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Is there any fundamental difference between
ionic, covalent, and others types of bond?
A canonical perspective on the question

Jay R. Walton,a Luis A. Rivera-Rivera, *b Robert R. Lucchesec and John W. Bevanc

The concept of chemical bonding is normally presented and simplified through two models: the covalent

bond and the ionic bond. Expansion of the ideal covalent and ionic models leads chemists to the concepts

of electronegativity and polarizability, and thus to the classification of polar and non-polar bonds. In addition,

the intermolecular interactions are normally viewed as physical phenomena without direct correlation to the

chemical bond in any simplistic model. Contrary to these traditional concepts of chemical bonding, recently

developed canonical approaches demonstrate a unified perspective on the nature of binding in pairwise

interatomic interactions. This new canonical model, which is a force-based approach with a basis in

fundamental molecular quantum mechanics, confirms much earlier assertions that in fact there are no

fundamental distinctions among covalent bonds, ionic bonds, and intermolecular interactions including

the hydrogen bond, the halogen bond, and van der Waals interactions.

1. Introduction

The chemical bond is one of the most fundamental concepts in
chemistry taught to students in general chemistry courses even
at the high school level. It is common to first teach students
that the chemical bond consists of two extreme models: the
covalent bond model and the ionic bond model. The covalent
bond is described as a sharing of electrons; the ionic bond is
described as a consequence of Coulombic attractions between
opposite charges on the interacting atoms. These simplistic
models are further refined by introducing the concepts of
electronegativity and polarizability effects which lead to the
classification of polar and non-polar bonds. The concept of
intermolecular interaction, such as the hydrogen bond and
van der Waals interactions, are normally viewed as physical
phenomena with no direct correlation to the chemical
bond. Intermolecular interactions are described as electro-
static, dispersion, and polarization effects between pairs of
atoms or molecules.

However, in his classic book, The Nature of the Chemical
Bond, L. Pauling defined the chemical bond as follows:1 ‘‘We
shall say that there is a chemical bond between two atoms or

groups of atoms in case that the forces acting between them are
such as to lead to the formation of an aggregate with sufficient
stability to make it convenient for the chemist to consider it as
an independent molecular species.’’ This definition makes no
distinction between a covalent or ionic bond, and states that it
is the force acting between atoms or group of atoms that is
responsible for binding.

Then, in 1972 J. C. Slater made the controversial statement:2

‘‘The writer believes that there is no very fundamental distinction
between the van der Waals binding and covalent binding.’’ This
contention suggests that covalent bonds, ionic bonds, hydro-
gen bonds, halogen bonds, and van der Waals interactions are
indeed fundamentally the same. In particular, Slater’s assertion
suggests that there is not a fundamental difference between the
very weak van der Waals bond of argon dimer, say, and the
strong triple covalent bond of carbon monoxide even though
these two molecules have three orders of magnitude difference
in their bond strength, 1.02 kJ mol�1 for argon dimer and
1071.52 kJ mol�1 for CO. The idea that binding in these
two systems have the same fundamental intrinsic nature
is controversial. The nature of the chemical bond is still an
oft-debated subject.3–6 It is not within the scope of this work to
enter into the binding controversy, but rather to describe a new
point of view on molecular potentials and forces that might
prove useful in discussions of binding. The central goal of the
present contribution is to offer a perspective on binding that
supports Slater’s assertion. In particular, we shall show from
this perspective a sense in which argon dimer could be viewed
as a diatomic molecule.
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2. Potential energy functions

Empirical algebraic potential energy functions continue to play
a prominent role in modeling pairwise interatomic interactions.7–9

Over 100 of those functions have now been proposed,10 involving
from two to significantly larger numbers of adjustable parameters.
Considerable effort has gone into enhancing the effectiveness of
the algebraic potential energy functions that have the minimum
number of adjustable parameters and still have the most wide-
spread applicability and predictability.11,12 Several studies have
also focused on the determination of universal and reduced
potentials10,13 with the objective of finding a fundamentally
unifying approach to understanding interatomic interactions.
There have also been studies that show a connection among the
parameters of the generalized version of the Morse, Lennard-
Jones, Rydberg, and Buckingham potentials functions.14,15 The
Morse16,17 potential, a three-parameter model, has shown
continued popularity for widespread applications in describing
pairwise interatomic covalent bonding. It had been shown that
many hydrogen- and halogen-bonded complexes have binding
energies directly proportional to the intermolecular stretching
force constant and that both could therefore reasonably be
described by the Morse potential.18 The Lennard-Jones19,20

potential which can be regarded as a special case of the Mie
potential,21 is the common choice for describing intermolecular
interactions (such as van der Waals interactions, hydrogen
bonding, and halogen bonding). The Lennard-Jones function
offers computational advantages over other functions and it has
only two adjustable parameters.

One of the most elegant methods for determining accurate
potential curves for diatomic molecules is the semi-classical
Rydberg–Klein–Rees (RKR) procedure and its variants.22–27

Previously, a canonical potential and a canonical force were
constructed in the context of semi-classical RKR potential
methodology.28 The terms canonical potential and canonical force
refer to dimensionless functions obtained from each molecule
within the defined class by a readily invertible algebraic transforma-
tion. Furthermore, to be deemed canonical, the dimensionless
potentials or forces obtained from all of the molecules within the
defined class by the canonical transformation must agree to within a
specified order of high accuracy. Once that explicit transformation
was generated, there was no necessity for any adjustable parameters
across a range of bonding types to which it was applied; which
include the diatomic molecules N2, CO, H2

+, H2, HF, LiH, Mg2, Ca2,
O2; argon dimer, and one-dimensional cuts through the intermole-
cular dissociative coordinates in the multidimensional potentials of
the intermolecular interactions in OC–HBr, OC–HF, OC–HCCH,
OC–HCN, OC–HCl, OC–HI, OC–BrCl, and OC–Cl2. Such approaches
were, however, limited with respect to general applicability and the
limitations of the RKR method to cover the entire bound potentials
particularly in the asymptotic limit near dissociation.

In a recent work29 canonical approaches were applied to
classic Morse, Lennard-Jones, and Kratzer potentials. It was
found that from the canonical transformation generated for the
Morse or Lennard-Jones or Kratzer potentials as a reference,
inverse transformations allow the accurate generation of the

Born–Oppenheimer potential for H2
+ ion, neutral covalently

bound H2, van der Waals bound Ar2, and the hydrogen bonded
one dimensional dissociative coordinate in water dimer. In
addition an algorithmic strategy based upon a canonical trans-
formation to dimensionless form applied to the force distribu-
tion associated to a potential was developed. This algorithm
lead to accurate approximations to both the force and potential
functions corresponding to a particular diatomic molecule in
terms of the force distribution associated with an algebraic
potential energy function, such as the Lennard-Jones function.†

Classical algebraic potential energy functions try to repre-
sent the potential curve of a real molecule by involving a
number of adjustable parameters that ultimately bring error
to the calculations. In contrast, by using the canonical
approach to algebraic potential energy functions more accurate
representations of the potential curve of a real molecule are
obtained, where the value of the adjustable parameters have no
effect on the calculation.29 Thus, is it necessary to have over 100
empirical algebraic potential energy functions to describe pair-
wise interatomic interactions, and therefore invoke different
types of chemical bonding? Is there really a difference in the
potential energy functions between pairwise interatomic inter-
actions? Can a generic potential function be found that would
describe this wide range of interactions? In the next section,
canonical forms are derived to present a perspective on the
unification of pairwise interatomic interactions, and thus provide
an answer to the previous questions.

We describe here a unifying principle for understanding
pairwise interatomic interactions from the perspective of
recently developed, force based, canonical approaches.28–36

The key ideas will be introduced through the consideration of
pairwise interatomic interactions from the point of view of
force, echoing the seminal result of R. P. Feynman37 that
‘‘. . .the force on a nucleus in an atomic system is. . . just the
classical electrostatic force that would be exerted on this nucleus
by other nuclei and by the electrons’ charge distribution’’. In the
next section, we develop Feynman’s idea into a new canonical
model that unifies pairwise interatomic interactions and lends
strong support to the previous assertions made by Slater.

3. Canonical forms and the unification
of pairwise interatomic interactions

Recently, we introduced explicit force-based transformations to
canonical forms for potentials corresponding to both diatomic
and two body intermolecular interactions.28–36 The term

† At the suggestion of referees, the algorithms developed in ref. 29 were applied to
the very weakly-bound helium dimer. In particular, employing the canonical and
inverse-canonical transforms with the Lennard-Jones 6-12 potential as reference,
the He2 potential was approximated over the range Rr8 o R o R2 (Rr8 = 1.991 Å,
R2 = 4.283 Å, and Re = 2.968 Å) with a relative error of 0.00586. The relative error is
defined by

ÐR2
Rr8

EðRÞ � ~EðRÞ
�� ��dR

.ÐR2
Rr8

EðRÞj jdR: In this definition, E(R) is the
accurate potential and Ẽ(R) is the canonical approximation to the He dimer
potential. The accurate potential was taken to be the Born–Oppenheimer potential
of Jeziorska et al., J. Chem. Phys., 2007, 127, 124303. The details are beyond the
scope of the present contribution and will appear in a forthcoming paper.
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canonical form for a class of molecular potentials refers to
a dimensionless function obtained from each molecular potential
within the defined class by a readily invertible piecewise affine (a
function that performs a uniform scaling and translation of one
interval of real numbers onto another interval) transformation.
Furthermore, to be deemed canonical, the dimensionless forms
obtained from all of the molecular potentials within the defined
class by the canonical transformation must agree to within a
specified order of high accuracy. The salient feature of these
canonical forms is that they encode the ‘‘shape’’ of their associated
molecular potential curves. The above definition of canonical form
implies that the potential curves for all of the molecules in the
considered class that share a common canonical form have the
same shape. Just what this means is explained below. We note also
that it has been shown36 that the origin of these canonical
transformations is rooted in the Hellmann–Feynman theorem37,38

and thus to fundamental molecular quantum mechanics.
The key tool for constructing the canonical transformation is

the Feynman force.37 This is a virtual force arising from a thought
experiment, which is most easily visualized in the setting of
a diatomic molecule. For illustrative purposes, consider the
diatomic molecule H2. The thought experiment consists of defin-
ing E(R) to be the static (ground electronic state) energy of the
H2 molecule when the two nuclei are separated a distance R. This
energy is calculated by solving the static (time independent)
Schrödinger equation with the nuclei held at the fixed separation
distance R (i.e., the Born–Oppenheimer approximation39). The
Feynman (virtual) force is defined by: F(R) = �E0(R), that is,
the negative of the derivative of the potential E(R) with respect
to the separation distance R. This idea is readily generalized to any
diatomic molecule and, indeed, to any molecule irrespective of
the number of nuclei. Fig. 1a and b show graphs of E(R) and F(R)
for H2 and the diatomic ion H2

+. One should notice that in Fig. 1a
and b, Re denotes the equilibrium nuclear separation distance at
which the force vanishes (F(Re) = 0) and the potential attains its
minimum value –De where De is the dissociation energy of the
molecule, i.e., the energy required to break the diatomic molecule
into two separate atoms. When the separation distance R 4 Re,
the force is attractive (binding) while when 0 o R o Re the force
is repulsive (anti-binding). Also, the value of F(R) (considering
the nuclei as point charges) goes to infinity as R approach zero
and F(R) goes to zero as R approach infinity.

In Fig. 1a, S0 denotes the section of the potential curve E(R)
for Re r R r Rm which, as seen in Fig. 1b, corresponds to the
section of the force curve F(R) on which the force goes from zero
to its maximum attractive magnitude Fm. A key observation is
that the S0 section for H2 (red) and for H2

+ (blue) have the same
shape, where the shape of S0 is defined through the canonical
transformation to dimensionless form:

cemðxÞ ¼
E xRm þ ð1� xÞReð Þ � E Reð Þ

E Rmð Þ � E Reð Þ
; for 0 � x � 1: (1)

Fig. 2 shows the canonical form cem(x) for H2 (solid red curve)
and H2

+ (blue circles). The two curves have a relative error of
0.0026. The canonical form cem(x) results from an affine scaling
of the potential curve E(R) for Re r R r Rm to dimensionless
form and reflects the inherent shape of the dimensional curve
E(R). Two curves will be declared to have the same inherent
shape if their associated canonical forms agree to within a
specified error tolerance.

In similar fashion, the section S1 for H2 and H2
+ in Fig. 1a,

defined for Rm r R r R1, are also seen to have the same inherent
shape where the associated canonical form is defined by:

cm1ðxÞ ¼
E xR1 þ ð1� xÞRmð Þ � E Rmð Þ

E R1ð Þ � E Rmð Þ ; for 0 � x � 1:

(2)

Fig. 1 Potential, E(R), and Force, F(R), curves for H2 and H2
+. Panel (a) graphs of E(R) in cm�1 for H2 (red) and H2

+ (blue). Panel (b) graphs of F(R) in
cm�1 Å�1 for H2 (red) and H2

+ (blue).

Fig. 2 Canonical potential curve cem(x) for H2 (solid red curve) and H2
+

(blue circles).
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The right-endpoint of the section S1 is R1 which, as shown in Fig. 1b,
is defined by the requirement that the force F(R1) =�Fm/2, that is, R1

is the nuclear separation distance at which the attractive force has
been reduced to half its maximum magnitude Fm. The canonical
forms in eqn (2) for H2 and H2

+ agree to a relative error of 0.0022.
The section S2 for H2 and H2

+ in Fig. 1a, defined for
R1 r R r R2, have the same inherent shape with associated
canonical form defined by:

c12ðxÞ ¼
E xR2 þ ð1� xÞR1ð Þ � E R1ð Þ

E R2ð Þ � E R1ð Þ ; for 0 � x � 1: (3)

The right-endpoint of the S2 is R2 defined in Fig. 1b by
F(R2) = �Fm/4, that is, the internuclear separation for which
the attractive force has been reduced to one-quarter of its
maximum magnitude. The canonical form in eqn (3) for H2

and H2
+ agree up to a relative error of 0.00042.

More generally, we define the sections Sj of the potential
curves in Fig. 1a by Rj�1 r R r Rj where the separation
distances Rj are defined by F(Rj) = �Fm/2 j, and the associated
canonical dimensionless form:

cð j�1ÞjðxÞ ¼
E xRj þ ð1� xÞRj�1
� �

� E Rj�1
� �

E Rj

� �
� E Rj�1

� � ; for 0 � x � 1:

(4)

Each of the sections Sj for H2 and H2
+ for j = 0, 1, 2,. . . have the

same inherent shape. Moreover, it is the associated force curves
that carry this inherent shape information in that the force
determines the endpoints of the various sections Sj.

Similar constructions can be carried out on the repulsive
side of the potential, that is, 0 o R r Re, only now one defines
the sequence of section endpoints . . .Rrj o Rr( j�1) o� � �o Rr1 o
Rr0 o Re by F(Rrj) = Fm2 j. In particular, Rr0 is the internuclear
separation at which the repulsive force has magnitude equal to
Fm, the maximum value of the attractive force. At successive
values Rrj, the repulsive force doubles. The sections Srj of
the potential curves for H2 and H2

+ between corresponding

endpoints Rrj and Rr( j�1) have the same inherent shape. The
definition of the endpoints Rj and Rrj as explained above is not
unique and indeed it can be generalized as reported previously.34,35

It should be emphasized that H2 and H2
+ are two-electron

and one-electron molecules, respectively, yet their repulsive
walls can be decomposed into sections of the same inherent
shape. It follows that electron–electron repulsion must play only a
very minor role in determining the inherent shape of the potential
curve since for the ion H2

+, there is no electron–electron
repulsion.

This construction of sections of potential curves via their
associated force curves has been applied to a wide variety
of weakly and strongly bound diatomic molecules and inter-
molecular complexes. Fig. 3 show on the left a plot of the
dimensional potential energy curves of weakly bound mole-
cules (red; (i) Ar2 (ii) Ar–HBr (iii) OC–Cl2 (iv) OC–HF) and
strongly bound molecules (blue; (i) H2 (ii) H2

+ (iii) LiH
(iv) CO). Note that these molecules have been deliberately
chosen to furnish examples of (i) a van der Waals molecule,
(ii) a weak hydrogen-bonded molecule, (iii) a halogen-bonded
molecule, (iv) a stronger hydrogen bond than in (ii), (v) the
classic two-electron covalent bond, (vi) the classic one-electron
bond, (vii) an ionic bond, and (viii) a covalent multiple bond.
Different characteristics of these dimensional potential energy
curves reflect the different types and classes of interatomic
binding represented. However, applying the canonical transfor-
mation to dimensionless form to the sections of the potential
curves discussed above for each of the molecules, reveals that
these dimensional potential energy curves all have the same
inherent dimensionless shape. The fact that each of the potential
energy curves in Fig. 3 can be transformed to the same dimen-
sionless canonical curve via a piecewise affine transformation
suggests that the intrinsic binding characteristics inherent in
covalent bonds, ionic bonds, and intermolecular interactions
yield associated force distributions that share a common dimen-
sionless shape. Therefore, what emerges from the canonical
transformation is that the potential energy curve associated

Fig. 3 Weakly bound (red; (i) Ar2 (ii) Ar–HBr (iii) OC–Cl2 (iv) OC–HF) and strongly bound (blue; (i) H2 (ii) H2
+ (iii) LiH (iv) CO) pairwise interatomic

interactions potential energy curves (E(R) in cm�1) transformed to one canonical potential curve. On the attractive side, for each molecule, the canonical
transformation is applied from the equilibrium interatomic separation to the point where the force is reduced to Fm/2. On the repulsive side, for each
molecule, the canonical transformation is applied from the equilibrium interatomic separation to the point where the force is 2Fm. On the attractive side
the canonical potential is evaluated at x, 0 r x r 1, whereas on the repulsive side the canonical potential is evaluated at �x, �1 r x r 0.
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with two body pairwise interatomic interactions have the same
shape that gets revealed from their dimensionless canonical
forms. In particular, what appear to be different shapes in the
potential curves in Fig. 3 for different pairwise interatomic
interactions is really a matter of scaling. This scaling becomes
transparent through the dimensionless canonical transforma-
tions described above. These results demonstrate, for example,
that there is not a fundamental difference in the binding
between argon dimer and carbon monoxide, supporting the
previous assertion by Slater and giving a unification of pairwise
interatomic interactions. In addition, within the canonical
model, the argon dimer is considered as a diatomic molecule.

4. Conclusions

Recently developed canonical approaches to understanding
molecular and intermolecular potentials and forces demon-
strate ‘‘. . .that there is no very fundamental distinction between
van der Waals binding and covalent binding’’,2 or by extension,
between covalent and hydrogen or halogen binding.28–36 These
observations based upon shape-revealing, canonical transfor-
mation of potentials and their associated force distributions to
dimensionless canonical forms provide compelling arguments
in support of Slater’s brilliant insight. Perhaps, this new
canonical perspective on interatomic interactions provide a
framework with which, it should be argued that, as asserted
by Slater, pairwise interatomic interactions are fundamentally
the same.
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