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A no-pair formalism employing external-field projection operators correct to second order in the

potential is used to calculate the 1s energies of one-electron atoms and ground-state properties of the
bromine and silver atoms in the framework of the multireference double-excitation configuration-

interaction (MRD-CI) method. It is found that the relativistic two-component method that has been

used reproduces the one-particle energies of the Dirac equation to order (Za)'. The operator is
bounded from below and can be used variationally in relativistic electron-structure calculations of
many-electron atoms and molecules. The relativistic correction to the total energy recovers 97% of
the relativistic correction of the Dirac-Hartree-Fock (DHF) result in the case of the bromine atom
and more than 99%%uo in the case of the silver atom. The relativistic correction of the ionization po-
tential of silver has been calculated to be 0.47 eV at the CI level, in good agreement with DHF re-

sults, the correlation contribution in the relativistic case being 0.42 eV. The remaining discrepancy
of the absolute value of 6.85 eV (DHF 6.34 eV) to experiment (7.57 eV) is attributed to basis-set defi-
ciencies. The corresponding CI value of the electron affinity (relativistic CI value 1.05 eV, nonrela-

tivistic 0.90 eV) is in much better agreement with experiment (1.30 eV). It is found that correlation
contribution and relativistic effects are nonadditive.

I. INTRODUCTION

It has recently been proposed to employ the operators
of the no-pair equation with free particle projection opera-
tors' 3 for practical calculations of the electronic struc-
ture of atoms and molecules in order to enable a calcula-
tion of relativistic effects in the framework of a theory
which enjoys the advantage of being derived from first
principles and yet can be efficiently used in connection
with existing computer programs for treating multiparti-
cle interactions by virtue of a formulation in terms of
two-component wave functions in configuration space,
thus decoupling electron and positron degrees of freedom.
First calculations on one- and two-electron systems as
well as self-consistent field (SCF) and configuration-
interaction (CI) calculations on a multielectron atom
yielded encouraging results, although a careful analysis4
shows that the binding energy of one-electron atoms as
obtained from the no-pair equation with free-particle pro-
jection operators is in disagreement with Dirac equation
results by a term of order (Za) .

This discrepancy in turn leads to an overestimation of
the relativistic correction to the total energy of about 20%
in the case of the bromine atom or about 0.2% of the total
energy itself, compared with Dirac-Hartree-Fock (DHF)
calculations. These results seem to be quite acceptable,
especially since the value of the total energy is only of
secondary importance when considering excitations in the
valence shells in an ab initio calculation of the electronic
spectrum of the system under investigation.

Earlier theoretical work3 suggested, however, that a
Pock-space basis suited to the physical situation should be
more appropriate and it has been shown that at least for

DHF calculations a basis of Hartree-Fock quasiparticles
for constructing the projection operators satisfies a varia-
tionally determined optimum criterion. s An obvious gen-
eralization of this result for a correlated wave function
would suggest the use of natural one-particle wave func-
tions, i.e., the eigenfunctions of the one-particle density
matrix that correspond to postive energies. This could be
accomplished by a procedure that uses approximate pro-
jectors, whereby the process of obtaining new projectors
from diagonalizing the one-particle density matrix and
constructing a new density matrix from a correlated wave
function should be iterated until self-consistency is at-
tained. At the present time, however, such a procedure is
far too complicated and a simpler method should be
sought for.

In this paper we report practical calculations with a
no-pair formalism employing projection operators corre-
sponding to a particle in the external field of the nucleus.
These projectors correspond more closely to the physical
situation in a multielectron atom than the free-particle
projectors employed earlier, especially for the inner shells,
where most of the relativistic corrections originate. This
approach has been pioneered by Sucher and later by
Douglas and Kro11,' who also provided an unitary
transformation analogous to the Foldy-Wouthuysen (FW)
transformation. The Douglas-Kroll transformation en-
ables the decoupling of electron and positron degrees of
freedom to a specified order in the coupling constant of
the potential without introducing the singular operators of
the FW transformation.

%'e continue with a short review of the method and a
discussion of its application to one-electron atoms. Sec-
tion IV reports on calculations of the total energy and
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spin-orbit splitting of the ground state P„of the bromine
atom and total energy, ionization potential, and electron
affinity of the silver atom. A summary of the results con-
cludes the paper.

which furnishes a unitary operator if W, is an anti-
Hermitian operator for a subsequent transformation:

Ut(PEi+&i+&»Ut '=PEi, [—PE Wi]+&i+&i

II. THEORY
+ &2+ &2+ (2.8)

h+ ——g Et++ Ve«(i)+ g Ve«(i,J), (2.1)

with

E, =—E,.=(p,'+m')'", (2.2)

Starting from the QED Hamiltonian in Coulomb
gauge, a configuration-space Hamiltonian operating on
four-component spinors can be derived, ' if a one-particle
basis of Fock space is specified, thus defining what an
electron and a positron is like, and if the total Fock-space
Hamiltonian is partitioned into a part Ho describing a
stationary n-electron state 4o and a residual part describ-
ing pair creation processes. This residual part is neglected
in the present context and it will be assumed that it is
tractable by perturbation theory, if required. The ques-
tions of the gauge employed and the renormalization of
the resulting perturbation series are discussed in Refs. 9
and 2, respectively, and are of crucial importance for the
evaluation of the residual interaction. Since, however,
only the no-pair part Ho will be treated in the present
context, we do not comment on these questions further.

The configuration-space Hamiltonian obtained from
the no-pair part Ho is an n-particle Dirac equation that
contains the potential bracketed by projection operators
on the positive energy part of the aforementioned one-
particle Fock-space basis set. If a free-particle Fock-space
basis set is used, the Hamiltonian can be transformed by a
free-particle Foldy-Wouthuysen transformation to a rep-
resentation in which upper and lower components are
decoupled. The positive energy part of this operator reads

where 8'i denotes the even part (that is, terms containing
no a matrices) and 8', the odd part (containing the a ma-
trices that couple upper and lower components) of the one
particle no-pair Hamiltonian with free-particle projection
operators and 8'2 and 82 denote even and odd parts of
higher order. d', is removed by imposing the condition

[13Ei Wi]=&i (2.9)

which in turn is solved for Wi, yielding an integral opera-
tor with kernel

[2E~(E~+m )]'

n'p
[2E (E +m)]'i

' 1/2
Ep +m

2' J

' 1/2
Ep+m

2'
x V,„,(p, p'), (2.10)

V,„,(p, p') denoting the Fourier transform of the external
potential. This operator is used in an expansion of
U, =(1+W2i

)'~i+ W, to second order in the external
potential. Douglas and Kroll also show that to this order
the projection operators may be replaced by
P'+'=(I+P)/2. Finally a two-component no-pair equa-
tion with external field projectors obtains, correct to
second order in the potential. As an approximation for
the calculation of multielectron systems we consider only
the one-particle operators and retain the unmodified
Coulomb interaction. At this stage the operator for zero
external vector potential reads

V«r ——eA;[V,„,(i)+R; V,„,(i)R;

R;rr; A,„,(—i) o'; A,„,(i)R—;]A;, (2.3)

m+E;
' 1/2

(2.4)
2E;

ea'+" —gE, +g V,«(i)+ g
with

Veff(i) =Ai [Vext(i)+Ri Vext(i)Ri ]Ai

(2.11)

0, eP,
g
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Wi (i)E;+—,
' E; Wi(i)

(2.12)
e e e

V,«(i,j)=A;Ai +R. ; R;+Ri RJ

2

+R;R~ R;RJ A;AJ .
riJ

(2.6)

Ui ——(1+Wt)'~ +Wt (2.7)

Douglas and Kroll' noted that for a two-component
reduction of a no-pair equation with external field projec-
tors a generalization if the F%~ transformation is required.
A FW transformation in an external field yields highly
singular operators that cannot be easily used in practical
calculations. They proposed the ansatz

and the kernel of Wt(i) given as above. A further ap-
proximation is made by neglecting all explicitly spin
dependent operators for the variational determination of
the wave function. The spin-orbit coupling terms of
(2.11) may be calculated by perturbation theory at a later
stage. It should be stressed, however, that (2.11) is bound-
ed from below and that therefore spin-orbit terms as well
as the Breit interaction, if included in the two-particle po-
tential, can be treated variationally, if the appropriate
terms in the operator are retained.

We denote the spin-free operator by P'+. It can be de-
rived from H'+' by replacing all tT p operators in R; by
p;, using the identity
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(tr u)(tr v)=u v+itr. (uXv), (2.13) 1 1 2 ] 4~D(y)=--, ——,y —
,.—y+" (3.4)

valid for spin-independent operators u and v.

III. 1s STATES OF ONE-ELECTRON ATOMS

e(y)=, y =Za,(E —m)

P 721

(3.1)

gives a value of —0.125 for ct in a power series-expansion

&" (y}= &+c—2y +ciy +c4y + ". (3.2)

The numerical value of c~ could be determined by extra-
polating

c"" (y ) —ca~~ (0)
ci" (y)=

y
(3.3}

to zero. We find that ci vanishes to three significant fig-
ures, that is within the accuracy of the extrapolation pro-
cedure. The first term deviating from the Dirac equation
result

For practical calculations we employ the LCAO ap-
proximation (linear combination of atomic orbitals) and
expand the one-particle wave functions in a series of
Gaussian functions. The operators of the Hamiltonian
are evaluated in this basis set and the resulting matrix rep-
resentation may be used as a starting point for the calcula-
tion of energy levels and wave functions of multiparticle
systems. "

In the case of the Hamiltonian A + the matrix in the
basis set of Gaussian functions could not be calculated
analytically. To evaluate the operators of P +, which are
generally given in a momentum space formulation, we di-
agonalized the matrix of E;, which can be constructed
analytically. ' ' The functions of E; occurring in the
operator 4 + are in turn evaluated on the diagonal, and
the integral operator (2.10) is represented by its (nondiago-
nal} matrix in this particular basis set diagonalizing the
relativistic kinetic energy. A reverse transformation of
the resulting matrices completes the calculation of the
matrix representation of A +. This approximation gives
the correct result in the limit of an infinite basis set and
can be represented by an effective nonunitary transforma-
tion of the external potential.

The results for one-electron atoms are collected in
Table I. A numerical analysis of the scaled binding ener-

is e4 . For this term the numerical analysis revealed a
value of —0.0172 instead of —0.0625. It can thus be con-
cluded that the one-particle energies calculated with A +
are in agreement with the Dirac equation results to order
(Za}, and we expect the eigenvalues slightly above those
of the Dirac equation.

It should be noted that the above analysis does not pre-
clude the possibility that for P + the binding energy is
not an analytic function at all. Since the decoupling of
the upper and lower components has only been accom-
plished to second order in the potential, a term propor-
tional to lny might occur in some higher order, as is the
case for the no-pair equation with free-particle projec-
tors. The ansatz (3.2) and the numerical findings can
only be used to conjecture that no terms of order (Za),
i.e., larger than the leading order of the radiative correc-
tions, are present.

IV. MANY-ELECTRON ATOMS

The operator A + has been tested in ab initio calcula-
tion of the bromine and silver atom. A standard
Roothaan-type self-consistent field (SCF} procedure was
used to calculate molecular orbitals which are subsequent-
ly employed in a multireference double-excitation configu-
ration interaction (MRD-CI) calculation. ' *' The relativ-
istic calculations were done with the operator P +, i.e.,
the spin-free part of the operator given in Eq. (2.11).
Note that P + is identical with H'+' for the ls states of
one-electron atoms. The spin-orbit splittings have been
evaluated in first order of perturbation theory with the
microscopic Breit-Pauli spin-orbit Hamiltonian' because
the spin-orbit part of (2.12) was not yet implemented in
the programs.

For the bromine atom, three different basis sets have
been used, all derived from a basis set given by Dunning. '

The first one is a contracted basis set of 47 functions, the
details of which are given elsewhere. ' Since the matrix
method described above makes implicit use of the resolu-
tion of the identity, it seeined advisable to test the influ-
ence of the basis set size on the results. So all functions of
the above basis set except for the innermost function of d
symmetry were uncontracted, the latter coinprising four
six-component primitives in the basis set of totally 64
Gaussians. Finally, a basis set of 76 functions obtained by

TABLE I. 1s energies for one electron atoms calculated in a basis of Gaussian orbitals {in a.u./Z ). (A basis set of 62 Gaussian
functions with exponents g;=Z g';, gI ——8[ —8], 1[—7], 2[—7], 4[—7], . . .4[7], 8[7], 1[8] has been used, the numbers in brackets
denoting powers of 10. The nonrelativistic energy for this basis set is —0.4999999595 a.u./Z .)

Z

1

5
8

14
27
55

0.007 297
0.036487
0.058 379
0.102 163
0.197029
0.401 354

—0.500006 63
—0.500 16644
—0.500426 39
—0.501 308 82
—0.504 91941
—0.521 576 15

Dirac equation

—0.500006 66
—0.50016652
—0.500426 74
—0.501 311 S1
—0.504 94907
—0.521 941 69

69
80
90

100
110
120

0.503 517
0.583 788
0.6S6 762
0.729 73S
0.802 709
0.875 682

—O.S35 672 84
—0.550 51941
—0.56793396
—0.590 618 90
—0.621 359 44
—0.666 246 40

Dirac equation

—0.536 484 97
—0.551 905 01
—0.570093 S2
—0.593 919S2
—0.626420 72
—0.674 35991
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TABLE II. Bromine atom total energies and spin-orbit coupling for the ground state P„. The DHF
value for the total energy is —2603.59 a.u. (Ref. 7), the HF limit is —2572.44 a.u. (Ref. 23), the experi-
mental spin-orbit splitting is —3685 cm

Number of
basis-set functions

Total energy' {a.u. )

Nonrelativistic col +

Spin-orbit splitting {cm ')

Nonrelativistic A+
—2S72.05
—2572.36
—2572.37

—2607.07
—2604.39
—2604.29

3187
3222
3182

3412
3533
3496

'SCF result.
~Obtained in first order of perturbation theory from a MRD-CI wave function.

TABLE III. Bromine atom orbital energies. The DHF values for p and d species have been averaged over spin-orbit components.
All values given in atomic units.

1s
2$
3$
4s
2p
3p
4p
3d

—490.11
—65.081
—9.8467
—0.9917

—58.574
—7.4744
—0.4437
—3.2239

Nonrelativistic
64 func

—490.06
—65.199
—9.8702
—0.9935

—58.553
—7.4736
—0.4434
—3.2188

76 func

—490.07
—65.212
—9.8784
—0.9953

—58.566
—7.4812

0 AAAS

—3.2262

47 func

—499.41
—67.086
—10.173
—1.0202

—59.021
—7.5314
—0.4418
—3.1437

P +
64 func

—498.12
—67.066
—10.181
—1.0205

—58.973
—7.5318
—0.4419
—3.1619

76 func

—498.14
—67.088
—10.196
—1.0230

—58.995
—7.5463
—0.4433
—3.1641

DHF

—498.52
—67.125
—10.200
—1.0210

—59.021
—7.5509
—0.4562
—3.1541

TABLE IV. Expectation values of r2 for the bromine atom. The DHF values for p and d species have been averaged over the
spin-orbit components. All values are given in atomic units.

47 func

1s 0.2554( —2)
2s 0.4422( —1)
3s 0.3592
4s 0.3485(+1)
2p 0.3302(—1)

3p 0.3744
4p 0.5318(+ 1)
3d 0.4162

Nonrelativistic
64 func

0.2554( —2)
0.4391(—1)
0.3587
0.3473{+ 1)
0.3413(—1)
0.3743
0.5319(+ 1)
0.4163

0.2554( —2)
0.4391(—1)
0.3584
0.3463(+ I)
0.3413(—1)
0.3741
0.5304( + 1)
0.4214

47 func

0.2414(—2)
0.4216(—1)
0.3457
0.3368(+ 1)
0.3343(—1)
0.3690
0.5294( + 1)
0.4162

A+
64 func

0.2423( —2)
0.4204( —1)
0.3459
0.3364( + 1)
0.3345( —1)
0.3689
0.5294(+ 1)
0.4172

76 fun

0.2423( —2)
0.4204( —1)
0.3456
0.3352(+ 1)
0.3345(—1)
0.3686
0.5274( + 1)
0.4244

DHF

0.2459( —2)
0.4205( —1)
0.3453
0.3353(+ 1}
0.3348(—1)
0.3694
0.5192(+ 1)
0.4235

TABLE V. Silver atom total energies in atomic units. '

Basis set
number

Number of
contractions

13,8,4
16,10,5
15,10,5
15,10,6
17,11,6

17,8,6
17,8,8

17,11,8

Contraction'

l3
G3

14
G3

13

Reference

24
24
20
20
20

25
25
25

Nonrelativistic

—5192.99
—5194.32
—5196.96
—5196.99
—5197.59

—5197.57
—5197.57
—5197.59

—5305.45
—5306.52
—5311.60
—5311.29
—5311.95

5311.62"
—5314.97
—5314.67
—5311.65

'The Hartree-Fock limit is —5197.70 a.u. {Ref.23) the DHF energy is —5310.66 a.u. {Ref.7}.
The number of contracted s-, p-, and six-component 1 functions is given.

'The notation dn {pn) denotes that the n highest exponents of d-symmetry (p-symmetry) have been con-
tracted using the coefficients of the innermost atomic orbital in a nonrelativistic SCF calculation em-

ploying the uncontracted basis set.
The operators have been evaluated using a diagonal representation of p /2m instead of a diagonal rep-

resentation of {p +m }'», which has been employed unless indicated otherwise.
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adding one more d primitive with exponent /=0. 33 and
uncontracting the function with lowest exponent from the
innermost contraction of d symmetry.

From the total SCF energies in Table II it may be con-
cluded that the basis-set deficiencies indeed lead to sizable
deviations for the various basis sets. Although all of them
yield nonrelativistic total energies reasonably close to the
Hartree-Fock limit, we obtain results for A + that differ
as much as 3 hartrees for the smallest and the largest
basis set. Especially the repulsive correction term con-
nected with the integral operator in the second line of Eq.
(2.12) seems to be quite sensitive to the fulfillment of the
completeness relation. Therefore the operator is calculat-
ed systematically too small for an incomplete resolution
of the identity, and we find a higher energy value for the
larger basis set.

Nevertheless, all of the values yield a relativistic correc-
tion which agrees within a few percent with the corre-
sponding quantity obtained from Dirac-Hartree-Fock
(DHF) calculations. It should be borne in mind that the
total energies are only of secondary importance and that
the relativistic correction to the charge distribution lead-

ing to relativistic excitation energies and property values
is the main point of interest in electronic structure calcu-
lations for atoms and molecules.

The properties of the charge distribution may be judged
from the spin-orbit coupling values which show marked
relativistic corrections in good agreement with experi-
ment. The increase may be understood by considering the
spatial contraction of the 4p orbital which can be inferred
from comparison of the orbital energies and (r } values
with their nonrelativistic counterparts in Tables III and
IV.

Note that the ( r ) values cannot be compared directly
with the corresponding DHF results, since like all opera-
tors they must first be transformed to the DHF four-
component (Minkowski) representation by a transforma-
tion inverse to the one used to obtain the two-component
(quasi-Newton) representation. 's This process will gen-
erally introduce terms of leading relative order (Za)
which effectively limit the possibility of direct compar-
ison of the corresponding values given in Table IV. Note
also that the nonrelativistic values also deviate for the
various basis sets, especially for the outer (valence) shell.
This shows that large basis sets are desirable, of course,
not only for the matrix representation of P +, but also to
achieve better convergence of the nonrelativistic results.

Similar results were obtained for the SCF ground state
of the silver atom, for which a larger variety of basis sets
described in Table V has been tested. %e also included
basis sets yielding nonrelativistic energies several hartrees
away from the Hartree-Fock limit, but still giving relativ-
istic corrections within a few percent of the DHF value.
For a contraction of the inner shells (basis sets 6 and 7) we
again find that the replusive term in (2.12} is calculated
too small, leading to an overestimation of the relativistic
correction of about 4%.

%e conclude that generally basis sets of this quality
should be left uncontracted for the matrix representation
of the integral operator in (2.12}. A sufficiently con-
verged representation seems to be attained with basis set

TABLE VI. Ionization potential of the silver atom (in eV).
Basis set no. 4 has been used unless indicated otherwise.

Koopmans's theorem, nonrelativistic
Koopmans's theorem, A +
Difference of nonrelativistic Hartree-Fock

energies {Ref. 20)
4 +, difference of SCF energies
Dirac-Hartree-Fock' (Ref. 21)
Cowan-Griffin operator (Ref. 20)
Cowan-Griffin operator' (Ref. 20)
Relativistic effective core potential {Ref. 21)
Nonrelativistic CI
Same, one f-function with /=1.2
Same, one f-function with /=1.7~

A+, CI
Experiment (Ref. 26)

5.97
6.38

5.91
6.29
6.34
6.33
6.41
6.34
6.24
6.48
6.38
6.71
7.57

'Obtained with Desclaux's program.
Cowan-Griffin operator (Ref. 27) employed in Hartree-Fock

calculation.
'Cowan-Griffin operator in first order of perturbation theory.
Optimized value, minimizing the nonrelativistic CI energy of

the neutral species.

no. 5. For this basis set a calculation has been carried out
evaluating the matrix of the relativistic kinetic energy
from the matrix of p /2m. The result is in reasonable
agreement with the corresponding value, for which the E;
matrix has been obtained analytically.

As a more difficult test of the 4 + operator we choose
the calculation of the ionization potential and the electron
affinity for the silver atom. For these calculations basis
set no. 4 was chosen because it contains several semidif-
fuse functions which are needed for a description of the
charge distribution of the negative ion. The results are
collected in Tables VI and VII. These quantities may be
compared with literature data, which are mostly obtained
on the Hartree-Fock level. o'~' They report values for the
relativistic correction to the ionization potential ranging
from 0.42 to 0.50 eV, in good agreement with the A + re-
sult of 0.38 eV. The large difference of about 1.2 eV to
the experimental value is attributed to the correlation con-
tribution, which in part could be recovered by the CI
treatment. Employing a reference space of one configura-
tion, we find 0.33 eV of correlation contribution in the
nonrelativistic and 0.42 eV in the relativistic case. This
indicates that correlation effect and relativistic contribu-
tion to the ionization potential are nonadditive.

A substantial improvement of the basis set by including
f-type functions could only be accomplished on the nonre-
lativistic level, since the required operators for 4 + were
implemented only up to d functions. The inclusion of an

f function with exponent /=1. 2 improved the ionization
potential by as much as 0.24 eV, but the optimization of
the exponent finally yielded an improvement of only 0.13
eV. Adding this correction to the relativistic d-function
result, we obtain our best value of 6.85 eV. These findings
show that the basis set is far from converged even for the
nonrelativistic calculation of the correlation contribution
and that a proper treatment should include functions of
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TABLE VII. Electron affinity of the silver atom (in eV).
Basis set no. 4 has been used unless indicated otherwise.

Difference of Hartree-Fock energies (Ref. 22}
A +, Difference of SCF energies
Cowan-Griffin operator' (Ref. 20)
Relativistic effective core potential, CI (Ref. 21)
Nonrelativistic CI
Same, one f-function with g=1.2
Same, one f-function with (=1.7~

A+, CI
Experiment (Ref. 28)

—0.04
—0.08
—0.16

0.71
0.85
0.90
0.90
1.00
1.30

still higher angular momentum, as has already been noted
by other authors in the study of transition metal atoms.

For the electron affinity much better agreement with
experiment was obtained. In this case the Hartree-Fock
calculation gives disastrous results, even of the incorrect
sign. On CI level the relativistic correction was calculated
to be 0.14 eV, yielding a relativistic electron affinity of
0.98 eV with the basis set comprising only d functions. If
we add the effect of the optimized f function to this num-
ber, we get 1.05 eV in reasonable agreement with the ex-
perimental 1.30 eV.

V. SUMMARY

Devising an approximate scheme for the calculation of
atomic and molecular structure by means of a relativistic
two-component formalism the no-pair-Hamiltonian with
external field projectors as transformed by a Douglas-
Kroll transformation presents the following advantages.

(1) It can be derived from quantum electrodynamics;
(2) the binding energies for one-electron atoms agree to

'Cowan-Griffin-operator (Ref. 273 in first order of perturbation
theory.
Optimized value, minimizing the nonrelativistic CI energy of

the neutral species.

order (Za) with those of the Dirac equation;
(3) it approaches the correct nonrelativistic limit, may

be treated variationally, and avoids the shortcomings of
molecular four-component methods based on basis set ex-
pansion techniques;

(4) it may be used in connection with standard pro-
grams for electronic structure calculation, whereby the
computational effort for implementing the relativistic
corrections is negligible for a calculation of the type as re-
ported in the present paper.

The most important shortcoming of the present method
of evaluating the integrals is the demand for large basis
sets in order to ensure a good matrix representation.
Much progress has been made, however, in the analytical
evaluation of the operators of the free-particle projectors
even for the molecular case, ' which should be of great
value also for the evaluation of the operators of P +.

A further refinement of the theory by including still
higher orders of Za, although in principle possible by
iteration of the Douglas-Kroll transformation, does not
seem to be advisable, since the radiative corrections are
larger than the largest term that could be recovered in ad-
dition to A +. On the other hand, the (possibly analyti-
cal) evaluation and variational treatment of the correct
spin-orbit operators and the investigation of the relation
of relativistic and correlation effects as well as a study on
the effect of the pair-creation part, which has been
negltx:ted so far entirely, could open very interesting per-
spectives for future research.
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