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The no-pair equation with free-particle projection operators proposed by Sucher is employed for
linear combination of atomic orbital calculations on one-electron atoms and a self-consistent-field
configuration-interaction calculation of the ground-state energy and the spin-orbit splitting of the
bromine atom. A matrix technique used for the representation of the required operators is dis-
cussed. Comparison of the results with Dirac-Hartree-Fock calculations shows that no-pair Hamil-
tonians furnish a convenient approximation for introducing relativistic effects in atomic and molec-

ular structure calculations.

I. INTRODUCTION

In a recent paper by Hardekopf and Sucher® the numer-
ical properties of the no-pair equation with free-particle
projection operators? are discussed. The authors find that
the eigenvalues of the corresponding Hamiltonian A, can
be used as an approximation to the energy of multiparticle
bound states in a way that is consistent with quantum
electrodynamics (QED). The residual interaction, that is
the difference between the exact QED Hamiltonian H and
the no-pair Hamiltonian with free-particle projectors 4 ,
must be treated by perturbation theory.!=® The question
of renormalization of the perturbation series, is, however,
unsolved as yet, so the actual calculation of the higher-
order terms is not easily feasible to date. In the present
paper we will neglect the residual interaction altogether
and rather employ %4, in a variational treatment of
ground and excited states of atomic and molecular sys-
tems in a way that permits the systematic inclusion of
correlation effects into the. calculation, thus going beyond
the Hartree-Fock or Dirac-Hartree-Fock (DHF) level.
The operators of the Breit-Pauli Hamiltonian cannot be
used for this purpose, since mass-correction operators as
well as spin-orbit operators lead to a variational collapse
due to their unboundedness below. )

Methods that are derived from a non-Hamiltonian ap-
proach* avoid the renormalization problems mentioned
above, but have eventually to cope with the problems of
four-component molecular DHF calculations, which have
been summarized recently.’

From a pragmatic point of view the use of the Hamil-
tonian h__ appears to be attractive for atomic and molecu-
lar structure calculations since it operates on two-
component spinors, thus saving a great deal of the compu-
tational effort required for four-component molecular cal-
culations. Moreover, the highly developed ‘methods for
describing correlation in nonrelativistic many-particle sys-
tems can be used with only minor modifications for
the relativistic case. In this paper the MRD-CI (multi-
reference  double-excitation  configuration-interaction)
method®’ will be employed for a calculation of the
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ground-state spin-orbit splitting of the bromine atom.
This method has been proven to give very reliable results
not only for the calculation of energy levels for ground
and excited states of molecules in the framework of the
nonrelativistic Schrédinger equation,® but also employing
operators derived from the Breit-Pauli Hamiltonian for
the calculation of fine-structure effects’ by perturbation
theory. In fact, the aforementioned motivation for the use
of two-component spinors in the relativistic case led to the
development of a two-component representation of the ki-
netic energy operator for relativistic calculations'® which
coincides with the effective kinetic energy part of the no-
pair Hamiltonian 4. This representation of the kinetic
energy has been used in a study of the ground and the
first excited state of the bromine atom!! and for the
ground state of the CBr molecule.'?

In the present paper, the methods employed in Ref. 10
are used to obtain a matrix representation of Sucher’s no-
pair Hamiltonian with free-particle projection operators.
After a short review of the no-pair equations, the approxi-
mation of 4, in the framework of an LCAO expansion
(linear combination of atomic orbitals) is introduced and
applied to energy levels of one-electron atoms. The results
are compared with those from numerical integration tech-
niques used in Ref. 1. Subsequently, the relativistic
corrections to the one-electron operators are used to calcu-
late the ground-state energy and spin-orbit splitting of the
bromine atom. A comparison with previous results'! and
DHF calculations!3 shows that no-pair Hamiltonians give
promising results also for many-electron systems. A dis-
cussion of the implementation of the two-electron opera-
tors and the properties of A, relevant for molecular
structure calculations concludes the paper.

II. NO-PAIR HAMILTONIANS
IN CONFIGURATION SPACE

In this section the origin of the no-pair equations from
QED is briefly reviewed. The details of the derivation
may be found in Refs. 2 and 3. The formulation of Ham-
iltonians for the bound-state problem is accomplished by
starting with the QED Hamiltonian H in Coulomb gauge

756 ©1985 The American Physical Society



32 APPLICABILITY OF THE NO-PAIR EQUATION WITH FREE- . . . . 757

H= [ d’x 9 (x)[ —iaD+Bm + Voo (x)]9(x):
++ [d*x«(E}+B):

+e2f fd3x d3x’~———‘x_1x,i

X T 0Px): W (x)w(x): (2.1)

where ¥(x) is the spinor field, E, is the transverse electric
and B the magnetic field, D=0 —ie A (X), A (x) the
external vector potential, with the colons indicating nor-
mal ordering. A fixed reference time ¢=0 has been
chosen.

The terms in (2.1) can be identified as

(i) the energy operator for the matter field interacting
with external potential,

(i) the energy of the transverse radiation field,

(iii) the Coulomb interaction of the matter field.

The idea is first to split off from H a part H, that can
be used in a multiparticle Dirac equation

(Hy—Egy) | ®9) =0 (2.2)
with | ®,) describing a stationary state
I‘Do>=fd3x1 e dexNu(xl o xlxy) e
xyl(xy)[0), 2.3)

where 1//T(x,-) denotes a suitably chosen electron creation
operator for the ith one of the N particles and |0) the
vacuum state, and spin indices have been suppressed. The
residual interaction H;, =H — H will be neglected in the
present context. :

The ansatz of |®,) as product of electron creation
operators only leads to an N-particle Dirac equation
where the relevant operators are bracketed by positive en-
ergy projection operators, the detailed structure of which
depends on the specific expansion of the matter field in
terms of electron and positron operators )

Yx)= 3 Unu,(x)+ 3 Vinw,(x), 2.4)

where U'(n) creates an electron and V'(n) a positron and
the wave functions u,(x) and v,(x) may be considered in
the general case as arbitrary expansion coefficients. Hj is
now constructed in a way such that terms that describe
the creation and destruction of virtual pairs as well as the
energy of the transverse radiation field are left in the in-
teraction part H;,, therefore the term “no-pair Hamil-
tonian” has been adopted for H,.2 In this paper we re-
strict ourselves to the case where u,(x) and v,(x) denote
plane-wave eigenfunctions of the free-particle Dirac Ham-

iltonian. The projection operators occurring in H, are.

then given by

(—A+m2)V24(—id+Bm)
2 —A+m?)17?

Ap(x)= 2.5)

which reduces to an algebraic operator in momentum
space. Other choices may be more appropriate®!* but
lead to still more complicated operators that are nonlocal
even in momentum space.

The resulting H, can now be subjected to a (pseudo)
unitary Foldy-Wouthuysen transformation

2E 172 148
/2
= A —, 2.6
Wi(p) E,+m +(p) 2 (2.6)
E,=(p*+m?'?, 2.7)
E,+ap+Pm

A =2 = - 2.8
+(p) 2E, (2.8)
thus transforming the four-spinor wave function
u(x;- - xy) of (2.3) to a set of two-spinor wave functions

such that in momentum space the spinors are given by
u(p,-)=W(p,- X . (2.9)

Here X denotes a constant spinor.

In this way one obtains various no-pair equations with
free particle projectors that operate on two-component
spinors, the detailed structure of the resulting
Schrodinger-Pauli Hamiltonians still depending on the
choice of H,.

Three different partitions of H appear to be relevant for
this paper, the first one of which is given in Ref. 2 and
yields

hy=SE+ 3 VHii)+ 3 veli, ) (2.10)
i i i<j
with
E;=(p/+m?»)'?, 2.11)
V(i) = —eAi[ Vet (D) + R; Vet (1)R;

”‘Riai'Aext(i)

—0;" Ae(DR; 14; , (2.12)
A;=[(m+E;)/2E;]'?, (2.13)
R,~=0,~'p,~'/(m +E,) , (2.14)

£ 2 6'2 e2
Ve (l,]):A,A] _+R,_RJ+R,—_RI
. ¥ij rij tij
e2
i

It is also possible to include the Breit interaction here as
the leading term of the interaction between two electrons
mediated by a transverse photon.

The second no-pair Hamiltonian, which will be subse-
quently used for the calculation of the ground state of the
bromine atom, is a modification of Eq. (4.10) in Ref. 3.
The equation given there is

'+: EE,—'—E Veff(i)+ Eez/rij .
i i

i<j

(2.16)

In this equation the Coulomb interaction is retained un-
changed, thus avoiding the complicated spin dependence
in the two-electron operators of (2.10). The modification
mentioned above encompasses the subtraction of the
external-field spin-orbit interaction,
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i
m +E,
(2.17)

4; .
;hs.o.(i)zzmloi'[PiVext(”Xpi] ,

i

from V°f in (2.16), thus giving an operator that differs
from the nonrelativistic case in that all one-electron
operators are replaced by the spin-dependent one-electron
operators of the no-pair equation (2.10) or (2.16). It reads

T 218
i<j
with
) A; . i
Veff’:_e AiVext(t)Ai+7n:iE;pi Vext(l)PiTn—_;E >
(2.19)

where A, has been assumed to be zero and the operator
relation (o-Ao'B)=A-B+io-(AXB) has been used to
split R;V..(i)R; into a spin-dependent and a spin-
independent part. The reason for preferring operator /.
to h’, is not only its simplicity of implementation, but
also the fact that including the one-electron spin-orbit
operators while leaving out all two-electron spin-orbit
operators is quite inconsistent with the finding that two-
electron terms effectively shield the one-electron spin-
orbit interaction. In fact, since the two-electron terms
reduce the one-electron interaction by a factor of 5 as a
rule of thumb,'® /', would lead to a spin-orbit interaction
which is much too large. Using the operator A, the
spin-orbit coupling may be calculated at the CI level to
first order in perturbation theory. In the present study
this has been done using the nonrelativistic spin-orbit cou-
pling operators,” since programs employing the full two-
electron part of /2 are not yet available.
The partition

hSeR — zE + 2 Vi) + 3 e2/ry

i<j

(2.20)

given in Eq. (4.12) of Ref. 3 is the simplest possible parti-
tion of H and has been used as effective kinetic energy
operator in Ref. 10. It will be used in this paper to provide
a test of the accuracy of the matrix representation of
operators b and h',.

The question as to which of the possible operators is a
suitable choice for a given bound-state problem can only
be answered by applying them in an actual calculation.
This has been done for the operator (2.10) for one- and
two-electron systems in a momentum-space formulation
using numerical integration of the equations.’

In order to study the applicability of 4 in LCAO ex-
pansions as they are commonly used in atomic and molec-

-ular structure calculations, the one-electron atoms again
provide a convenient starting point.

III. LCAO APPROXIMATION TO THE OPERATORS
OF THE NO-PAIR HAMILTONIAN

The LCAO approximation uses a matrix representation
of the relevant operators in a basis of suitably chosen
one-electron functions {¢;}. The matrix representation is

usually constructed in coordinate space. However, since
the operators in Egs. (2.10) and (2.16) are nonlocal in
coordinate space, a momentum-space representation seems
appropriate.! Using a basis set of Gaussian orbitals, the
first part of (2.10) representing the kinetic energy can be
evaluated analytically in terms of modified Bessel func-
tions.!® A different approach has been used in Ref. 10.
Since the complicated integrals arising from the potential
term could not be evaluated analytically, the method in-
troduced in Ref. 10 will be used for all the operators in
(2.10).

The matrix of E; can be easily constructed in a com-
plete basis set in which p,~2 is diagonal. This requires,
however, an infinite number of basis functions. An ap-
proximation is furnished by the assumption that the reso-
lution of the identity also holds in the finite-dimensional
case. So we diagonalize the matrix of the nonrelativistic
kinetic energy p?/2m, compute E; on the diagonal, and
transform the modified matrix back to the original basis.

The potential operators may be treated in the same way.
The eigenvector matrix of p2/2m transforms Ve, (x) to a
basis in which p? is approximately diagonal, the p*-
dependent operators are evaluated from E;, and the result-
ing matrices transformed back.

This process may be represented by a simple matrix
multiplication that shows that the method corresponds to
a different metric for the evaluation of the matrix of V
and certain corrections to the potential. Employing stan-
dard matrix techniques, we get for the effective potential

V(S X O)VPXO) TV, X0 F(SXT)T
MV (3.1)

where S is the overlap matrix of the original basis set
{¢;}, X is the transformation matrix to an orthogonal
basis set { x;} obtained by Schmidt-orthogonalization, and
U is the unitary matrix that diagonalizes the matrix of the
kinetic energy. Y represents the diagonal matrix of the
kinematical factors in (2.10).

In this way the effect of the 4; and R; operators in
(2.10) may be represented by an effectlve (nonunitary)
two-index transformation V *(i)=MV(i)M T, where M is
given by (3.1). For the two-electron operators a four-
index transformation is required. The discussion of the
most economic way to effect this transformation is de-
ferred to Sec. V. Assuming that the external vector po-
tential is zero, we get from (2.10)

V(i) = —ed; Ve (i) A; — e A;R; Ve ()R;

In order to evaluate the matrix of the first term, we chose
(Y);=4A; in (3.1). The second term reads

(04 P Ve ()0 Py ) —— (3.2)

1
m +E; m+E;

If the operator identity (o-A)(o'B)=A‘B+io(AXB)
is employed, we get again two terms,
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i

P E,

m——}—lE—ipi Vext

Ai i
+———i0[piVext (1) Xp;] (3.3)

m +E, m +E, )
The first one describes an attractive spin-independent rela-
tivistic correction to the potential similar to the Darwin
term and may be evaluated by (3.1) using
(Y);=A;/(m +E;) to transform the matrix

Vie= [ dr(—iV)Veu( —iV)y dx

which can be easily computed in a basis of Gaussian func-
tions. The second term is the usual extemal field spin-
orbit coupling operator multiplied by 2m ?c? and the right
order of magnitude reestablished by the kinematical fac-
tors A;/(m +E;), which also introduce a cutoff for high
momentum, so that the spin-orbit operator no longer
possesses the strong singularity for »;,—0. In fact, 1f we
look at the scaling properties of f —&r’p s.0. e~5d3x,
with respect to &, we find that the spin-orbit coupling for
p—>oco is proportional to § for the operator extracted
from A, (similar to the other terms of the potential). The
nonrelativistic spin-orbit coupling, on the contrary, scales
as £ and leads soon to a variational collapse if it is in-
cluded into a variational procedure employing basis func-
tions with very high exponents. The relativistic spin-orbit
coupling may be included in the variational procedure
without causing trouble. The evaluation is straightfor-
ward from (3.1).

IV. THE LOW-LYING STATES "
OF ONE-ELECTRON ATOMS

As discussed in Ref. 1 the eigenvalues of (2.10) for the
1s state of a hydrogenic atom depend on y =Za by

ey)=—3— 1y +c37°+0(y*Iny) , 4.1
where €(y) denotes the scaled energy (E —m)/y’m, E be-
1ng the total relativistic energy The coefficient c3 is

given by
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2
es7°m =L | (80| 8) | o) |2 2

The expectation value is to be taken over the nonrelativis-
tic wave functions ¢,o. For 1s states, c;=—4/37
~ —0.42441.

For the Dirac equation, on the contrary, the dependence
of the eigenvalues on ¥ is given by

()=—7—57 =gyt 4.3)

Comparison of (4.1) with (4.3) shows that the energy lev-
els of i, are always below the levels of the Dlrac equa-
tion and differ from those by a term of order y>. This is
the effect of the projection operators present in the Dirac
equation (2.2) introduced with the specific choice of the
Fock space basis (2.4). The corrections to (2.10) can be
looked upon as modified “radiative corrections” in a way
similar to the treatment of the more subtle effects not in-
cluded in the Dirac equation.

The methods described in Sec. III have been applied in
LCAO calculations with two different basis sets of Gauss-
ian s functions. The exponents of the basis sets and the
energy values for various hydrogenic atoms are given in
Table I. The row labeled SQR refers to calculations with
the operator hiQR in the matrix representation as
described in Sec. I1I, and SQR A refers to a calculation for
which all matrix elements of #52% have been evaluated
analytically. They are included here to provide an esti-
mate of the accuracy of the matrix method introduced in
Sec. 3.

Comparison of the two values shows differences of 1
part in 10° for Z =1 to Z =3, which turned out to be too
inaccurate to extract the coefficients of expansion (4.1)
from the numerical results by extrapolation to y=0.
Starting from Z =35, however, the accuracy increases.
The results for Z =1-—3 are better if a diagonal represen-
tation of E, is used mstead of a diagonal representatlon of

pi/2m, that is if (p2+m?)12 is evaluated directly in the
given basis of Gaussian functions!® and diagonalized in
order to calculate the E,-dependent operators in A .
They are also given in the fourth row of Table I. The
values for larger Z are not altered significantly by this
procedure. The results for Z =5, 8, and 14 have been
used to extrapolate the functions

TABLE III. Energies obtained with small basis sets. Energies in a.u.

Atom Basis set? No-pair eq. Nonrel. SQOR SQRA No-pair eq.”
Br 1s 11/16 —625.099 26 —612.49549 —625.47120 65451807 —626.166 07
Br 1s 16/16 —626.100 34 —612.49553 —657.404 54 —657.42422 —626.16607
I1s 20/20 —1482.5613 —1404.486 4 —1658.5315 —1658.798 4 —1483.1200
Br 2p 8/12 —153.95758 —152.57562 —153.87165 —153.93402 —154.607 89
Br 2p 12/12 —154.603 44 —153.12301 —154.58397 —154.584 33 —154.607 89

®n /m denotes a basis set of m primitive Gaussians contracted to n functions as given in the reference. See Ref. 11 for details of the

bromine basis set. Iodine basis set is taken from Ref. 18.

®Basis of 62 Gaussians for s states, basis of 36 Gaussians for p states.
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TABLE IV. Bromine atom total and orbital energies. All energies except spin-orbit coupling values in a.u.

Nonrelativistic? DHF® No-pair equation®
Total energy —2572.0470 —2603.59 —2609.1141
Spin-orbit —3187.1 —3393.5
splitting (cm~!)¢
Orbital energies
1s —490.11 —498.5220 —500.48
2s —65.081 —67.1250 —67.224
3s —9.8467 —10.1996 —10.1993
4s —0.99172 —1.0210 —1.0227
2p —58.5741 } —58.4337 —60.1956 —59.003
3p ‘ —7.4744 —17.4624 —17.7280 —7.5306
4p ‘ —0.44374 —0.4493 —0.4699 —0.4414
3d —3.2239 —3.1370 —3.1797 —3.1465

*SCF calculation; basis set and other details are given in Ref. 11. Spin-orbit coupling is calculated in first-order perturbation theory
from a wave CI wave function generated from selected single and double replacements from a single reference configuration as

described in Ref. 11.

®Values taken from Ref. 13. The two entries for p and d states refer to the p,,,,p3,, and d3,,,ds/, states, respectively.
°SCF calculation using 4, as Hamiltonian operator. Spin-orbit coupling has been evaluated as expectation value of a CI wave func-

tion similar to the treatment described in footnote b.
9The experimental value is —3685 cm™! (Ref. 17).

give good agreement with Dirac equation values as well as

num __[ num num 2
e () =["y) =m0y “4 experimental results. Since the corrections of order ¥ af-
and fect s and p states differently, the degeneracy of s;,, and
P12 states in the Dirac equation cannot be recovered.
() =[e"™(y) =3 /Y 4.5) In order to test the matrix representation with more

to zero, thus providing estimates for the coefficients in
(4.1). Here €™™(y) denotes the numerical €(y) and ¢5*™
the value for c¢,(y) as extrapolated to 0. The values of
¢, =—0.1248 and c3;= —0.359 for both basis sets are in
reasonable agreement with the theoretical values of
¢, =—0.125 and ¢3; = —0.4244, which is taken as an indi-
cation that the method introduced in Sec. III provide a
useful approximation method for the systems under con-
sideration.

Results for 2s and 2p states are given in Table II. The
spin-orbit coupling has been calculated in two different
ways, the first one of which employs 4] in the variation-
al procedure. The spin-orbit energy is calculated with the
corresponding wave function and the operator 4 —h | as
spin-orbit operator in first-order perturbation theory, as it
is customary in fine-structure calculations with nonrela-
tivistic wave functions and the Breit-Pauli spin-orbit cou-
pling operator.” The second method uses the full Hamil-
tonian 4, including spin-orbit coupling. Both results

realistic basis sets, a series of calculations with optimized
exponents taken from the literature has been performed,

" the results of which are collected in Table III. Note that

the bromine basis set has been optimized for the N-
electron atom rather than for the highly ionized ion under
consideration. The results are, however, in fair agreement
with the large basis set calculation, especially for the un-
contracted basis sets. In order to provide an estimate of
the error of the matrix representation, again the results
for hiQR are given for the matrix method and for analytic
evaluation of matrix elements. For the bromine basis set
it is evident that for the contracted basis set the matrix er-
ror is relatively large (0.3%), whereas for the uncontracted
basis set it has the same order of magnitude (1 part in 10°)
as the basis set error of the nonrelativistic calculation.
For the iodine basis set, however, the accuracy of the total
energies is about 1 part in 10* compared to 1 part in 10°
for the nonrelativistic energy. These estimates of accura-
cy indicate that the total energies calculated with the ma-
trix method are in error by about 1 part in 10% it remains

TABLE V. Bromine atom r expectation values in atomic orbitals (a.u.). Values in parentheses

denote powers of 10.

r Nonrelativistic DHF No-pair equation

1s 0.4367(—1) 0.4273(—1) 0.4214(—1)

2s 0.1936 0.1887 0.1886

3s 0.5592 0.5483 0.5478

4s 0.1742(1) 0.1709(1) 0.1719(1)

2p 0.1671 0.1666 0.1627 0.1654

3p 0.5661 0.5652 0.5554 0.5619

4p 0.2129(1) 0.2119(1) 0.2075(1) 0.2124(1)

3d 0.5829 0.5878 0.5839 0.5836
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TABLE VI. Bromine atom 2 expectation values in atomic orbitals.

r? Nonrelativistic DHF No-pair equation
ls 0.2554(—2) 0.2459(—2) . 0.2405(—2)
2s 0.4422(—1) 0.4205(—1) 0.4206(—1)

3s 0.3592 0.3453 0.3450

45 0.3485(1) 0.3353(1) 0.3360(1)

2p 0.3302(—1) 0.3395(—1) 0.3253(—1) 0.3346(—1)
3p 0.3744 0.3736 0.3609 0.3691

4p 0.5318(1) 0.5266(1) 0.5045(1) 0.5297(1)

3d 0.4162 0.4258 0.4201 0.4170

to be investigated whether the method yields valence shell
excitation energies and properties of valence states that
are sufficiently accurate to be compared with experiment.

V. MANY-ELECTRON ATOMS

A first study of this kind has been carried out for the
bromine atom. A basis set of 47 contracted Gaussian
functions which has been described in detail in Ref. 11
was used to construct a matrix representation of the spin-
independent operator k. A standard Roothaan-type
self-consistent-field (SCF) procedure was used to calculate
molecular orbitals which are subsequently employed in a
MRD-CI calculation from which the spin-orbit coupling
of the ground state has been evaluated in first-order per-
turbation theory. In Tables IV—VI the results for the
SCF calculation are collected and compared with nonrela-
tivistic and DHF data.’

The results show that 4/ is capable of introducing rel-
ativistic effects in the charge distribution of a many-
electron system. The values for orbital energies and the
total energy are below those of the DHF calculation, par-
tially because of the properties of 4 discussed in Sec..V
and partially because of the neglect of relativistic two-
electron corrections. The valence-shell properties, howev-
er, are very close to the DHF result. From the expecta-
tion values of 7 and r? it can be seen that h '} correctly de-
scribes the relativistic contraction of s and p orbitals and
the expansion of the d orbital, although the magnitude of
this effect is larger for the DHF method.

The calculated spin-orbit coupling also shows that no-
pair Hamiltonians provide a powerful tool for calculating
relativistic effects, especially since the method can be easi-
ly generalized to molecules.

So it seems to be desirable to implement 4, for molec-
ular structure calculations. A possible way would be a
generalization of the methods presented in Sec. III to the
two-electron operators. Looking at (2.15) we find that.
this amounts to an effective four-index transformation of
the two-electron integrals. This introduces, however, a
further time-consuming step into the calculation unless it
is combined with the transformation performed as well in
a nonrelativistic calculation. A possible and very efficient
way would encompass the use of molecular orbitals calcu-
lated with A as basis for a CI calculation employing % .
The required two-electron transformation could then be
combined with the usual molecular-orbital transformation
which is carried out before the CI calculation.

VI. SUMMARY

It has been found that no-pair Hamiltonians with free-
particle projection operators can be used as Hamiltonian
operators in an approximate relativistic two-component
formalism for atomic and molecular structure calcula-
tions. The following properties of these operators are of
particular importance in this context:

(i) they can be derived from quantum electrodynamics;

(ii) the binding energies for one-electron atoms agree to
order (Za)? Ry with those of the Dirac equation, relativ-
istic corrections are overestimated by an amount of order
(Za)’ Ry;

(iii) they approach the correct nonrelativistic limit;

(iv) the spin-orbit interaction and Breit interaction may
be treated variationally;

(v) no variational collapse is observed;

(vi) no unphysical states occur.

The matrix method discussed in Sec. III has the follow-
ing properties:

(i) the model Hamiltonian approaches the correct non-
relativistic LCAO Hamiltonian for ¢— « for any basis
set size (correct nonrelativistic limit of the matrix repre-
sentation);

(i) it approaches the correct LACA representation of
h , for an infinitely large basis set for any value of ¢ (lim-
it of infinite basis set);

(iii) the effort to implement the operator to atomic and
molecular structure calculations is very low compared
with four-component methods;

(iv) if jj-coupled basis functions are used, no extra ef-
fort is required in the SCF-CI procedure.

Most interesting future developments would encompass

(i) an explicit treatment of the two-electron operators;

(ii) an attempt to evaluate the momentum-space opera-
tors directly in a basis set of Gaussian functions;

(iii) the implementation of external field projection
operators as suggested in Refs. 2 and 13.
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