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MOLECULAR PHYSICS, 1970, VOL. 19, NO. 4, 553-566 

The calculation of small  molecular interactions by the 
differences of separate total energies.  Some procedures 

with reduced errors 

by S. F. BOYS and F. BERNARDI 

Theoretical Chemistry Department, University Chemical Laboratory, Cambridge 

(Received 5 June 1970) 

A new direct difference method for the computation of molecular 
interactions has been based on a bivariational transcorrelated treatment, 
together with special methods for the balancing of other errors. It appears 
that these new features can give a strong reduction in the error of the 
interaction energy, and they seem to be particularly suitable for computations 
in the important region near the minimum energy. 

It has been generally accepted that this problem is dominated by unresolved 
difficulties and the relation of the new methods to these apparent difficulties is 
analysed here. 

1. INTRODUCTION 

An accurate knowledge of interaction potentials for molecular systems is of 
fundamental importance to the understanding and prediction of the properties of 
imperfect gases, liquids and solutions. In principle the interaction potential of two 
molecules A and B at a distance R apart can be computed exactly from the definition 

AABW(R)---- WAB(R)-- (1) 
where the total energy of the interacting system WAB and the energies of the two 
separate molecules l~ t  and l ~  are obtained from solutions of the appropriate 
Schr6dinger equations. The difficulties of these problems are however shown by 
the fact that it has not yet been found possible to make quantitative predictions of 
the interaction potential of two H2 molecules to sufficient accuracy to provide a 
reasonable basis for quantitative predictions of physical phenomena. The 
calculation for more complicated small molecules seems to have been universally 
regarded as hardly foreseeable. However, it is with the aim of making contributions 
to such possibilities that the present investigations are being made. There are still 
elements of conjecture about completely successful predictions but the authors 
consider that with the analysis here and from some results of applications of these 
methods to a simple model, it appears that the remaining difficulties are only those 
of normal detailed investigations. 

The present aim is that of predictions in the main region of importance for 
thermodynamic properties. This is where electrostatic, overlap and dispersion 
forces have the same order of magnitude and in which these are required to an 
accuracy of 10 -5 to 10 -7 atomic units. 

The problems for this intermediate range are very different from the range 
where the molecules are closer and interacting much more strongly. This latter 
range is not very useful for thermodynamic properties and the type of accuracy so 
far considered adequate involves errors about 10 4 greater than the above desiderata. 
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The various previous investigations in this repulsive short range give little hope for 
the solution of the difficulties of the present range. On the other hand, the long- 
range calculations, where only dispersion forces need be considered, have a very 
attractive simplicity compared with the present range. Here perturbation methods 
are adequate but the results have very little to contribute directly for thermodynamic 
predictions, apart from qualitative guidance, because the methods seem to be 
ineffective for the intermediate range. 

In the present series of papers some procedures will be examined and developed; 
these give a hope of a complete solution of the quantum ab initio prediction of 
interaction potentials for molecular systems. It is considered that the desirability 
of obtaining a predictive accuracy of about 1 per cent in the interaction potential in 
the region of the minimum exceeds all other problems in the prediction of the 
interaction potentials. The present approach contains some new features that seem 
to make it possible for direct calculations with this accuracy even in this region. 
Although the long-range predictions are not regarded as of first importance, it may 
be remarked that the relevant new aspects are applicable to them. In a following 
paper a subtle test which gives an accuracy of 10 -12 in a direct difference calculation 
apparently by using only numerical operations to an accuracy of 10 -l~ will be 
explained. 

The whole issue has a number of complications, and for this reason it has been 
thought best to establish the validity of the general procedure at various levels. In 
this paper we shall discuss the main theoretical characteristics of this new method 
and treat a number of particular mathematical aspects. Some new features have 
been devised to give a high reduction of the errors. Since most of these are new 
principles, it appeared worthwhile to test their validity in a simplified model before 
accurate calculation on molecular systems are attempted. The simplified model 
investigated consists of two hypothetical quantum systems, which each have one 
electron in one dimension. These results, which will be reported in a subsequent 
paper, show that the errors are much less than would generally be supposed. An 
application to a molecular system is also in its early stages. 

The outstanding features which will be analysed in this paper are conveniently 
shown by the titles of the following sections: 

2. Bivariational characteristics. 
3. The function counterpoise and point counterpoise methods. 

4. Direct difference computations of intermoleeular energy. 

5. Truncation counterpoise characteristics. 
6. Relations to perturbation methods. 

The recent bivariational theorem [1] has called attention to the fact that there 
can be very strong reduction in the errors associated with certain kinds of numerical 
investigations. This does cause the errors in such calculations to be much smaller 
than the errors in the individual integrals used in the calculations. This is one 
reason to hope that errors can be much less than might be feared. In w 3 it will be 
shown that while retaining this aspect it is possible to introduce two other 
characteristics which reduce the errors further. w 4 deals with the theoretical 
formulation of the present method. The discussions in w167 5 and 6 deal with other 
aspects that are considered to show that the present method provides a hope of 
accuracy well beyond that generally expected for earlier methods. 
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Since in the literature there are many cases where operations on functions are 
discussed before these are made completely antisymmetric, it should be noted that 
the discussion here will only be concerned with functions which are completely 
antisymmetric. All stages of the analysis will, in fact, be carried out as if the 
complete antisymmetry operator was contained in the front of every expansion 
function. 

2. B I V A R I A T I O N A L  CHARACTERISTICS 

Boys [1] has given a bivariational treatment which enables approximations for 
the eigenvalue W and eigenfunction q~ of the Schr6dinger equation 

( H -  IY)W = 0 (2) 

to be computed in certain important practical cases with a greater accuracy than 
that one could obtain from usual Rayleigh-Ritz variational procedures because more 
satisfactory expansion functions can be integrated in the new method. When a 
numerical integration procedure is used to evaluate the secular matrix elements, the 
bivariational equations can be written in the form 

@r*[ 9A(H- W) I E YsO,} = 0, 
* (3)  

where the usual quantum notation (I}  is used for integration over all continuous 
variables and summation over all discrete variables. The operator QA is defined for 
the case of 3N dimensions to have the form 

9 A= E h,8(rl, Ri) X hj~(r2, R A . . .  E hub(r:,, au), (4) 
i ) u 

where RK, h~ are a specified finite set of numerical points and weights for integration 
in three dimensions, and 3 is the quantum delta function in three dimensions. This 
operator constitutes a direct approximation to the continuous integration of the 
matrix elements by a sum of values at a finite number of points. If an infinite set of 
integration points with appropriate weights is used in (4), the integration procedure 
could be perfectly accurate, which would mean that QA= 1. 

The Boys bivariational theorem provides the interesting information that the 
error in W, obtained by solving equations (3) as an approximation to the true 
eigenvalue l~, will be of order O(/~? +/zA)/~. In this formula/,? and/z are unknowns 
which are defined to be the least squares errors in fitting the true adjoint and direct 
eigenfunctions ~ ?  and tip of the Hamiltonian H by linear combinations of the 
expansion functions q)s? and ~s, respectively. /z~ is a measure of the error 
introduced by the QA numerical integration procedure. For general applications, 
such an error is not as satisfactory as the corresponding /22 error in a variational 
procedure, where 12 denotes the least squares error in fitting iF? =q~ with the same 
set of expansion functions (be. 

But in cases where it is possible to use a set of ~s which gives a/z value much 
smaller than the corresponding/2 given by the best variational set ~s, the total error 
(/,? +/,A)/~ can be smaller than/22. And this means that in these cases a bivaliational 
procedure provides energy values more accurate than those one could obtain from a 
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variational procedure. The atomic and molecular computations by Boys and 
Handy [2] are examples of cases where errors (/z* +/zA)/~ < 122 have been obtained. 

The bivariational W does not necessarily have monotonic convergence to the 
true eigenvalue IT', so that this advantage of the variational method for the lowest 
eigenvalue has been lost. But the increase of accuracy that can be obtained with a 
bivariational treatment will probably outweigh this disadvantage in the present 
practical applications. 

It must be noticed that the 122 error variational formula implies an exact 
integration in the variational secular equations. On the other hand, in a 
bivariational treatment a numerical integration procedure can be used in the solution 
of the secular equations. The replacement of the exact integration with a QA 
numerical integration procedure which gives an error of about/z ~, introduces an 
error in the approximate eigenvalue W of order/,~/,. And in all the cases where/z 
can be made very small, the numerical integration error/*At* becomes much smaller 
than/z ~. This feature suggests that QA numerical integration procedures can be 
used with a number of integration points which would not give the desired accuracy 
in intermediate integrals, but which by the bivariational theory gives the desired 
accuracy for the final result. 

It appears worth while to show these important aspects of the bivariational 
method in a simple and somewhat extreme example. The hypothetical one- 
dimensional system examined in this example consists of two simple harmonic 
oscillators A and B, fixed on the x axis at a distance XAB apart. This problem can be 
solved exactly, and we can compare the exact answer with the approximate results 
obtained when a fantastically crude numerical integration is used. Let Xl and x2 
be the coordinates of the two electrons. The notation XlA=Xl--A, X2A=x2--A, 
x l B = x l - - B  and XZB=xz--B will be used. The unperturbed Hamiltonian H 
co rresponds to two non-interacting simple harmonic oscillators 

) H - - - ~  dX~212+~x~--XlA2--X2B 2 ~HA+HB (5) 

and the perturbation V consists of the other pair interactions 

V = - {(xl 9, 2 -  xzA 2 - XlB 2 + Xag z) --=- XlAX2B. (6) 

The first and second-order bivariational perturbation energies, defined as 

W~ = ('V~ I QAvI 'V~176 I Q~ I "r'o>, (7) 

W~ = <tFo* I QAv] WI>/(~F 0t ] QA I'V0>, (8) 

will be predicted where 
~ o t =  ~ yso*r 

8 

is the zero order adjoint perturbation function, and 

g 0  = Z Y8~162 
$ 

�9 F1 = y~ y ~ x ~  s 
8 

are the zero and first-order direct perturbation functions. The sets of coefficients 
YsOt, Y8 ~ and Ys 1 can be obtained solving the basic bi-perturbation equations 
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defined as (*t*[Qa( H -  W~+ eV)I 2 Ys~bs) =0, 
(9) 

where e is the perturbation parameter. The operator Qa is the numerical operator 

~ 6(xl,X,)3(xz,Xi) taken for integration points at X1=0.56491, X2=0.61814, 

X3 = 0.999 with the constant value 1 for all weights. These integration points were 
the phone numbers of the authors and of the police station, and were chosen as 
obviously ridiculously inaccurate but as clearly unadjustable. The expansion 
functions Os? and Os used here are the exact solutions of the zero order, first-order 
and second-order direct perturbation equations. The table contains the 
bivariational results obtained here, and for comparison the exact values and some 
quasi-variational values defined by the following equations 

W#-- (W ~ [QaVI 'F~ ~ I Q~ ] w0), (10) 

w 1=  <'r~ Q VI I I'r~ �9 (11) 
The latter might have been thought to be a more logical alternative to the 
bivariational expressions (7) and (8) if one did not know the bivariational theorem. 

Exact values 
Bivariational 

with numerical 
integration 

Quasi-variational 
with numerical 

integration 

First-order energy 
perturbation W 1 0 0"000002 0.426711 

Second-order energy 
perturbation W 2 - 0' 125 - 0" 124919 - 0" 113787 

Table 1. Values by 7-figure computation. 

So in spite of this ridiculous choice of the points of integration a perfect accuracy, 
apart from decimal point round-off, has been obtained. This result does not 
depend on the choice of qbs*: it can easily be checked that the same result occurs 
for any choice of q)s*. I t  depends on the fact that the expansion functions qbs can 
fit exactly the zero to second-order direct true wave functions. Since this means 
/z = 0, the (/~* +/~a)/x errors in the corresponding bivariational energies become zero. 

In a practical example it would not be possible to choose the exact expansion 
functions qbs (as in this case), but a large set of Os would give a small value of/z and 
hence of (/~* +/~a)/~. 

These characteristics suggest that a bivariational approach can be particularly 
appropriate in direct computations of molecular interactions. It can be noted that 
in a direct computation of molecular interactions even the variational method would 
not show a monotonic convergence in the interaction energy, so that in this aspect 
the bivariational method does not have the comparative deficiency mentioned earlier. 
I t  does not appear worthwhile to try to assign detailed merit to the various new 
aspects of the method for the direct computation of molecular interaction which will 
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be proposed in this communication, but the authors think that the bivariational 
characteristics can be reasonably regarded as the dominant feature. 

The full implications of the bivariational properties may be unfamiliar and 
difficult to grasp so that it may be repeated here that it is theoretically possible, with 
relatively few points of numerical integration, to obtain the same final accuracy as if 
the coulomb and all the other integrals were accurate to 10 -6 . This would however 
require the expansion functions to approximate very closely to the true wavefunction. 
Of course, the latter is not yet possible, but it is thought that there are greater 
possibilities of high accuracy in such approaches than is easily realized. 

3. THE POINT COUNTERPOISE AND FUNCTION COUNTERPOISE METHODS 

The term ' counterpoise procedure ' will be used as a brief description for some 
methods by which it is hoped to make some errors in the energy calculations for two 
separate molecules as nearly equal to the corresponding errors in the bimolecular 
calculation as possible. These errors can then be expected approximatively to 
cancel when these quantities are differenced in the computation of the interaction 
energy. 

Before the detailed discussion of these new procedures, a simple example may 
illustrate the counterpoise idea. This example is a calculation of the energy change 
of a H-like atom when the nuclear charge Z is changed from 1 to 1.00001. We 
shall proceed as if ignorant of the exact answer, as if unable to perform integration, 
and as if "1  = (1 +r)-3, q52 = (1 + r) -4 are the best known expansion functions. In 
order to compute the energy we merely find Ys and W to satisfy the equation 

(H- W) ~, YsaPs=O (12) 
8 

at two different values of r. For r = 0.5 and r = 1.7 we obtain for Z = 1, a computed 
energy value W= -0.851375 i.u., that is, in error by -0"351 from the exact value 
of - 0.5 h.u. When Z =  1-00001 the computed energy value is W= - 0.851357 A.U. 
This is in error by about the same amount from the accurate value of - 0.50001 A.U. 
However, the above quantkies give the computed value of the energy change as 
AW=-0.000018 A.U. to be compared with the accurate value of 0.000010 A.U. 
The error in A Wis in fact 10 4 of the 0.351 error in the computed energy W. If  we 
had not used the same points in the computations for both Z values, then the error in 
the energy change would have been expected to be of the same order of magnitude 
as the error in the computed energy. The use of the same points in the 
computations can be considered a primitive example of point counterpoise. 

For molecular computations the point counterpoise procedure consists of an 
artifice by which just the same set of points and weights is used for composite and 
separate systems. One set of integration points is chosen for the calculation of the 
energy WAB of the bimolecule AB, and this set is also used in the two calculations 
of the energies WA and W~ of the separate molecules A and B. This might be 
considered a waste of effort because many points will not give appreciable 
contributions, but the evidence of a subsequent paper is that with this procedure the 
error in the interaction energy is reduced to 1/100 of its value otherwise. The 
second type of counterpoise procedure proposed here corresponds closely to the 
preceding and is the function counterpoise. In this procedure, the calculation of 
the separate energies WA and WB are performed with the full set of expansion 
functions used in the calculation of the energy WAB of the bimolecular system. It 
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is considered that a deductive justification for this procedure has not yet been made 
as for the point counterpoise and this will have to be extensively tested on a 
preliminary simple model. Results already available do in fact appear to justify it. 
Hence the whole counterpoise proposals consist of proceeding to the calculation of 
the energy WA just as for WAB, but merely altering the parameters giving the number 
of electrons and putting all the nuclear charges in molecule B equal to zero. It may 
be noted that the counterpoise procedure introduces the rather unexpected feature 
that the energies of the separate molecules WA and WB are now slightly dependent 
on the value of the distance R between them. And this feature from a 
computational point of view means that the values of the energies WA and WB must 
now be computed at each R value of the total energy WAB from which they are to be 
subtracted. 

The complete counterpoise procedure requires an increased computational time 
but it is obvious that the increase is less than 2TAB, where TAB is the computational 
time for WAB. But a less than three times effort is well worth while if it gives the 
possibility that much more accurate values of intermolecular interactions may be 
obtained. 

4. T H E  DIRECT DIFFERENCE COMPUTATION OF INTERMOLECULAR ENERGY 

The new general principles have now been described and here it will be attempted 
to show a way in which a practical computation could be planned on these lines. A 
plan to use the new methods in a transcorrelated calculation of the type introduced 
by Boys and Handy [2] will be described. In principle the new methods could just 
as well be used in the well known configurational interaction method but it is 
thought from detailed considerations that the transcorrelated method will be more 
effective. 

Such a counterpoise bivariational calculation would consist of the evaluation of 
the interaction energy of two molecules A and B at a distance R by 

A~BW(R) = WAB(R)- WAC(R)- WBC(R). (13) 

The total energy of the two molecules at a distance R has the separate energies 
subtracted with the latter computed by the same points and functions as for WAB. 
Hence WA c and WB c vary slightly with R and the superscript C is added to denote 
that all the counterpoise procedures have been used. 

All the quantities are to be evaluated by the transcorrelated method in which an 
approximate wavefunction of the form 

Ca)= ]-~ f(ri, r j ) d ( r  r  (14) 
i>j 

is used. The correlation functions f(r~, rj) are to be included for all pairs of 
electrons and they multiply a Slater determinant formed from the space-spin 
orbitals r r . . . .  There are to be adjustable parameters Ys in both the functions 
f(r~, ri) and in the orbitals. If Y8 is the full set of parameters then the values of 
these are determined by 

(8~s(C-la))[H-W[Ca))=O, (15) 

( ( ~  log C)a)IC-1HC-CHC-11a))--O. (16) 
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We can either state that these equations have to be used with a value of Wsatisfying 

(C 1 H C -  W)(I)=0 (17) 

or stipulate that the Y8 contain a parameter which merely allows C(I) to be multiplied 
by a constant. Then this latter equation is contained in (15). Hence we shall 
regard equations (15) and (16) as the full set of transcorrelated bivariational 
equations. The optimum C(I) and the optimum W can only be obtained when these 
equations are simultaneously satisfied and the simplest way to obtain this appears to 
be with an iteration procedure. The ds in equation (16) are a special redundant set 
of parameters which occur in f(rt,  rj) and which by (16) are so chosen that C(1) is 
uniquely determined in a manner which gives a most gratifying stability to the 
iteration convergence. Details of the iteration determination of the Ys and W to 
satisfy (15) and (16) were described for Ne and LiH but there are various possible 
variants for this stage and probably any approximate generalized Newton-Raphson 
method can be used for this. 

The counterpoise procedures merely require that equations (15) and (16) are 
used at every value of R three times, for WAB, WA c and WB c with just the same 
points of integration and the same expansion functions around A and B even when 
WA c or WB c is being calculated alone. 

It will still be a moderately difficult matter to put this method into operation for 
interesting molecules, and any estimates of the effort necessary for a given accuracy 
are subjective at this stage. Nevertheless it is probably informative to say that, in 
transcorrelated computations, errors of 0.1 per cent can be expected in any of WAB, 
WA C and WB C and that the authors hope that, with the counterpoise effects, the 
error in AABeW will be brought to an order of magnitude of 2 per cent of the 
interaction energy value. This hope is not at all inconsistent with the results 
already obtained in a simplified problem where the one-dimensional interaction of 
two hypothetical quantum systems each with a unit positive nucleus and one 
electron is being investigated. Of course in this simple model we are able to achieve 
a much higher accuracy than that we can expect in real problems. But if we 
examine situations where the errors in the total energy WAB are about 0-1 per cent, 
which corresponds approximately to the order of magnitude of the percentage error 
in the transcorrelated total energy of LiH, an error in the interaction energy of about 
2 per cent is in fact obtained. It must be admitted that the extrapolation of the 
results from this simplified system to a physical problem is a matter of judgement. 
However, realistic physical systems are to be tested shortly. 

5. TRUNCATION COUNTERPOISE CHARACTERISTICS 

Here an awkward source of error will be discussed. This is present either in 
any perturbation calculation, or in any direct difference calculation in which it is 
attempted to evaluate the integrals by the most frequently used methods. It is the 
error which arises because there are no exact formulas for three and four-centre 
integrals except in Gaussian calculations, and because in Gaussian calculations the 
convergence of orbitals at large distances is very non-uniform. 

In the present method the use of numerical quadrature with one specified set of 
points for different types of cancelling integrals avoids the above type of error, and 
this avoidance will here be called ' truncation counterpoise ' 

The simplest circumstances where this error arises, in the absence of truncation 
counterpoise, is in methods depending on evaluation of three and four centre 
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integrals by other means than Gaussian expansions. It appears in the calculation 
of the total electrostatic interaction between two molecules in terms of the following 
type 

( q ~ a ( r l ) r  [ r 12 - 1  - -  ~'2A - 1  - -  r ib  -1 + rAB-1]r162162 (18) 

Such a term would have to be evaluated if a quantitative prediction were attempted 
either in a perturbation calculation where the first-order term corresponds to the 
electrostatic interaction, or in a direct difference calculation. Formula (18), where 
Ca and Cb denote orbitals in the molecules A and B, is a symbolic simplification of 
the totality of the occurring terms. The nuclear electron interaction terms have 
been written as if only one nucleus occurred in each of A and B, and as if 1/r2A were 
one unit of a term ZA/r2A, which is considered with 1/rlz to show the almost exact 
cancellation which occurs between the four integrals. The complicated sums which 
occur in the general case can be resolved into components of the type represented by 
formula [18], where in the general cases the Ca and Cb involve functions on four 
centres. The worst four centre integral can only be approximated by multiple 
infinite series; the reA -1 three-centre integrals are given by much simpler infinite 
series; and the other two-centre integrals by exact formulas. Hence the infinite 
series would have to be continued to terms which are of fantastically high order, 
compared with present practice, to achieve sufficient accuracy for the final nearly 
cancelled component; or some way of terminating the series would have to be found 
to make the errors in the simpler integrals correspond to the truncation errors in the 
complicated terms. But no such scheme has yet been developed. 

In the present method, where expressions of type (18) are evaluated by a 
numerical quadrature, there is immediately a truncation counterpoise effect if the 
same points for the integration are used for all the cancelling terms. 

It may be pointed out that even if analytical truncation were possible, attempts at 
increasing the accuracy would involve terms of rapidly increasing complexity, which 
would make a such procedure very unsuitable for practice. On the other hand, in 
attempts at increasing the accuracy in numerical integration the computational effort 
increases simply with the number of points. 

If the orbitals are expanded in Gaussian functions the above comments do not 
apply because there are explicit formulas for the basic integrals. But in this case 
the truncation in the approximation to a real physical orbital by a finite number of 
Gaussians gives a corresponding effect. We will refer to this effect as a Gaussian 
truncation and the main circumstances where errors due to a Gaussian truncation 
arise are in the computations of integrals containing the two-centre product 
~a(rl)~b(r/). This is the case for overlap integrals, exchange integrals and some of 
the nuclear attraction three-centre integrals. Any integral containing Ca(r~)r 
is in fact contributed nearly completely by the Gaussian functions with greatest 
width. This domination becomes more and more important when the overlap 
value becomes smaller and smaller. The behaviour as the number of Gaussians 
is increased in two slightly overlapping orbitals is likely to be extremely oscillatory 
as larger and larger Gaussians are used to fit the tails of the orbitals. So that 
at the large internuclear distances corresponding to the intermediate range where 
the overlap values are very small, the number of Gaussians would have to be 
increased in an impractical way to keep anything approaching a constant fractional 
error in this kind of integrals. The behaviour as the intermolecular distance is 
increased is like some very peculiar series in which the terms behave so that when 

M.P. NN 
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the whole sum is getting less and less it is necessary to take more and more terms to 
keep some specified accuracy. 

It might be thought that to some degree a similar characteristic might enter with 
numerical quadrature. This is not so because it is not difficult to arrange that a 
given fraction of the points for integration always occurs in the general area of the 
overlap, even if the molecules are drawn farther and farther apart. A particular 
example of such a device has already been used many times and will be described in 
a subsequent paper where the application of the present method to a simplified 
problem will be discussed. 

The Gaussian truncation error is not the same as the preceding series truncation 
error, but, since both these originate in an omission of the higher terms of a complete 
set, it does seem convenient to describe both of them as due to a lack of truncation 
counterpoise. The truncation counterpoise is thus a very gratifying consequence 
of the numerical quadrature, but it probably might not be sufficiently effective if it 
were not associated with the bivariational effects too. But in a procedure where the 
points of integration are chosen as accurately as possible and all steps are taken to 
make the bivariational procedure as effective as possible it seems reasonable to say 
that the present method possesses a truncation counterpoise. 

6. RELATIONS TO PERTURBATION METHODS 

In the first place it must be recognized that perturbation theory is a very 
powerful analytical tool for the interpretation of physical phenomena and for the 
deduction of inter-relations between different physical properties, but that, apart 
from the first-order perturbed energy, it does not provide practical computational 
methods for quantitative predictions. The physical effects examined here, even at 
their simplest stage, require second-order terms. For any perturbation computation 
after the first-order term it is necessary to introduce a variational approximation 
either directly, or in the special form of using finite perturbations and of interpolating 
back to small perturbations. However, the hopes of applying such perturbation- 
variational methods to predictions for the intermediate range have not been found 
possible because there are abnormal complexities in the theoretical formulation 
which have not been satisfactorily resolved and whose resolution would be 
necessary before a computational stage could be reached. 

The outstanding one of these complexities is concerned with the virtual excited 
levels of the unperturbed systems which are used in orthodox perturbation theory as 
an expansion basis. If the excited levels of the separate molecules are multiplied 
together and antisymmetrized to form such a basis then the higher terms are doubly 
overcomplete, not orthogonal, and subject to such large perturbations that these can 
only be called alterations. The problems associated with these complexities have 
been investigated in a variety of special and erudite analyses. The present 
situation is summarized in a review by Hirschfelder and Meath [3]. However, it 
appears to be generally accepted that there is not yet any foreseeable hope of a 
resolution of these complexities. In addition to these there is the other unsolved 
difficulty of the near cancellation of different kinds of electrostatic integrals in the 
first order perturbation energy. Thus the hope of quantitative perturbation 
investigations is still dominated by the difficulties which will be referred to as the 
doubly complete basis and the electrostatic near-cancellation. These issues are 
further obscured by the fact that perturbation methods can provide accurate 
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predictions of the so called long-range interactions for simple systems, such as those 
with an atom for a component, where the electrostatic near cancellation does not 
occur. But these calculations do not in fact affect the problems of the computation 
of interaction in the region of the energy minimum, because they are restricted to a 
range where the overlap integrals, which determine the minimum, are zero. Such 
calculations have their own interest but they are so based on omission of the 
difficult terms that they seem to provide no contribution to the more complicated 
problem of the quantitative prediction in the dominant cohesive range. Incidentaly 
such calculations would still have the electrostatic near cancellation difficulty if they 
were applied to more complicated molecules. As a result of these factors the 
perturbation methods do not appear to suggest solutions for these dominant 
difficulties and the various counterpoise devices were developed. Nevertheless the 
form of the latter can be seen to owe much to the general knowledge of the 
perturbation theories. 

The electrostatic near cancellation difficulty appears in the computation of the 
first-order perturbation energy of two interacting molecules A and B in the region of 
intermediate and large separation just as it has been described in w 5 for the 
variational calculation. The first-order energy can be resolved into a linear 
combination of components the predominant ones being terms of the type defined 

by (r162 I r l  2 - 1  - -  r l B  - 1  - -  r2A -1 + ?'AB -1 [ ~)a(r 1)r (19) 

Such a term represents the interaction of an orbital Ca in molecule A with an orbital 
Cb in molecule B, the interaction of these orbitals with nuclei in opposite molecules, 
and the interaction between the nuclei themselves. At intermediate and long range 
these four contributions are nearly equal and the final result is a second-order small 
quantity compared with any of the component integrals. Since these second-order 
small quantities give the main contribution to the first-order energy, they are 
required to a very high accuracy. But the required accuracy would be completely 
beyond the possibility of computational methods without truncation counterpoise 
characteristics. In the method suggested here truncation counterpoise 
characteristics arise naturally and this source of error is avoided by evaluating the 
integrals by a point quadrature with the same points for all cancelling terms, even 
when alternative methods are available for some of the integrals. The use of a 
unique grid for the point quadrature could also be applied to perturbation 
calculations. This suggestion does not arise from perturbation concepts or 
investigations, but it is a contribution of the present truncation counterpoise 
procedure to the solution of a perturbation problem. Very laborious computation 
would however still be necessary if this source of error were not also very strongly 
dominated by the bivariational effect. The latter improves the situation because it 
introduces an error of O(/~t/~ +/A/~) which will tend to zero with/z, in spite of the 
possibility of finite errors in the individual integrals. 

The formal complexities associated with the double completeness provide one of 
the most complicated issues in perturbation theory of molecular properties. It is 
not possible to review these adequately here but some examples of how these cause 
very puzzling difficulties will be given. 

For brevity the case of two molecules A and B with the same number of 
electrons will be considered. First the natural set of expansion functions would 
appear to be d~kAq~l B where ~xA are all the stationary states of molecule A in the 
absence of B, and ~t B are the complementary set for B. But of course these are 
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much overcomplete because any member ~tB can be expanded in terms of the set 
�9 k A. Certainly, if the intermolecular separation AB is large, this only arises for 
high values of l+k, but this ' interference ' value of l+k becomes lower as AB is 
decreased. If it is attempted to avoid this by specifying the cut-off values l and k, 
then above some specified value of AB this would give an error which is small, but it 
would introduce increasing errors as AB is decreased below this value. The 
ordinary formulas, based on orthogonal functions, for the expansion of all orders of 
perturbed wavefunctions then become inaccurate. 

It may be noted that the long-range calculation of the value C in a - C/r 6 term 
does not encounter this difficulty because C is only obtained as AB tends to infinity 
and this distance can be made large enough for a cut-off at any desired energy height 
and thus any degree of smallness of the error can be obtained. This is a matter of 
taking two limits in the correct order. 

It might be thought that the expansion difficulty is a sufficient obstacle but it may 
be pointed out that the perturbation method is made inappropriate in another way 
which might persist even if the double completeness were removed. When high 
excited virtual states of ~k A, or any substitute for these which might be used to 
remove the double completeness, occur in a perturbation expansion then the 
denominators of form (W1--Wk) become altered by large amounts by the 
introduction of molecule B. They are not at all the relatively unaltered quantities 
of ordinary perturbation theory. For example we can make a linear combination of 
the higher states q~k A so that this is centred round the position to be occupied by 
nucleus B. Then, when this nucleus is introduced, an extremely high Wz'-  We' 
can drop to about the level of the lowest excited state of ~l B. It is possible to 
consider this to be a 90 per cent change (or 900 per cent if this is calculated on the 
new value), and although this is not a diagonal term it does indicate the drastic 
changes that occur in the matrix of the virtual states. 

These are crude illustrations of the matters which have been widely discussed in 
much more formal arguments in specialist papers on these topics. But whether the 
view is expressed that second-order perturbation terms are not sufficient, or that this 
problem is not yet in a suitable form for perturbation, it is generally accepted that 
there has been no adequate resolution of the problems of computation of the desired 
quantities. The extensive comparison of calculations based on various procedures 
of perturbation type for two H atoms by Certain, Hirschfelder, Kolos and 
Wolniewicz [4] indicates that no agreement can be reached without the inclusion of 
some contributions of order higher than the second and suggests virtually the 
preceding conclusions (see also Hirschfelder and Certain [5]). 

These difficulties never arise in the present methods. Here the expansion 
functions are to be chosen with the best care for sake of the composite AB molecule 
and no further function nearly linearly dependent on these should be introduced. 
Then exactly the same functions used in the composite AB system are to be used for 
the component molecules in two separate calculations. This is to be carried to the 
logical extreme of using the functions chosen to provide a good fit for molecule B 
even when the calculation is only for molecule A. It is the opinion of the authors 
that in calculations on the basis proposed here there is no separation of higher-order 
terms, and that all the effects are included naturally if the procedure can be operated 
to a sufficient numerical accuracy. 

Hence although it is quite clear that the experience of earlier workers on 
perturbation theory have provided the basic guidance in development of the method 



The calculation of intermolecularforces 565 

proposed here, these perturbation investigations have perhaps served more as a 
demonstration of what to avoid than as a basis which has been extended. 

7. CONCLUSIONS 

The outstanding characteristics of the present methods is that they avoid the 
difficulties frequently cited in the earlier procedures which have been considered for 
the calculation of the very small interactions between saturated molecules. These 
new methods have not yet been tested on a calculation corresponding to an actual 
physical system, so that it can only be conjectured whether they will be sufficiently 
accurate. However, they contain possible answers to all the difficulties of the well- 
known methods which are usually discussed. The methods proposed here may be 
sufficient to obtain the final required accuracy, or it may be that even more effective 
methods can be developed from them. But they do suggest that any assumption 
that no direct practical computations can be made in the near forseeable future is 
unjustified. 

The methods have been put forward as some first contribution towards 
calculations of the intermolecular forces in the region of dominant physical interest. 
This is the region where it is necessary to include coulomb, overlap and dispersion 
forces, although these are not separated in the present method. The final aim which 
is hoped to achieve is to predict such interaction potential to an accuracy of 1 per 
cent or so, but it is not possible to say at this stage how much further development 
will be necessary to achieve this. 

Even with these new methods the whole problem is quke formidable and at the 
present time it is considered most effective to test the improved accuracy on a two- 
dimensional model for two one-dimensional electrons on two separate nuclei. 
Although this is not yet completed it may be said that the counterpoise effects have 
been found to reduce the errors to about 1/100 of the values they would have 
otherwise. For this model it is possible to use sufficient points in the integration 
and sufficient expansion functions to obtain virtually exact results. These serve for 
assessments of the errors found in computations which correspond to degrees of 
accuracy attainable for molecular systems. 

The present situation may be summarized by saying that 

1. The bivariational theory shows that there is a much greater potential accuracy 
to be achieved in direct numerical integration than might otherwise be thought. 

2. The calculation of the energy of the separate molecules as if they were just a 
sub-case of the composite system of two molecules appears to introduce a strong 
effect of error cancellation. It is the different aspects of this type of effect which 
constitute the various counterpoise procedures which have been discussed here. 

3. The present formulation does not so much solve the various difficulties which 
have hitherto been regarded as obstacles, so much as arrange that they do not occur 
in explicit form. 

The whole problem is still a question of degree, whether sufficient accuracy can 
be obtained for reliable prediction of bulk properties but the situation seems to be 
sufficiently improved by the preceding considerations that it is very desirable to 
find out what degree of accuracy can be 9chieved in practice. 
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