
Theoretical Study of the Accuracy Limits of Optical Resonance Frequency Measurements

L. Labzowsky,1,2 G. Schedrin,1 D. Solovyev,1 and G. Plunien3

1V. A. Fock Institute of Physics, St. Petersburg State University, Petrodvorets, Oulianovskaya 1, 198504, St. Petersburg, Russia
2Petersburg Nuclear Physics Institute, 188300, Gatchina, St. Petersburg, Russia

3Institut für Theoretische Physik Technische Universität Dresden, Mommsenstraße 13, D-01062, Dresden, Germany
(Received 11 October 2006; published 15 May 2007)

The principal limits for the accuracy of the resonance frequency measurements set by the asymmetry of
the natural resonance line shape are studied and applied to the recent accurate frequency measurements in
the two-photon 1s-2s resonance and in the one-photon 1s-2p resonance in a hydrogen atom. This limit for
1s-2s resonance is found to be �10�5 Hz compared to the accuracy achieved in experiment �46 Hz. In
the case of a deuterium atom the limit is essentially larger: 10�2 Hz. For 1s-2p resonance the accuracy
limit is 0.17 MHz while the uncertainty of the recent frequency measurement is about 6 MHz.
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The resonance approximation which reduces the de-
scription of the spectral line profile to the Lorentz contour
is the cornerstone of all the modern transition frequency
measurements in the resonance experiments. This approxi-
mation is employed for the extraction of the resonance fre-
quency values from the experimental data. Here we address
only the natural line profile, disregarding Doppler and
collisional broadening. We assume that the latter effects
can be minimized below the level of the natural line width.
In the resonance approximation the line profile is described
by two parameters, resonance frequency!res and the width
�, and is symmetric with respect to !res. In the early paper
by F. Low [1] it was pointed out that the resonance
approximation is valid only up to a certain limit of accu-
racy which is defined by nonresonant (NR) corrections.
Beyond this limit the line profile acquires asymmetric form
and the definition of !res becomes nonunique. Moreover,
the NR corrections are, in principle, process dependent, so
the frequency value also will differ for different excitation
processes. This means that the measurement of frequency
is a well-defined procedure only up to some limit, which
we define in our Letter. Going beyond this limit, it should
be replaced by the direct measurement of the spectral line
profile, which then becomes the only quantum-mechanical
observable.

During the last few years the NR corrections were
reconsidered in a series of theoretical works [2–4]. This
reconsideration was triggered by the new extra accurate
optical resonance experiments [5–7]. In the experiment [5]
the natural line profile for the Lyman-� 1s-2p one-photon
resonance in hydrogen was observed for the first time. In
[6,7] the most accurate measurements in the optical region
were performed for the two-photon 1s-2s resonance in
hydrogen. In the latter experiments the absolute accuracy
of the frequency measurements was as high as�46 Hz, or
10�14 in relative units. However, the scheme of these
experiments causes serious difficulties for the theoretical
description of NR corrections and hence for the definition
of the accuracy limits in this case. In [6,7], the H atoms

were excited from the ground 1s state to the 2s state via
two-photon absorption in the space region free of external
fields. After this the excited atoms moved during approxi-
mately 10�3 s to another space region where they meet a
weak electric field. In this field 2s and 2p states are mixed
and the atoms decay via the ordinary 2p-1s transition. This
radiation is detected and provides the necessary informa-
tion for the extraction of 1s-2s frequency value from the
experimental data. In the rest frame of an atom it looks like
the excitation occurs in the absence of the electric field and
then the electric field is turned on (delayed decay). In terms
of QED the initial and final states of an atom are described
then by different Hamiltonians Ĥin and Ĥout.

The QED theory with different in and out Hamiltonians
was developed by Fradkin, Gitman, and Shvartsman (see
book [8]). This theory we will use below for the description
of NR corrections in the two-photon 1s-2s resonance ex-
periment. The earlier attempts [3,4] to describe the NR
corrections in these experiments with standard QED meth-
ods cannot be considered as reliable.

The major contribution to NR corrections arises from the
interference between the resonant and nonresonant terms
in the expression for the scattering amplitude [2]. In [2]
only the nonresonant terms with the same symmetry as the
resonant one were included. As it was pointed out in [3] the
most important contribution arises from the interference
between the resonant term and nonresonant terms with
another symmetry: the NR contribution of the 2p3=2 state
to 1s-2p1=2 resonance was considered as an example. It
was argued that this contribution can survive in differential
(with respect to the angles) cross section for the resonance
photon scattering on an atom. In the present work we will
show that the NR contributions of this type survive both in
differential and total cross section provided that the reso-
nance line shape is fully natural. Moreover, in many cases
the dominant NR contributions which define the accuracy
limits for the frequency measurements arise from the
neighbor hyperfine (HF) components. These components
have different symmetry (values of the total angular mo-
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mentum F of an atom) compared to the HF component which is used in the basic transition (see Fig. 1). The contribution of
HF neighbor components was missing in the earlier investigations [2–4].

We start with the simplest case of the elastic photon scattering on the hydrogen atom in the absence of the electric field.
The amplitude for this process can be written in a standard form:

 A
JMf;JMi

n0j0l0mf ;n0j0l0mi
�

X
njlm

hn0j0l0mfjA
�
JLMf
jnjlmihnjlmjAJLMi

jn0j0l0mii

Enjl � En0j0l0 �!
(1)

where the quantum numbers njlm represent the standard
set of one-electron quantum numbers for the electron in the
hydrogen atom. The photons are characterized by the total
angular momentum J, its projection M, and the orbital
angular momentum L. The latter defines parity, or the
type of the photon: electric or magnetic. The operator
AJLM corresponds to photon absorption, A�JLM denotes
photon emission. In Eq. (1) the additional term where the
operators A� and A are interchanged and the sign of ! is
reversed, is omitted. This term vanishes in the resonance
approximation and does not contribute to the leading NR
corrections. The resonance condition for the frequency is
! � En1j1l1 � En0j0l0 and in the resonance approximation
in Eq. (1) only the terms with njl � n1j1l1 are retained.

To avoid the singularity in Eq. (1) we insert in the
denominator the width of the excited state �n1j1l1 . The
regular method for this insertion within the framework of
QED is described in [1].

With this description of the resonant process the NR
corrections arise as the other terms of the expansion in
Eq. (1) with njl � n1j1l1. Performing the summations
over all the angular momentum projections, we obtain
for the process probability in the resonance approximation

 Wn0j0l0;n0j0l0 �
S1��j0j1j1J�

�En1j1l1 � En0j0l0 �!�
2 � 1

4 �2
n1j1l1

	
1

2�
Wem
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Wab
n1j1l1;n0j0l0

; (2)

where Wab, Wem are the standard absorption and emission
probabilities per time unit and

 S1��j0j1j2J� �
X
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Taking into account the NR correction due to the closest to
n1j1l1 neighbor level n2j2l2 results in
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Here Aem, Aab are the reduced emission and absorption
amplitudes (reduced matrix elements of the photon emis-

sion and absorption operators). These matrix elements do
not depend on the angular momentum projections. The
factor S1��j0j1j2J� does not vanish for j2 � j1, so that
the dominant NR corrections due to the interference of the
resonant and nonresonant terms with different symmetry
(j1l1 � jl) can exist. They exist both in differential (with
respect to the angles) and total probability; Eq. (3) de-
scribes the total probability. The differential one would
depend on the angle ( ~ni, ~nf), where ~ni, ~nf are the velocity
directions for the absorbed and emitted photons. The vec-
tor ~ni is fixed by the incident laser beam and ~nf by the
position of the detector.

Now we turn to the case of the 1s-2s two-photon ab-
sorption and delayed decay in electric field. The formalism
of QED with different in and out Hamiltonians developed
in [8] pursues the more complicated task: the creation of
the electron-positron pairs in the strong electric field. We
will apply this formalism to the case of a weak electric
field. However, the situation in our case is also nonpertur-
bative: due to the admixture of the 2p state into the 2s state
the emission probability changes by 8 orders of magnitude.
The change of the other atomic characteristics (Stark shift
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FIG. 1. Scheme of the levels for the two-photon 1s-2s tran-
sition. The vertical double lines denote the two-photon transi-
tions. The K numbers denote the total angular momentum for a
two-photon system, possible for different two-photon transitions.
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of the energy levels, Stark splitting) we will consider as
negligible. The criterion of the weak field will be " < "c �
475 V=cm, where " is the strength of the electric field. In
the field " � "c the 2s and 2p levels are 100% mixed.

The Fradkin-Gitman-Shvartsman (FGS) theory [8] op-
erates with two complete sets of eigenfunctions belonging
to in and out Hamiltonians. This theory follows the stan-
dard QED approach in generalized form: S matrix, field
operators in the Fock space, four-dimensional perturbation
expansion for the S-matrix elements, Wick theorem, and
Feynman graph techniques. Actually, the unique new ele-
ment that we will have to use is the generalized FGS
electron propagator. This propagator connects two vertices,
which are described by in and out Hamiltonians,
respectively.

In our case this means the absence or presence of the
electric field. The FGS propagator looks like
 

SFGS�x1x2����t1� t2�
X

~n;n�E~n;n>0�

 ~n�x1�!~nn
� n�x2�

���t2� t1�
X

~n;n�E~n;n<0�

 n�x1�!n~n
� ~n�x2�; (4)

where  ~n�x� are the solutions of the Dirac equation for the
electron in the field of the nucleus and the external electric

field,  n�x� are the solutions with zero external field; E~n,
En are the corresponding eigenvalues. The matrix !~nn in
the weak-field limit reduces to an overlap integral

 !~nn �
Z
 �~n � ~x� n� ~x�d~x 
 h~njni: (5)

In the nonrelativistic limit, evidently valid for the neutral
hydrogen atom, we replace the Dirac wave functions by
Schrödinger ones and omit the negative-energy contribu-
tion in Eq. (4).

Within the FGS theory, the probability of absorption of
two equivalent laser photons with frequency !0 by the
electron in the hydrogen atom in its ground state with the
subsequent delayed decay in external electric field in the
resonance approximation (n � a, ~n � ~a0) looks like

 dW~aa �
1

2�

W�em�~a~a0 jh~a
0ja0ij2W�ab2��

a0a

�Ea0 � Ea � 2!0�2 � 1
4 �2

a0
S2�
aa0 ; (6)

where W�ab2�� is the two-photon absorption probability,
S2�
aa0 is the angular factor similar to S1� in Eq. (2), and

the resonance condition is Ea0 � Ea � 2!0.
Taking into account the NR correction due to the closest

to a0 neighbor level a00 results in an expression similar to
Eq. (3)

 dW~aa �
1

2�

�Wem
~a~a0 j< ~a0ja0 > j2W�ab2��

a0a

�Ea0 � Ea � 2!0�2 � 1
4 �2
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00ja00iA�ab2���
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a00a

�Ea0 � Ea � 2!0 � i
2 �a0 ��Ea00 � Ea � 2!0 � i

2 �a00 �

�
S2�
aa00

�
; (7)

where A�ab2��
a0a , A�ab2��

a00a are the reduced two-photon absorp-
tion amplitudes.

For moving further we have to choose the procedure for
determination of the resonance photon frequency. In [2–4]
the evaluation of the maximum value of the frequency
distribution was used for this purpose. As it was shown
in [3] any other procedure (e.g., finding a ‘‘center of
gravity’’ for the line profile) would give the result quite
close to the choice formulated above. In case of the Lorentz
profile all the methods of defining!res give the same result
!res

0 � Ea0 � Ea. With our choice, the NR correction will
look like

 �!NR � !max �!res
0 ; (8)

where !max is the frequency value, corresponding to the
maximum of the frequency distribution.

The first example that we will consider is the two-photon
1s1=2�F � 1� � 2�! 2s1=2�F � 1� transition in hydrogen
[6,7]. The value K � 1 for the total angular momentum K
of the two-photon system with equal photon frequencies is
strictly forbidden. This concerns exactly the case of the
two-photon absorption of laser photons in experiment [6,7]
(see Fig. 1). According to this picture, the main NR con-
tribution arises from the transition 1s1=2�F � 1� !
2p1=2�F � 1�. For deriving the NR correction we have to
use an expression (7) where we have to set a � 1s1=2�F �

1�, a0 � 2s1=2�F� 1� and a00 � 2p1=2�F � 1�. In a weak
electric field  ~a ’  a,  ~a0 ’  a0 � � a00 ,  a00 ’
 a00 � � a0 and the overlap integrals are h~ajai ’ h~a00ja00i ’
1. Here � � j�ESj=�EL is the Stark shift to the Lamb
shift ratio. This ratio is � � 1 for a field " � "c. For
deriving the NR correction we set in Eq. (7) Ea0 � Ea �
!res

0 , Ea00 � Ea � !res
0 � �EL, where �EL � Ea00 �

Ea0 � 103 MHz is the Lamb shift. The width �a0 in case
of the experiment [6,7] is determined by the experimental
setup (the time delay before the excited atoms enter the
electric field region) and is equal to �a0 � �exp � 1 kHz.
Insertion of the wave functions  ~a,  ~a0 , and  ~a00 in the
emission amplitudes yields: Aem~a~a0 � ���2p�

1=2, Aem~a~a00 �

��2p�
1=2, where �2p is the width of the 2p state. Then,

evaluating the maximum value of Eq. (7) with respect to!0

and defining the NR correction according to Eq. (8) we find

 j�!NRj �
1

4

�2
exp

�EL

�W2�
1s;2p1=2

W2�
1s;2s

�
1=2 1

�

S2�
aa00 �F;F

00�

S2�
aa0 �F;F

0�
; (9)

where S2�
aa0 �F;F

0� is the angular factor defined for the
transition between the two hyperfine sublevels. In the
present case F � F0 � F00 � 1, and the corresponding
angular factors are equal: S2�

aa0 �F;F
0� � S2�

aa00 �F;F
00� �

11=18. The probability for the two-photon transition
W2��E1E1�

1s;2s is very well known. An accurate nonrelativistic
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value for this transition was obtained in [9]: W2��E1E1�
1s;2s �

1:32	 10�3��Z�6 a:u: Here � is the fine structure con-
stant, Z is the nuclear charge and it is assumed that �Z�
1. The probability W2�

1s;2p1=2
was evaluated recently numeri-

cally for all Z values (1� Z� 100) [10]. The result is
W2�

1s;2p1=2
�W2��E1M1�

1s;2p1=2
�W2��E1E2�

1s;2p1=2
� 2:907	10�5��Z�8�

3:69	10�6��Z�8 (a.u.).
The dependence ��1 in Eq. (9) cannot be continued to

zero field; the meaningful limit is set by the field where the
decay rate of the 2s level due to the admixture of the 2p
state becomes equal to the natural decay width of the 2s
state. This limiting field strength would be so small, that it
cannot be used in a real experiment. Inserting all the
numbers in Eq. (9) and taking � � 0:1, which corresponds
to the weak electric field " � 47; 5 V=cm, we obtain the
final result j�!NRj � 10�5 Hz. This accuracy limit is still
far from the recent inaccuracy estimate in the experiments
[6,7]: �46 Hz. However, it is important to notice that the
situation in hydrogen seems to be rather fortunate for the
accurate resonance frequency measurement due to the
absence of the transition to another (F � 0) hyperfine
sublevel of the 2s state (see Fig. 1). For comparison, in
the deuterium where the total atom angular momentum
values for the 1s and 2s levels are F � 1=2, 3=2, respec-
tively, this transition is allowed and NR correction by order
of magnitude is

 j�!NRj �
1

4

�2
exp

�EHFS
; (10)

where �EHFS � E2s1=2�F�3=2� � E2s1=2�F�1=2� � 100 MHz

is the hyperfine-structure interval for 2s level. Taking the
same �exp value as in [6,7] we would have j�!NRj �

10�2 Hz, which is 3 orders of magnitude larger than for
hydrogen. This is not so far from the accuracy limit of
about 0.1 Hz that was considered in [7] as achievable in the
future with the use of colder hydrogen atoms.

A quite different situation arises for the 1s-2p resonant
experiment in hydrogen [5]. In [5] the resonance 1s�F �
1� ! 2p3=2�F � 2; 1� was measured. The hyperfine struc-
ture for the 2p3=2 level was not resolved since �2p >
�EHFS�2p3=2�: �2p � 100 MHz, �EHFS�2p3=2� �

E�2p3=2; F � 2� � E�2p3=2; F � 1� � 23:7 MHz. This is
a typical case of overlapping resonances for two hyperfine
sublevels. However, due to the presence of interference
terms [see Eq. (3)] the line shape deviates from the overlap
of two Lorentz profiles and can be presented by an ex-
pression

 F�!��
f�F;F0�

�!res
1 �!�

2� 1
4�2

2p

�
f�F;F00�

�!res
2 �!�

2� 1
4�2

2p

�2Re
g�F;F0;F00�

�!res
1 �!�

i
2�2p��!

res
2 �!�

i
2�2p�

; (11)

where !res
1 � E�2p3=2; F � 2� � E�1s1=2; F � 1�, !res

2 �

E�2p3=2; F � 1� � E�1s1=2;F�1�, f, g are the angular fac-
tors, similar to S1� in Eq. (2). These angular factors play
an important role in defining the line shape Eq. (11):
f�1; 2�:f�1; 1�:g�1; 2; 1� � 181:1:0:307. Thus the line
shape exhibits the one-peak structure (the larger peak fully
screens the smaller one). The deviation from the overlap of
two Lorentz profiles is of order 0:307=181 � 0:17%. Then
the absolute accuracy limit for determination of the
1s�F � 1� ! 2p3=2 transition frequency can be estimated
as �2p 	 0:0017 � 0:17 MHz. The existence of the inter-
ference terms that distort the closely lying resonances is
well known (see, for example, [11]). However, in [11] this
distortion was included in the error bars for the transition
frequencies not distinguishing between other contributions
of purely technical origin, such as the laser intensity dis-
tribution and the spread of atomic velocities. Nowadays,
when the two latter effects in practice can be diminished
completely (e.g., by the use of colder atoms) it becomes
more useful to introduce such quantity as an ‘‘absolute
limit’’ for the frequency determination in the resonance
experiments. Actually any resonance experiment pretend-
ing on the utmost accuracy should contain fittings of the
experimental data with a suitable theoretical line shape
including the effects of interference, originating from NR
corrections. In the case of 1s� 2p3=2 transitions Eq. (11)
provides such a theoretical line shape, derived from first
principles of QED.
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