The two values of the sign before the
radical X give rise to the two components of a spin multiplet, while a sigma-

type doublet is generated by giving /i the two values 0+) and |/ —f in (61).
A more explicit formula for the sigma doublet width can be obtained by
substituting detailed formulas (58) for the various Greek letters. At the
same time we shall sum over all the electronic S states, so that we include
the interaction with all rather than one of them. Ke thus find

hi1v = r. p. of 4(j+ 2i) p [(—1)~/hv(P; S) ]

[(2B/„+A/„)(r; s)(B/„)(S; z)(1+2X '+XX ') (63)

+4X '(j+ ')(j :) (B-/,)(~-; 5)
I
-']-

where X is as in (62) and the convention on the exponent S is as previously.
The upper sign gives the PI/2 state and the lower the P3~2 or vice versa. It
is readily verified that (63) reduces to (44—45) in the limiting case (b) and to
(49—50) supplemented by (56) and (51) in the limiting case (a). Instead of
first introducing a cubic secular determinant and then later summing over
all the S states, Eq. (63) could also have been obtained by first applying
Hill and V. V. 's transformation T to take into account the rotational dis-

tortion of the spin in which only the parallel component of s is considered,
and then applying perturbation theory as in section 3 to take into account
the sigma doubling phenomena, where the perpendicular components are
vital. It is, however, probably more vivid to first reduce the problem to a
simple algebraic equation rather than to apply the rather abstract pertur-
bation theory at the outset.

6. RHQ-TYPE DQUBI.ING IN 2S STATES

In 'S states the magnetic interaction is, of course, so weak that Hund's
case (b) is a good approximation. The usual procedure is to neglect entirely
the interaction between the spin and the rest of the molecule in such states,
as a stationary molecule in an S level has no orbital angular momentum
parallel to the axis of figure. The energy is then a function of j& but not of j,
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and there are two states of coincident energy corresponding to the pos-
sibilities j=jf, +1/2. Actually these two S states of similar jl, but unlike j
do not coincide but form a closely spaced "p-type doublet" in Mulliken's
terminology. 4' The reason for this nomenclature is that the S rotational
energy levels can be represented empirically by a formula of the type 9s
(j+p)' where p is not exactly 1/2, making the doublet width

(64)

A rho-type doublet is not to be confused with the sigma-type doublets
found in 'P states, as in the latter both components have the same j values
rather than values differing by one unit.

A theoretical explanation of the rho-type doubling may be found in the
fact that even in S states the mean square of the orbital angular momentum
does not vanish44 but instead there is a precessing component (l,'+l„')"'
perpendicular to the axis of figure. This will exert a force on the spin angu-
lar momentum, but does not inHuence the energy in the first approximation,
as the average value of the cosine of the angle between l, or l„and s is zero
with ideal case (b) coupling. When, however, higher approximations in-
volving the superposition of rotational distortion and this interaction are
considered, the energy of the 'S state depends on j as well as j&. This can be
seen from the determinant(59). In the preceding section we calculated the two
roots of this determinant which represent P states, and we must now com-
pute the remaining root which is an S term and which lies close to f~. The
value W=~=E+Bzj a(ji, +1) is, in fact, the usual approximate formula for
'S levels, and is obtained by neglecting the interaction between the S and P
states which is embodied by the matrix elements p, q in (59). As we may
suppose ~ numerically large compared to the other Greek letters and as
~ —W is numerically small compared to P —W and y —W, a more accurate
expression for this root may be obtained by expanding the determinant
and keeping only the terms which have factors P —W ory —W. These two
factors may be replaced by their approximate values p —

ff andy —ft, making
(59) a linear equation for W. We thus find

a result also obvious from perturbation theory, as the right-hand side is
essentially Born, Heisenberg, and Jordan's expression" for W2. When we
substitute the explicit expressions for the various Greek letters given in
(58) and in the text following (59), we find that the two W's having the
same j& are

with

W = &sj'~(j ~+ I)+&+As+ ,'a'+ ', b'av, hDp = a'(jg+—-,')—
a'=r. p. of 8 P[(A1„)(s;p)(81„)(r; s)/hv(s; p)]

(65)

(66)

~ R. S. Mulliken, Phys, Rev. 28, 481 (1926).
44 Cf. J. H. Van Vleck, Phys, Rev. 31 600 (1928).
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&s'=&a+8 &~ I
(2II„)(S;r)

I
'/"&(5' '&)], &a= K[I (Af„)(S;P) I'/h&(S;P)].

The two cases represented by the choice of sign correspond to j=j&+ 1/2,
~=n+( —1) 5, @=8+(—1) f. The summation over all the electronic 'I'
states is included to remove the restriction, made in deriving (59), that the
given 'S states interacts with only one 'I' spin doublet. As we should expect,
the doubling phenonenon disappears and the energy becomes a function
only of jl, when the magnetic interaction is disregarded by setting A =0.

The variation of the rho-doublet width with j~ given by (65) is precisely
that found by Mulliken except for the small difference that (65) has j&+1/2
in place of jj„a modification which is supported by more precise experi-
mental data" available subsequent to Mulliken's" early work. The order
of magnitude of the constant a' is the same as that of the constant a in the
formulas (49,56) for the width of a case (a) sigma doublet. In fact the
constants are identical except for sign if a 'S state and a 'I' spin doublet
be imagined to interact only with each other and not with other electronic
P or S states, and if in addition 8/A is negligible. With the hypothesis of
pure precession, a' is the negative of the expression (57).

This explanation of rho-type doubling, which was suggested in part
by a conversation by Professor Kemble, is not quite the conventional one
given by Hund' and others. " The ordinary interpretion assumes that in

S states the molecule develops some angular momentum due to the orbital
motion of the nuclei in their rotation about the center of gravity. This
angular momentum, which will have the direction of j&, will interact with
the spin angular momentum s, and the energy of this interaction may be
taken to be of the form

a"jz s= —',a"Ij(j+1) jz(jr+1) —s(s+—1)] (67)

where a" is of the order m/M times the factor of proportionality A in the
ordinary spin I' doublets, sr'/M being the ratio of the electronic mass to
the "reduced mass" of the nuclei. On the right-hand side of (67) we have
given the value of the vector product furnished by the cosine law of quantum
mechanics. The difference between the values of (67) for j=j&+1/2 and
j=jp —1/2 is

b'av = a"(jg+-', ) . (68)

The conventional explanation (67) thus gives precisely the same dependence
of the rho-doubling width on j& as our previous formulas (65—66). Actually
the two e8ects are additive, so that the true value of the constant of pro-
portionality in (65) or (68) should be a'+a". To compare the relative
importance of the two contributions, we first note that (66) and (68) give
constants of proportionality respectively of the order 88/hv(s, p) and srs/M
times the width of an ordinary spin doublet. Now m/Mis of the order 10 '/4Z,
where Z is the atomic number of the lighter of the two nuclei, while B/hv

45 Hulthdn, Zeitz. f. Physik So, 319 (1928).
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(S, S') seems ordinarily to be about 10 ' (see section 8 for numerical data
on ~). Consequently a' is certainly larger in magnitude than the factor a"
usually given, provided Z is large. Ostensibly because of the factor 8)&10 4

as against 10-'/4, a' should predominate slightly over a" even in light mole-

cules, such as the hydrides Z=1, but of course much credence should not
be placed on a predominance merely in virtue of such numerical factors
until an accurate calculation can be made of the amount of magnetic
moment developed by the nuclear orbital motions or until the sum in (66)
can be evaluated accurately through knowledge of the ~'s and the precise
form of the orbital angular momentum matrix l.

Even the part of the rho-type doubling represented by (66) is due in a
certain limited sense to magnetization by rotation, the cause ordinarily
given, as the rotational distortion makes the component of electronic orbital
angular momentum which is perpendicular to the axis of figure precess at
a non-uniform rate, so that it precesses at different speeds in the configura-
tions which are approximately parallel or antiparallel to j. A mean elec-
tronic angular momentum in the direction of js, is thus developed, and the
interaction between this and s will depend on the angle between js, and s
in the fashion (67), thus giving4' the rho-type doubling (65—66). An anala-
gous physical interpretation can be given the sigma-doubling (49) in case
(a) 'P"' states; the rotational distortion causes the perpendicular compo-
nents of s and l to precess non-uniformly, so that they both slow or speed up
when nearly parallel to j (Whether there is slowing or speeding up depends
on the sign of the important frequencies v(p; s). ) This non-uniformity makes
the mean cosine and interaction energy between these components no longer
zero and removal of the degeneracy with respect to the sign of fT gives the
sigma type doubling. In our treatment of 'P states in section 5, we ought
really to have included also the interaction between the electronic angular
momentum, orbital and especially spin, with the magnetic moment in the

46 This physical picture, suggested me by Kemble, of rho-type doubling as due to develop-
ment of a magnetic moment by rotational distortion may appear superficially rather different
from the purely mathematical way in which we extracted the formulas (65—66) from the de-

terminant (59). That the results are the same can be seen as follows: On the basis of this
physical picture the energy of magnetic interaction responsible for the rho-doubling is the
expression

(Ali s)(js &)/(js'+ja)

The first vector product of this expression vanishes on the average if we neglect the rotational
distortion and consists of the non-diagonal elements

(AI Js,)(s; p+1) =(—1) (At'Js, )(s; p y) =(Aly)(s; p)(js,'+js,)'s (II)

We include A inside the parenthesis because, unlike the factor a" in (67), it must be treated as
a matrix rather than as an ordinary numerical factor. (cf. note 39) Formula (II) can be derived

by using the same type of kinematical argument as that on pp. 257—258 of Hill and V. V. but
taking the electronic angular momentum as now perpendicular rather than parallel to the axis
of figure. The rotational distortion has the effect of introducing the transformation matrix (37).
When this is applied to (II), the diagonal elements of the expression (II) no longer vanish.
When (29) and (I—II) are treated as simultaneous perturbing functions they are found to lead
to the same sigma doubling as given in (65—66).
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direction of j& or j developed by the nuclear orbital motions, but this inter-
action which is essentially the same as that involved in the conventional
explanation of rho-type doubling, is usually masked by the other terms
except possibly when considering spin doubling when very, very, close to
Hund's case (b). Hence we have not complicated the formulas by its in-
clusion.

Fine structure of 'S states Th. is has been treated by Kramers" and will
not be considered. He shows that the most important term is one which
results from the interaction of the two individual electron spins that com-
pound vectorially to give s=1. This term is usually absent in '5 states
because they ordinarily contain only one uncompensated electron. " We
have therefore disregarded it in discussing them. In triplet molecules, how-
ever, it introduces a coupling proportional to the square of the cosine of
the angle between s and the axis of figure. Superposed on this term in '5
states, there are the two effects responsible for the rho-doubling considered
above. Kramers does not consider these effects explicitly but notes that
inclusion of a term of the type form which they give does not improve the
agreement with experiment in oxygen.

7. SIGMA DOUBLING IN 3P STATES

Let us now revert to sigma-doubling and study case (a) 'P states. Case
(b) is, of course, trivial, as the sigma-doubling phenomena are there the same
as in 'P states except that j& replaces j. In case (a) the 'P& component clearly
exhibits a negligible sigma-doubling, as the resonance terms enter only in
the fourth approximation. The 'P& state should exhibit approximately the
same doubling proportional to j(j+1) as a 'P state, the reason being that
in a 'EI level the spin makes no contribution to o. The 'Po component is
particularly interesting, as it splits into two sub-components even in a
stationary molecule. The resulting doubling is therefore approximately
independent of j, and is quite different from the ordinary sigma doubling
induced by the rotational distortion. The reason for this anomalous be-
havior of the 'Pi state is that the magnetic interaction between s and l
introduces terms in the Hamiltonian of the form 60 =0, and can therefore
bring about a "resonance" between +o ~, +0, and —0 ~,

—0, if 0'~+0, =0 =0.
On the other hand the rotational distortion terms (29) of the type Ao = + 1

are needed to introduce this resonance if a~+0, /0. That the magnetic
interaction actually does split the 'Po level even in a stationary molecule
can be seen qualitatively by using the same sort of argument as on p. 49j..
In the nomenclature there used, any magnetic interaction can be regarded
as at least a slight tendency from Hund's case (a) to his case (c), and with
given / and s=1 there are states with three values of i in case (c), viz. ,

i =/ 1, /, /+1 which have —o =0. When we pass over tn Hund's case (a) by

"H. A. Kramers, Zeits. f. Physik, in press.
4' In doublet spectra possessing inverted P states we ought perhaps to consider an effect

analagous to that studied by Kramers, as such inverted spectra are characteristic of three
rather than one uncompensated electron. (cf. R. S. Mulliken, Phys. Rev. 32, 186, 1928.)
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making the magnetic interaction gradually disappear, these three states go
adiabatically into one '$0 and two 'I'0 levels, showing that a non-vanishing
magnetic coupling gives two 'I'o levels of diferent energies. The reason
that these two energies are nearly the same in case (a) is that the magnetic
interaction is overpowered by the non-centralness. The two 'Po levels are
really part of a spin multiplet, and are respectively symmetric and anti-
symmetric as regards Kronig's transformation (15) generalized' to include
the spin. In the nomenclature of Wigner and Witmer, ' they would be classi-
hed as a 0, 0' pair.

The magnitude of the 'Po doubling may be calculated quantitatively
by using perturbation methods similar to those employed in preceding
sections. We take a perturbation function of the form (54) and calculate
the transformation matrix 5&, but with now s=1 instead of s =1/2 a»n
(55). Application of this transformation has the effect of introducing as on

p. 485 a new perturbing Hamiltonian function of the second and higher
orders which contains elements of the form

H~'&(+1, —1 —1,+1)=2 g( —1) [~ AI„(r; S) ~'/hv(&; 5) j (69)

where the indices are 0& and 0, By analogy with (39—40—41) (the difference
being that the perturbations are magnetic instead of rotational), the doublet
width is just twice the expression (69). In obtaining (69) we have applied
the hypothesis (30) of pure precession only to s. If we apply it also to l, so
as to simplify the sum in (69) then

h&& v = A'/(t+1)/h& (p; s) .

8. SUMMARY AND COMPARISON WITH I' XPERIMHNT

(70)

The conclusions regarding the widths of sigma type doublets in various
limiting cases are summarized in the following table:"
1P
'P case (b)'P case (a}
'P case (b)'P case (a)
'D or2D
'S (rho-type

& =(C —C)j(j+1)
»I/2 =»3(2 = (CI—C2)jP(jP+ 1}
»I&~=&(j+~a), »8/2=b(j'--,') I'j+—') 0
»0=»1=»2= (C1—C2)jI,(j&+1)

'
»0=f »i= (Cj,—C2j)(j +1), Dv2 0»~0

daubling). » = g'(jf, + Z~)

A1H
CH, OH

HgH, CdH, ZnH, BO, NO.
C„Heg"
N2
CH

Here ~I I/2 means the sigma doubling width of the I'I/2 spin component, etc.
The orders of magnitudes of the constants of proportionality may be esti-
mated on the crude assumption that the motion of l is one of pure precession
(cf. p. 489) and that I=1. Then

Ci —C2 = 48'/v, a = —a'= 4A2l/v, f&= 88'/vA, f= 2A '/v (71)

"The table and Eq. (71) are derived primarily from our Eqs. (44), (46), (47), (49), (5o),
(~7), (65), (66), and (70) and related discussion in the text.

"Ke take only the 2'P state of Heg, as in other states the orbital angular momentum
is too loosely coupled to the axis of figure, i.e. the non-centralness is too small, to permit
application of the theory as we have given it. See section (e) of Mulliken's paper.
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where 2 denotes the width of the spin doublet (or half that of the spin
triplet) in wave numbers, v is the wave number of the I'~5 transition, and
il =Q/87r'Ic. This is a change for reasons of numerical convenience from our
previous convention in which A, 8 referred to measurements in ergs and v

to the frequency scale. The explicit formula (47) for the width of a 'D sigma
doublet has not been repeated, as this width is negligible; with for instance
II =3, i =104, 3 =2, (47) gives Av 10—'(j' —1) (j'+2j) cm '. The sigma
doubling for 'D states has not been calculated in our paper, but is also clearly
too small to detect, as it is easily seen to be of the third or higher order in 8.
In case (a) the sigma doubling of the '2'3/2 component is likewise negligible
unless j is exceedingly large 5' 8 =5, A =100; I =104, for instance, makes
the constant of porportionality b of the order 10 ' cm '.

A full enumeration of empirical results on sigma type doubling is given
in the following paper by Mulliken, to which the reader is referred for
numerical experimental results. The right hand column in our table gives
the various types of molecules listed therein whose ob'served doubling cor-
responds to the predicted. In general the qualitative agreement is very
satisfactory. The 'P states are particularly interesting, as here both the
theoretical predictions and experimental data are most copious. Molecules
known to conform quite accurately to case (b) coupling are found experi-
mentally to have an approximately equal doubling for both spin components,
whereas those known to conform to case (a) exhibit a highly asymmetrical
behavior of the two spin components, the doubling of the P3/2 level being
too small to resolve, whereas that of the P&/& is large and varies linearly
with j. These are just the theoretical predictions. Hulthen's" experimental
work on HgH even confirms the additive constant 1/2 in the theoretical
factor j+1/2 for case (a) 'P&/2 states.

To check the predicted order of magnitude for the constant a, and
especially its mode of variation with A and 8, one may take the observed
values of A and 8 given by Mulliken in still another paper" and then de-
termine the values of v which make (71) yield the values of a found by
Mulliken. The v values so found are

~&&10
—'= 2.8, 3.3 (HgH); 3.3 (CdH); 3.2 (ZnH); 2.7 (BO); 8.4 (NO)'" cm '.

This approximate constancy of the calculated i from molecule to molecule
must be regarded as quite remarkable, for the corresponding variation of the
constant of proportionality a measuring the amount of sigma doubling is by
a factor over 100. This variation of c is due mostly to the different spin
doublet widths A,which likewise vary by a factor over 100, whereas 8

"Hulthen" in his Fig. S seems to show that there is a perceptible doubling of the 'P8g
level for large values of j (20 or so) as we might expect. This is not to be confused with the
perturbation phenomena he finds at j=10. The departures from linearity which he finds for
large j in the 'P&/2 component may be the beginning of the ultimate "crossing over" for this
component predicted by our figure in section S."R. S. Mulliken, Phys. Rev. 32, 388 (1928), especially table 2."We make this calculation only for the normal state of NO as it is still uncertain whether
the experimental value of a for the upper state is .00S or .025.
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varies by a factor 6 in going from BO to HgH, The HgH molecule has the
widest spin multiplet, and this is rejected in its holding the record for large
sigma doubling. The two values of v given for HgH are for different vi-
brational states n = 0 and n = 1 respectively, with account taken of the different
moments of inertia found by Hulthen. 45

The orders of magnitude 3 X104 to 10' obtained for v are indeed reason-
able, as they correspond to an ultra-violet region in which molecular bands
are quite common; the intense HgH 'P —'S bands, for instance, have v =3)&
10' cm '. It must be emphasized that there is no reason why v should be
constant in going from one molecule to another except as regards rough
orders of magnitude (perhaps the nearest decimal), for diferent molecules
have different spectroscopic frequencies, and in the rigorous theoretical
formulas the crude hypothesis of pure precession ought to be replaced by a
complicated summation over all S states. For the latter reason, and also
because / may actually be different from the value 1 assumed for simplicity,
no agreement should be expected between the above calculated v and an
actual spectroscopic one, except on the order of magnitude. The agreement
found above is closer than we should have any right to expect —especially
remarkable is the approximate constancy of v from element to element,
which must mean that the 'P~'S transitions that are involved are "peri-
pheral" rather than "central" molecular properties, connected with outer
rather than inner electrons. Another point, not shown by the above formulas
for Av, in which the theory and experiment are in accord, is that the center
of a case (a) sigma doublet, i.e. mean of the two levels, is unaffected by the
sigma doublet correction so that it can be represented without introducing
a linear term in j. (Cf. note 8 of Mulliken's paper. )

A similar procedure may be applied to 'P or case (b) 'P and 'P levels,
and the values of v determined which with known J3 will by (71) yield the
observed C~—C&. The results are as follows

v&&10 4=0 2 (A1H 'P);2.2 (CH 'P) 34 (OH 'P);.89 (He2'P):2. 7 (Cg 'P) cm

The orders of magnitude are again suAiciently reasonable. '4

The experimental data for case (a) 'P states are rather qualitative, but
give one of the most interesting conformations of the theory. In N& the data
quoted by Mulliken really seem to show that here the 'P2 doubling is negli-
gible, and the 3Po doubling practically independent of j, a particularly im-

portant point since the theory in section 7 indicated that the 'Po doubling
should be primarily due to a magnetic action independent of the rotation j.
The data indicate a detectable and smaller doubling for the 'P~ state but
are too qualitative to test the theoretical proportionality to j(j+1),although
the data for C~ and He& do actually con6rm the factor j&(j~+1) in case (b).
Again, we may note that for small values of j the rotational distortion is so
small that C~ comes closer to Hund's case (a) than case (b), although we have
listed it (b) in the table, and it is found that the doubling for the Pp com-

"CH has a '5 level 25, 700 cm ' above the normal 'P state, but the close agreement of the
calculated value 22,000 with this may be only fortuitous.
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ponent extrapolates for j=0 to the finite value .4, whereas for the 'P& and
'P2 components it probably extrapolates to zero. Here also the predicted
eRect is thus confirmed. The data on 'P states in case (a) are not sufficiently
accurate to permit the calculation of v values as in the other cases. The reason
is that the multiplet widths are not known, and that further it has not yet
been possible to resolve the contributions of the initial and final states to
the observed spectral bands. (For this reason the v value for C2 in case (b)
given in the preceding paragraph is not reliable). We must thus be content
with examining whether the observed values .24 (N~) and .4 (Cg) for the
constant f are at all reasonable. If for example we set A = 100, v =2 X 10',
Eq. (71) gives f=1, a value suRiciently close.

Some of the molecules (CO, H~, CaH, MgH) in Mulliken's table have
not been included in our right hand column. In CO the doubling is too small
to resolve and in CaH, MgH the variation with j seems to be rather ir-
regular, while the data for H2 are too qualitative to be useful. The irregular
variation in MgH or CaH may be due to a coupling intermediate between
the limiting cases (a) and (b), where a simple behavior can no longer be
expected, or more likely that for some of the j values there is a close reson-
ance between an S and a I' state, so that the frequency v in the denominator
is nearly zero instead of large as we suppose throughout. " In fact band
spectrum analysis shows that in CaH there is a 'S state very near the 'I',
and under these circumstances we should expect a large, irregular doubling.
This is reAected in the 'S state actually exhibiting an unusually large rho-
doubling, as we should expect with the explanation of rho-doubling given
in section 6 as a rotational distortion effect, but not with the older expla-
nation as magnetization by nuclear rotation. Such a close resonance be-
tween an S and a I' state gives rise to the phenomena of "perturbations"
and "predissociation" which have been treated by Kronig, ' and which we
do not aim to discuss in the present paper although the mathematics is
very similar to that we use. Ke may, however, note that this perturbation
effect explains nicely why Hulthen observes a pronounced sigma doubling
of the'P3/2 state in HgH at a certain critical j although in general the doubling
in this state is inconsequential except for great j.

In case (a) the asymmetrical doubling behavior of the various com-
ponents, in which the lowest value of 0. gives the widest sigma doubling,
furnishes a valuable criterion for determining whether a spin multiplet is
"normal" or "inverted" if not known otherwise. This idea was suggested
to me by Professor Mulliken. The sigma doubling shows, for instance,
unequivocably that the BO spin doublet is inverted, a point not quite
certain otherwise. In C~ and N2 it identifies the I'o —I'o bands but does not
tell whether the N2 multiplets are regular or inverted as existing spectro-
scopic data does not ioslate the energy contributions of the initial and final
states.

"These causes may explain why Mulliken finds C& —C& to be 25 per cent greater for one
spin component of OH than for the other. In particular there is here not ideal case (b) so that
traces of case (a) dissymmetry may have begun to strow.
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We shall not discuss in detail the experimental confirmation of the formula
for rho-type doubling, but experiment seems to con6rm nicely the theoretical
type of variation with j and the prediction that the constant of propor-
tionality c' be of' roughly the same magnitude as the doubling constant a
for case (a) P states. "

The writer wishes to express his hearty thanks to Professor Mulliken
for much useful information on the experimental data and to Professor
Kemble for valuable suggestions on rho-type doubling.
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"The experimental values of the constant u' in 'S doublets are often very close to the
constant u in the 2I' ones. (See Fig. 4 of ref. 5') (The distinction in sign given by 71 is not
detectable. ) An exact equality is not to be expected, as the hypothesis of pure precession is not
accurate, and also we have neglected the part of rho-type doubling due to magnetic moment

developed by nuclear orbital motions, so that we ought to add in the contribution given by
Eqs. (67—68). We have not included (68) in (71) as (71) aims only at orders of magnitude.
However, experimental evidence for nearly equal a' and a may be taken to mean strong
interaction between a given I' and S state.


