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Analysis of Perturbations in the A211-X*x+ “Red” System of CN 

ANTHONY J. KOTLAR, ROBERT W. FIELD, AND JEFFREY I. STEINFELD 

Department of Chemistry and Spectroscopy Laboratory, Massachusetts Institute of Technology, 
Cambridge, Massachusetts 02139 

AND 

JOHN A. COXON 

Department of chemists, Da~hoasie University~ Halifax, Nova Scotia B3H 453. Canada 

Deperturbed vibration-rotation constants of the A%(t) = 0 to 12) and X5+ (0” = 0 to 8) 
states of CN are obtained. Spectroscopic data from several sources are combined using a 
weighted, nonlinear least-squares fitting routine. The diagonalized effective Hamiltonian 
matrix contains as many as two *II and four 5+ mutually interacting vibronic levels. Per- 
turbations of A211 by both XP+ and B2Z+ are treated simultaneously. The deperturbed con- 
stants and interaction matrix elements obtained provide a significantly more accurate rep- 
resentation of all perturbed and unperturbed observed lines than the previously reported 
values. The electronic factors of the spin-orbit and rotation-electronic perturbation matrix 
elements for the A - X and A -B interactions are determined and several previously 
unreported perturbations are detected and analyzed. Merged constants and Dunham coef- 
ficients are calculated: a detailed statistical treatment of the parameters and error estimates 
has also been carried out. 

I. INTRODUCTION 

The “Red” band system of CN, arising from transitions between theA2iI and the 
x2X+ states of this radical, has been the subject of numerous investigations (for a 
summary of the literature through 1973, see (I )). Several reports (2,3) already exist 
which catalog the data and survey the literature for this system. The Berkeley atlas 
(3), in particular, consists of some 10 000 measured frequencies divided among 
39 vibrational bands, and represents the single most comprehensive tabulation 
of CN ATI-X22+ transitions. Since its publication in 1963, two separate analyses 
(4,5) have been performed on these data. Neither of these studies analyzes all the 
transitions in the atlas and, in particular, the spectroscopic pe~urbations known 
to occur (6-8) in the A-X band system are treated in an unsatisfacto~ fashion. 
A number of developments have taken place since the most recent treatment of 
this system, which makes a reanalysis advisable. First, nonlinear least-squares 
fitting techniques have been developed (9-12) which make such an analysis 
feasible. Furthermore, some very high-quality Fourier transform spectroscopic 
data have been recorded (13), which provide greatly improved accuracy for many 
transitions, and extend the range of J values up to J - 100. By combining the 
earlier tabulation with these more recent data, and using the powerful fitting tech- 
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niques now available, we can present here the most complete analysis of the best 
data presently available on the ATI-XT+ system of CN, including a detailed 
perturbation analysis which includes both A - X and A - B interactions. 

There are several reasons for such an analysis to be of interest at this time. One 
is the need for collisional quenching rates for the CN A state. Gelbart and Freed 
(24) have shown that the rate for collision-induced population redistribution 
involving states of mixed II and 2+ character contains two contributions, one for 
electronic quenching (II-+ 2+), and a II * II transfer process resembling a rota- 
tional relaxation within the II state. The contributions of these channels are 
proportional to (1 - p2) and pz, respectively, where p2 is the mixing fraction in the 
perturbed level. In previous studies (15-17) of collision-induced quenching in 

I, (0: - 0;) and N, (311, - 3A,, 3Zz), the mixing fractions are zero in the absence 
of a collision, as a result of the g/u symmetry. Since one does not know the extent 
of the mixing of these states caused by breaking of the g/u symmetry during the 
collision, the value of p2 can only be roughly estimated. In the case of CN(A%), 
however, the perturbations exist in the absence of collisions, since there is no 
inversion symmetry, and it is possible to calculate the mixing fractions and per- 
turbation parameters from the spectroscopic data alone. Thus, there is no ambigu- 
ity about the magnitude of the coupling between perturbing states arising from the 
intramolecular interactions of the molecule. 

A knowledge of quenching and energy transfer rates is required for understand- 
ing laser action involving the CN A-X system. A parametric evaluation of elec- 
tronic transition laser candidates by Sutton and Suchard (18) indicated that the 
CN A-X system fulfilled many of the requirements for producing a chemically 
pumped, electronic transition laser. West and Berry (19) have, in fact, observed 
A + X lasing from CN following photodissociation of various cyanide parents. 
An A -+ X laser pumped by a pulsed electric discharge has also been reported (20), 
with efficiencies as high as 10%. Betts and Miller (21) have attempted to produce 
a chemically pumped A + X laser from reaction between Fp, DP, and (CN), or 
CNCl, but were unsuccessful in doing so. Collisional deactivation of the A-state 
CN produced in that reaction may have been partly responsible for their lack of 
success. Quenching rates are also needed for calibrating fluorescence probes of 
CN in atmospheric-pressure flames (22,23). Recently, quenching rates have been 
reported for CN A2II produced by photodissociation of HCN in collision with He, 
Ne, Ar, Nz, and H, (24). The quenching cross sections range from 0.004 to 
0.14 AZ. The authors of Ref. (24) suggest that collisions of CN(A211) with quench- 
ing gases may induce radiationless transitions to near-degenerate high-vibrational 
levels of the X’C’ state, as in the perturbation scheme discussed here. 

A further application for the present analysis is in astrophysical measurements 
(4, 5). CN is an important constituent of solar and stellar atmospheres, and ac- 
curate spectroscopic constants are required to predict the positions of high-J lines 
and transitions involving isotopic (13C, 15N) species. 

II. HAMILTONIAN 

The effective Hamiltonian used in the present analysis of CN has been widely 
discussed (9,25 -28), and we present here only the definitions of those terms used 
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in our calculations. The Hamiltonian is 

ZX = X0 + ZPot + Xf” + RhfS (1) 

X0 includes those terms of the Born-Oppenheimer approximation which are 
independent of rotation, and involves only the electronic and vibrational quantum 
numbers, n and o. We determine the vibronic term energy T, separately for each 
band analyzed. The band-by-band results are later merged to yield a set of Dunham 
coefficients from which potential curves for the A and X states may be calculated. 
Xhfs includes the effect of the nuclear moments interacting with the electronic or 
magnetic fields of the molecule to produce the hyperfine structure. Since this 
structure is not observed in the optical transitions analyzed here, we need not 
consider it further. 

The present analysis concentrates on X Rot, describing the rotation of the nuclei, 
and Xfs, containing the magnetic terms giving rise to the fine structure interaction. 
5YRot has the form 

%Fot = B(R)R* (W 

= B(R)(J - L - S)*, (2b) 
where 

B(R) = h/8m2pR2. (3) 

B(R) is the radial part of the rotational energy operator, p is the reduced mass of 
12C14N, and R is the internuclear distance. 

The fine-structure Hamiltonian is composed in general of three parts 

3P = ?Po + YPs + X=, (4) 

where Xso is the spin-orbit, Xss the spin-spin, and FR the spin-rotation inter- 
action. Since the spin-spin interaction is rigorously zero for all doublet states, it 
can be dispensed with in this analysis. The spin-orbit Hamiltonian has the 
simplified form, for AS = 0 matrix elements only (29, JO), 

Xso = AL.S (5a) 

= A[L,S, + ML+S_ + ML-S+], (5b) 

where A is the spin-orbit coupling constant. The spin-rotation interaction 
is given by 

XsR = y(R .S) (W 

= y(J - L - S).S, (6b) 

where y is the spin-rotation constant. These expressions are all phenomenological 
forms for the terms of 3P but have matrix elements identical with the correct forms. 

We choose a basis set of Hund’s case (a) wavefunctions. These wavefunctions 
are simultaneously eigenfunctions of J*, S*, J,, S,, and L,, and have eigenvalues 
J(J + l), S(S + l), a, 2, and A; the eigenvalue of L2, however, is not specified. 
The total wavefunction is a product function ( n v) 1 AZSfi J) . We carry out a further 
transformation to a basis set symmetrized with respect to reflection in the plane 
containing the internuclear axis (a,). The parity convention for half-integral spin 
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is (31) 
e levels: a,$ = +(- 1)J-1’2$, (7a) 

f levels: f7& = -(- 1)J-i’2$. (7b) 

The resulting symmetrized wavefunctions [Eqs. @a)-(8c)] are just those which 
are required in order to evaluate the effective Hamiltonian for 2Y,+ and 211 states, 
the only states needed in this analysis of CN. 
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Of primary interest in this analysis are the operatorsJ,L, (arising from XRot) and 
L,S, (from %? and PO), since they couple states of different electronic character, 
and cause the mixing of their zero-order wavefunctions. The result of this mixing 
is known as a “perturbation,” and is described by two parameters (32) 

(Y = 1/2(II,a’(AL+IX,v), (9) 

P = (Ku’(B(R)L+IC,u), (10) 

withA andB(R) defined by Eqs. (5) and (3), respectively. The form of Eqs. (9) and 
(10) indicates that the perturbation couples different electronic states through both 
a spin-orbit (A) and rotation-electronic (B) interaction. 

Up to this stage in its development, the effective Hamiltonian matrix consists of 
blocks which are diagonal in J and which represent 2C+ and *II states (one block 
for each and every vibrational level of each 2C.+ and 211 state) with the perturbation 
matrix elements (Y and p coupling all the appropriate blocks (i.e., %+ - 211). In 
general, nonzero matrix elements will also be found for II(v) - II and 
X(v) - Z(v’) interactions. These matrix elements are off-diagonal in v, but 
couple states of the same electronic character. Ignoring all these perturbations, 
for the time being, we see that each *S+ state is a 2 x 2 block [Eq. (8a)] and each 
*II state is a 4 x 4 block [Eqs. (8b), (8c)] of the original n x n matrix, with each 
block representing a pure Born-Oppenheimer state. The choice of the elf parity 
basis functions, however, allows each block to be factored into two submatrices, 
with the appropriate submatrix being labeled as either an e or anf parity block. 
If the perturbation and other off-diagonal matrix elements are once again con- 
sidered, then the Born-Oppenheimer blocks are coupled and the original (n x n) 
matrix must be evaluated. This matrix, however, will also factor into two 
((n/2) x (n/2)), elf matrices, since the perturbations obey the selection rules 
e * e , f c, f, and couple only states of the same parity. 

Second-Order Effects 

Rather than attempting to obtain the eigenvalues of such a large matrix, we 
instead apply the methods of perturbation theory. We use the Van Vleck transfor- 
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TABLE I 

Definitions of Second-Order Parameters Used in this Analysis 

Parameters 

D" 

Definitions Types of Interactions 

_z j<v'lBlv>l2 Z(V') s X(v) 

V’ 
E, - E,, II % II(v) 

<VIA L+lv'><vlBL+/v'> E(V') % U(v) 

P" 2z 
V’ 

E, - Ev, 
E(V) s rC(v') 

2 r j<vlBL+l~'>~ z(v’) ?I n(v) 

qV 
V’ E, - E,, 

Z(V) % rl(v') 

'Dv z 'y' <v V’><VlBlV’> Z(V') s z(v) 

V’ 
EV - E,, II 'L II(v) 

ADv 2x <vlAlv'><vjBlv'> 

V’ 
E, - EV, 

n(v’) ?d n(v) 

mation (33) to “fold in” the combined effects of distant perturbers as a correction 
to the matrix elements of the Born-Oppenheimer states. Nine new parameters 
evolve from this treatment when second-order corrections to the Hamiltonian 
are considered (9). Four of these are either very small or are highly correlated with 
other parameters, and are not evaluated in practice. The remaining five, considered 
in this analysis, are D, the qua&c centrifugal distortion coefficient; p and 4, the 
A-doubling constants; YD, the centrifugal distortion correction to y; and AD, the 
centrifugal distortion correction to A. Definitions of these parameters will be found 
in Table I. Noting the origin of these parameters (i.e., types of interaction), we see 
that the A-doubling constants arise from Z - II interactions while the other param- 
eters arise from both Z - Z and II - II interactions. 

Higher-Order Effects 

The Van Vleck transformation can be applied to produce higher-order terms; in 
practice, only those are retained which are centrifugal distortion corrections to 
those parameters already forming part of the Hamiltonian. The terms used in our 
analysis are H, the sextic centrifugal distortion coefficient; pD and qD, centrifugal 
distortion corrections to the A-doubling constants; Ye, third-order centrifugal 
distortion correction to y; and AH, third-order centrifugal distortion correction 
to A. In general, these third-order constants are defined in accordance with the 
appropriate term of the Van Vleck transformation expansion. For the case of the 
third-order centrifugal distortion coefficient H, for example, this gives 

H=x-x 
(vl~lv’>(v’lBlu”)(v”lBlv) _ (v(B(v) c 1(44~‘)12 , (11) V’#V d#V (E, - E,f)(E, - E,4 v’#c, (E, - Evj2 
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which, along with D, is exactly the same form given by the result of the Rayfeigh- 
Schriidinger nondegenerate perturbation theory (34). This theory has been used to 
calculate values of the centrifugal constants, D, H, and L (fourth order), from a 
rotationless RKR potential (35). 

From the deluge of terms coming from fourth order we mention only qe, the 
third-order centrifugal distortion correction to the A-doubling constant, which was 
included, but not well determined, in fitting the Fourier transform data. One is 
here (if not sooner) in that grey area of the effective Hamiltonian, where the 
physical significance of many of the terms becomes obscure and, in reality, a 
parameter is retained for the sole purpose of introducing a p~i~ul~~-dependence 
into the Hamiltonian matrix elements. 

Several alternative definitions of these higher-order terms have appeared in the 
literature. We use the expansion in J(J -+ 1) discussed by Coxon (36) for some of 
the higher-order terms in this analysis. The matrix elements of the terms in the 
Hamiltonian are given explicitly in Table II, where only those terms have been 
included which have actually been evaluated, or held at constant values, in the fit. 
The variable J has been used explicitly in addition to x (=J + 1/), to further 
indicate where the J(J + 1) expansion has been used. General expressions for 
many of these matrix elements have recently been given by Brown ef al. (37). 

When the pe~urbation matrix elements are large or the energy difference 
between levels is small or, especially, when the levels actually cross, then the 
results of nondegenerate perturbation theory may no longer adequately account 
for the interaction between the specific states. When this happens, the near 
degenerate perturbing level is removed from the Van Vleck theory summations 
(see Table I), and is treated explicitly in the Hamiltonian. As many of these per- 
turbing states as are necessary can be included in the Hamiltonian. The matrix 
elements of the Hamiltonian comprising the original Born-Oppenheimer state 
include second- and higher-order effects, added via the Van Vleck transformation. 
We now explicitly include, as additional states, all the near-degenerate or strongly 
perturbing levels. These levels are themselves Bog-Oppenheimer states whose 
matrix elements have been adjusted by addition of the Van Vleck theory perturba- 
tion parameters. 

Figure 1 gives an overall view of the relationship of the various energy levels of 
the X, A, and B states. Since only those levels having the same value of J (and 
parity) perturb each other, and since the effects of the perturbations are larger 
when the energy difference between levels is small, we can use Fig. 1 as a kind of 
“road map” for indicating why specific levels were chosen as interacting in our 
analysis. We emphasize that Fig. 1 is not intended to convey more than a general 
description of the crossings since, in fact, each leve1 of the X state is really two 
levels (an e andfparity level) and each level of the A state is really four levels (an 
e andfparity level for each of the two spin-orbit components) for a given value of 
J. A more detailed view of the actual crossings, and a listing of where they occur, 
is given below in Section VB. 
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TABLE II 

Hamiltonian Matrix Elements for %+ and 7I statest 

A (1,1)-f 
(2,2)=-k 

(O,O)=x(xr;l) 

(1,1)=x2-2 

Ei (1,2)=-(x2-1+ 

(2,2)=x2 

(0,0)=X2(x+1)* 

(1,1)=(1-x*)-(x2-2)* 
0 (1,2)=2(x2-1)3/2 

(2,2)=(1-x4)-G 

(1,2)= 4X2-1) 4 
P 

(2,2)=$(17x) 

(1,1)=+(x2-1) 

q (1,2)=-t(1G)(x2-1)k 

(2,2)=4(1T x)2 

AD (l *l )=x2-2 (2,2)=-x2 

Y (O,O)=-k(lTx) 

yD (O,O)=+(l+x)J(J+l) 

8 (O,l)=-(x*-l+ 

(0,2)=1+x 

(1,1)=+(x2-l)J(J+l) 

q. (1,2)=-4(1~x)(x2-1)fJ(J+1) 

(2,2)=~(1+x)2J(J+1) 

'Letting 0 + *E', 1 + 2n3/2 and 2 -L 2n1/2. the matrix elements are constructed 
by sumning over the appropriate interaction; x:J +'i. 

III. FITTING PROCEDURE 

A weighted, nonlinear, least-squares fitting routine is used to carry out this 
analysis (9-22, 38, 39). This program accepts either transition frequencies (FJ 
or term energies as input data, along with initial guesses of the spectroscopic con- 
stants and estimated experimental standard deviations for each datum (aJ. Only 
transition frequencies were used as input data in this analysis. The initial values of 
the parameters of each band are used to evaluate the Hamiltonian matrix, which 
is then diagonalized. The resulting eigenvalues form a table of term energies from 
which calculated transitions are obtained. These calculated transitions are then 
compared to the experimentally observed frequencies. Corrections to the param- 
eters are computed, and a new table of term energies is constructed using the 



93 

0 --&444---?---l--~ 
JiJ*l)/lOOO 

FIG. 1, Overall view of the energy levels forXZ+(z?), AT@‘), and B’%+. The B state is indicated by 
the broken lines, with the single number denoting the vibrational level. 

adjusted parameter values. This procedure is repeated until convergence is 
achieved. 

One of the ~dvant~e~ of using this kind of ~ttin~ procedure, over the ~ust~rn~~ 
“~~rnb~nat~~n differences” approach, is that ail the data of a band are used to fit 
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all the parameters simultaneously. This can be seen more clearly by briefly exam- 
ining the way in which the corrections to the parameters are calculated. The 
matrix equation 

A6 = g (12) 

is constructed, where A, the curvature or normal equation matrix, is dimensioned 
m x m , where m is the number of parameters being fit, 6 is a vector of the correc- 
tions which are to be subtracted from the parameters, and g is the gradient or error 
vector. A has elements 

N 

ajk = 1 wi 
ah a.fi 
zjabk’ 

j = 1,. . . m, k = 1,. . .m, (13) 
i=l 

where N is the number of input data, b is the parameter, andf = f(J) is the value of 
the function being evaluated (the transitions or term energies) at the current value 
of the parameters. The weights, wi, are computed as the reciprocal of the square 
of the estimated experimental uncertainties, wi = l/o-$. Matrix A only samples the 
range of the data (J values), and contains no information about the accuracy of 
the computed function. Vector g has elements 

gj = ; Wjcfi - F.) ah 
z abj' j = 1,. . . m, 

i=l 

(14) 

where Fi is the experimental value of the ith datum; g contains all the information 
about the goodness of the fit. We see that both A and g involve summations over 
all the data points and have members which correspond to each of the parameters 
being varied. 

Matrix A and vector g are then scaled, 

A* = (ai”;:) = (15) 

(16) 

where the asterisk denotes the scaled quantities. Equation (12) (with A and g 
scaled, i.e., A* and g*) is now solved for the corrections 6*, which are descaled 

& = &+/a!!2 t 21 (17) 

and subtracted from the parameter values. 
If the scaled curvature matrix A* is inverted, the result is a matrix of correlation 

coefficients of the errors among the parameters. This matrix is usually referred to 
simply as the correlation matrix. Descaling the correlation matrix and multiplying 
by the variance 3 [Eq. (19)] produces the variancelcovariance matrix, 

c = ?(at>-‘l(a$zjj”). (18) 

The square roots of the diagonal elements of this matrix are the standard devia- 
tions of the parameters. The scaled curvature matrix A* can also be diagonalized. 
This corresponds to a transformation to a set of new parameters which are functions 
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of the original parameters, and with the eigenvectors indicating the linearly in- 
dependent parameter combinations. The data can, at best, only determine these 
linearly independent parameter combinations. Nevertheless, one can simply 
examine these eigenvalues after the manner of Lees (40), to discover if any param- 
eters are being varied which, in fact, should be removed from the fit. Marquardt’s 
algorithm (41) is used to facilitate calculation of the correction vector. 

A convenient measure of the progress of a band toward convergence is the 
variance 

119) 

where F( is the experimental transition frequency (vi), fi is its calculated value with 
the current set of parameters, and the other quantities have already been defined 
in this section. For a typical CN band, where N = 300 and m = 10, if each transi- 
tion is on the average being fit to within its estimated experimental uncertainty 
(i.e., Fi - fi * wi), then the variance & = 1. 

Following analysis of all the individual bands, a merging procedure ( I2,42) was 
used to determine a single best set of values of the spectroscopic constants for 
each level. Eleven bands from the FTS data (13) were merged with twenty-seven 
bands from the Berkeley atlas (3), using the “stepwise merge” procedure 
developed by Coxon (42). These bands span the region 0 4 vrt 5 7 and 0 5 u’ 5 12. 
Several bands were excluded from the merge; the details are discussed further 
in Section V. 

IV. DATA SOURCES 

The data set to which we refer as the Berkeley bands is contained in the atlas 
compiled by Davis and Phillips at the University of California at Berkeley (3). 
The atlas comprises 39 bands of the ATI-X*2+ system ranging from u” = 0 to 8 
and v’ = 0 to 12, 15. This compilation plus an additional 55 transitions of the (2,l) 
band which, although not contained in Ref. (3), were included on the tape con- 
taining the data sent to us by Prof. Phillips, were analyzed using the procedures 
outlined in the preceding section. In order to achieve convergence in most of the 
bands, it was necessary to reject certain transitions either because they involved 
nonexistent levels, (Fi -fi) was greater than 5cri, or, in some rare instances, 
because large systematic errors were apparent. We chose a standard deviation for 
the transitions of kO.02 cm-‘, as recommended by Davis and Phillips for unblended 
lines; we assumed a standard deviation 10 times this value for transitions identified 
in the atlas as blends (20.20 cm-‘). This gives a ratio of weights of 1OO:l for un- 
blended/blended lines. In all, 10 753 transitions were analyzed of which 48 were 
reassigned and 481 were totally removed from the fit. 

The Fourier transform spectroscopy (FTS) data set consisted of 3686 measured 
lines comprising 14 vibrations bands with u’ = O-4, U” = O-4. The data, especially 
for transitions between the lower u levels, are of very high quality (ai = +0.0017 
cm-‘). We have taken a somewhat different approach in treating this data set in 
comparison to the Berkeley data. Both a global and band-by-band fit had already 
produced a good set of spectroscopic constants for these bands (13). As a result 
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of this analysis, all questionable lines had already been removed from the data set. 
It was not necessary for us, therefore, to reject any of the lines during our fit. 
We were interested, however, in including the effect of the A - X perturbations, 
since these had not been considered in the previous analysis. As a result, we 
started with a good set of spectroscopic constants, added the perturbations, and 
allowed all the bands to reconverge. 

Some high-precision data from microwave spectroscopic studies are also avail- 
able. Meakin and Harris (43) have determined values of the perturbation coeffi- 
cients aand p [Eqs. (9) and (lo)] for A’IT (0 = 10) andB%+ (u = 0). Their values, 
(Y 10,0 = -0.3961 cm-’ and plO,O = 0.0268 cm-‘, have been chosen as fixed param- 
eters in the analysis of the (10,3), (10,4), and (10,5) bands. More recent ODMR 
measurements by Cook and Levy (44) give revised values of CQ,,~ = -0.0868 cm-’ 
and /310,0 = 0.0357 cm-‘. Although these two sets of parameters reproduce the 
zero-field data, caution should be exercised in extrapolating the results of this 
analysis above u’ = 10. The correspondence between the perturbation parameters 
CY and p defined here and those of Refs. (43) and (44) is 

In our fits to levels of A% for U’ 2 10, we used a value of p which was too small 
by a factor of 2. Due to the small size of the B - A perturbations for the fitted 
(0’ = 10 to 12) levels, we believe that this error had a negligible effect on the 
fitted constants. 

Values of B and y for u” = 0 and 1 are also available from microwave absorp- 
tion studies (45), and are compared with the results of this analysis in the follow- 
ing section. 

V. RESULTS 

A. Spectroscopic Constants 

In the first stage of this analysis, sets of constants which reproduce each in- 
dividual band were determined. The results for the (7,2) band may be regarded as 
typical, and are illustrated by the output shown in Table III. The perturber of 
U’ = 7 is u = 11 of the X state, indicated in brackets. Thirteen parameters are 
varied in this fit, including B, D, and y for the (X2x+, 0” = 2) level, and T,, A, B, 
D, q, and p for the (A%, u’ = 7) level. The perturbation parameters (Y (un = 7, 
a2 = 11) = -6.20 cm-l and p (un = 7, uZ = 11) = +0.032 cm-’ are also deter- 
mined, as are T, and B for the (X2+, u = 11) perturbing level; D and y for the latter 
state are not determined, but are held fixed. The variance is 1.065, which indicates 
that the 331 measured transitions are being fitted, on the average, to within their 
standard deviation. 

Once fitted values of (Y and p are obtained for one pair of interacting states, their 
values for other sets of interacting levels can be calculated and held at these values 
in the fit if the data do not permit their being independently varied. This was done 
for all levels of the A state, although for v’ = 0, 1, and 2 of the Berkeley data all the 
retained lines in the fit which included the effects of the perturbation could also be 
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TABLE III 

Spectroscopic Constants Derived for the CN (7,2) Band 
CN A2n(l)-X~+(1)(7,2)/Davis/(XZS+(2) u = 11) 

FINAL STANDARD 
NOFIBER NAME VALUE DEVIATION 

ElS 0.50896900000+04 1/cn 

1 BlS 0.1855818121D*01 0.7134E-04 1/m 
2 ClS 0.6340262808D-05 O.l913E-07 1/a 
3 GAf'llS 0.6700299089C-02 0.23412-03 1/a 
4 ZIP 0.2212499369D*05 0.4118E-02 r/en 
5 BlP 0.1584983268DtOl 0.70908-04 l/CH 
6 AlP -0.5199823928D+02 0.8742E-02 l/en 
7 @lP+ -0.4371094133D-03 0.3389E-05 l/ml 
8 DIP 0.6175850888D-05 O.l875E-07 l/Cl4 
9 PlP4 0.7552867962D-02 0.2642E-03 l/Ctl 

10 BlP2S 0.3187200139D-01 0.3967E-03 1/ca 
11 AlP2S -0.6200821503Dt0l 0.2674"-01 l/CR 
12 E2S 0_2204355505D+O5 0.3757E-01 1/m 
13 B2S O.l696520672D+Ol 0.20931-03 l/CH 

D2S 0.6000000000D-05 l/CU 
GAfl2S 0.5000000000D-02 l/CH 
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INPUT DATA: 331 

VARIANCE OF THE FIT O.l065339224867779D+Ol 

RNS: 0.6400220340D-01 STD DEV: 0.6529732086D-01 1/ca 
wsns: 0.2894903214D-01 YSTD DEV: 0.29533R1044D-01 1/a 

adequately accounted for by fixing the perturbation parameters at zero. For v’ = 8, 
values of CY and p could be determined directly for two of the bands, 8-3 and 
8-5. For u’ = 10 through 1.5, perturbations arise from A - B as well as A - X 
interactions. The perturbation matrix elements forA211 (v’ 2 10) - B2x+ (u 2 0) 
could not be determined from the Berkeley data alone. We have included this 
effect by using values of (Y and p obtained from microwave Zeeman spectroscopy 
(43,44). Based on these experimental values, we have calculated parameters for 
all the B - A interactions, and have held those values fixed in the fit as well. 

The FTS data set (13) is an important addition to CN spectroscopy and to our 
analysis of the perturbations. The precision and range of these data have permitted 
us to evaluate one of the perturbation parameters, cy, for the (0,O) band. The result, 
(Y (vn = 0, vz = 4) = -0.67, is within 0.8% of the value calculated from the data 
from the U’ = 7 bands of the Berkeley compilation. This is an important check on 
the internal consistency of the perturbation parameters. Values of a were also 
determined for the (3,3) and (4,4) bands. 

Several of the bands in the Berkeley atlas cannot be regarded as having been 
well fit, on the basis of their variances. The worst case is that of the (6,0) band, for 
which 3 = 4.8, rather than l.O- 1.5 as for most of the other bands in this compila- 
tion. We observed, as did Poletto and Rigutti in their analysis (4), that the data 
for this band was of exceptionally poor quality; almost 50% of the originally listed 
transitions had to be discarded from our analysis. It would be preferable to use 
values of the constants for U’ = 6 and u” = 0 obtained from other bands to recon- 
struct the (6,0) spectrum, rather than those determined by fitting this band itself. 
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The individual constants for all of the 53 bands analyzed in this work are available 
as a supplement to this article’; Table III is a typical example. 

A set of merged constants was produced by using 38 bands spanning the ranges 
0 I V” I 7,0 I z)’ I 12. First, 11 of the FTS bands (13) were merged to produce 
80 constants (c? = 2.55). The (2-3) band was omitted from this step, since its inclu- 
sion raised the value of C? to 3.53. An attempt to merge these results with the 9 
Berkeley bands spanning the same (v’,~“) range (0 through 4) resulted in & = 7.34, 
indicating that the two data sets were not compatible. This is not surprising, since 
the FTS data had been analyzed with a somewhat different model including higher- 
order distortion constants (AD,pD, qD, yD, H, etc.) than the Berkeley data. Further- 
more, several branches which are resolved in the FTS data appear only as blended 
lines in the Berkeley bands. We therefore omitted from the merge the 9 Berkeley 
bands with both d and U” I 4, and proceeded to merge the remaining 27 bands 
(with the exception of the (6-4)), using the FTS results to “anchor” the constants 
for low 0’ and 0”. The results of the 38-band merge are represented by 167 con- 
stants (& = 3.73). 

We wished to reduce as many as possible of these terms, tabulated as individual 
values for each U’ and v”, to coefficients in a Dunham expansion in (v + l/2)“. This 
was accomplished for the vibrational term values G, and the rotational constants 
B, and D, for the XZ+ and A%, and the spin-orbit constant A, for the 211 state. 
These results are shown in Table IV, along with E, and B. for the B*P state, 
determined from the perturbation analysis. The expansion used is of the usual form 

kmax 
G, = C Y,,(v + ‘/2)k, 

k=O 
(20a) 

kmax 

B, = c Y&(v + ‘/)“, (2Ob) 
k=O 

and so on, so that Y,, = -w,X,, Yu = -a,, etc.; T: is tabulated as YAo. 
Initially, the spin-rotation constants -y’: and the lambda-doubling constants 

p: and q; were not constrained to a Dunham expansion; these are given in 
Table V. The higher-order distortion coefficients (H, yD, AD, etc.) are also given 
as functions of v’ and zl” in Table VI. Some of these, such as yD, yH, and qH, are not 
really determined by this fit. These tables include 103 independent constants 
reproducing the data with a variance of 4.62. It was found possible to fit y,p, and q 
to expressions linear in (v + M), reducing the number of constants to 75 and increas- 
ing the variance to only 4.%. None of the other constants changed as a result of these 
additional constraints by an amount greater than the standard error listed in Tables 
IV and VI. The resulting expressions (all in cm-‘) are 

yv = 7.243(50) x 1O-3 - 1.29(22) x 10-4(v + 1/), (2la) 

pa = 8.462(57) x 1O-4 - (5.38 ” 2.83) x 10-5(v + ‘/2), (2lb) 

qv = -3.862(14) x 1O-4 - 6.10(61) x 10-6(v + ‘/). (2lc) 

1 Anyone interested in this supplement should first write to the authors directly. If for some reason 
they cannot be reached, a few copies of this material are on deposit in the Editorial Office. 
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TABLE V 

Spin-Rotation, Lambda-Doubling, and Perturbation Constants for CN X2C+ and A*Il States 

(all in cm-l)a 

” V""X103 p,'x103 -q,'x104 a(vn, VI) B(V,, vz) (v II' %) 

0 7.19(4) 8.42(5) 3.892(13) -0.67(10) 074 

1 7.07(6) 8.55(14) 3.994(30) 

2 6.95(10) 8.45(14) 4.070(44) 

3 6.79(10) 9.20(49) 4.065(100) -0.97(68) 3,7 

4 6.74(10) 7.51(55) 4.104(105) -4.18(41) 498 

5 5.70(46) 7.51(30) 4.032(47) 

6 3.82(90) 7.44(52) 4.069(93) 

7 5.5551.79 7.56(38) 4.188(54) -6.24(4) 0.0329(9) 7,ll 

8 8.32(52) 4.327(73) -6.87(3) 0.0381(37) 8,12 

9 8.82(56) 4.63(10) 

10 7.95(80) 4.96(14) 

11 10.1+1.1 5.13(19) 

12 8.951.7 6.17(32) 

aSee footnote (a), Table IV. 

The results of this analysis compare quite well with the microwave spectroscopy 
results (45), to wit: 

Microwave Value calculated 

Parameter value (cm-‘) from Table IV and V 

B; 1.8910782(2) 1.89104, 

S 7.25455(10) x 1O-3 7.19, x 10-3 
B’I 1.8736542( 10) 1.87361, 

S 7.1753(10) x 10-3 7.07, x 10-3 

The values derived for Y&, Y;,, and Y& are equally consistent. 

B. Perturbations 

The perturbations considered in this analysis are those arising from the crossing 
or near degeneracy of energy levels in two different electronic manifolds. These 
have been taken into account in the Hamiltonian by explicitly including the inter- 
acting states coupled by the perturbation matrix elements (Y and p. In those cases 
where the data did not suffice to fit a: or /3 for the A - X interaction, these constants 
were held fixed at values calculated from the U’ = 7 bands. To calculate these fixed 
values, we note that both (Y and p are composed of an electronic part which, if as- 
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TABLE VI 

Higher-Order Distortion Constants for CN X22+ and A211 States (cm-‘) 

X22+ A2X 

H"~10'~ Y "x109 
0 

Y "xl013 
H 

H'xlO" ADW05 ppo7 q+do8 qH'xlo'4 

v=o 4.84(24) (-9.+10) (-4.+39.) 2.53(24) 1.46(13) -2.71(11) 1.07(5) -8.+6. _ 

1 4.48(24) 0.4532.0 1.48(28) 1.23(34) -3.52(68) 1.19(12) 

2 3.77(26) 9.8542.0 1.28(25) 1.34(29) -3.96(51) 1.18(26) 4.539 

3 2.93(40) 0.28~0.70 (-10.523.4) 1.14(56) 

4 0.88+0.69 

aSee footnote (a), Table IV. 

sumed constant, can be factored out. We can then write these vibronic matrix 
elements as the product of a vibrational and an electronic matrix element. 

(22) 

(23) 

where X2? and XsE denote the perturbations arising from the spin-orbit and 
rotation-electronic interactions, respectively. The vibrational integrals (v 1 v’) 
and (v~1/R2~u’) are calculated numerically from RKR potential curves for the 
XX+, AW, and B2Zf states. 

The nature of the four level crossings for the AW - X2+ interaction is shown 
in Fig. 2. This figure is an expanded view of the crossings which were represented 
in Fig. 1 as single levels. We see that the crossings occur at various values of J, 
with the “II,,,(j) - “Z+(f) always being the lowest while the 2II1,2(e) - 2C+(e) 
crossing is always at the highest value of J. The order of the other two crossings 
varies, depending on the interacting vibrational levels. An important product of 
this analysis is the mixing fraction (p’) of the interacting levels. In Table VII, we 
list the J values at which the crossings occur, along with the maximum mixing frac- 
tions and corresponding J values for each interaction. The mixing fractions in- 
dicate that the perturbation is actually strongest for the v’ = 6 - v’ = 10 interac- 
tion, where the 2II3,2(e), J = 44 level is almost 48% of E character. We illustrate 
in Figs. 3 through 5 some measures (shift, percentage S character) of the strength 
of the perturbation as a function ofJ. Data from the (7,2) and (8,3) bands are used 
as being representative of the two cases encountered, that is, the levels actually 
crossing or the levels interacting as if a “crossing” had occurred at J < 0. 

Figure 3 indicates the frequency shifts (Av = vpert - vunPert) caused by per- 
turbations in the two parity components of one of the A-state spin orbit components, 
namely, 2111,2, v’ = 7. Since (Y and p have different signs the strength of the per- 
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2 

‘i 
$ 

8” 
0 

w 

2 

2 I I I I 
8.5 17.5 26.5 35.5 44.5 

J 

FIG. 2. Detail of level crossing, AW (u’ = 7) - X2x+ (u” = 11). The difference between the elfparity 
components of the two spin-orbit components of the *rl state is less than 2 cm-’ over the range of J 
shown; data from the (7,2) band. 

turbation can, in a given case, be small even though both (Y and p are large. Also, 
some of the ?Z - 2111,,2 matrix elements are parity- and J-dependent; thus, it is not 
surprising that the e andflevels should be affected differently by the perturbation. 
For the levels in Fig. 3 the difference in level shift between the perturbations of 
e vs f levels is not large. The most strongly perturbed e level is shifted by about 
4 cm-’ from its expected location in the absence of any perturbations. 

Figures 4 and 5 show the dependence of the mixing of the interacting levels as 
a function of./. In Fig. 4, a comparison of the extent of the mixing of the two spin- 
orbit components (same parity) for u’ = 7 is presented. In Fig. 5, the mixing of the 
different parity levels of the same spin-orbit component, &, V’ = 8 are shown. 
III,2 is more strongly perturbed than IISiZ in this case, since the I: state lies at higher 
energy; that is, the perturbation of A211 is from above (for V’ = 8), rather than 
from below (for V’ = 0 to 7). The perturbation is such that it is not valid to consider 
the interaction merely as if the crossing had occurred at a “negative J” value. This 
can be seen in Fig. 5, where the mixing coefficient rises to a maximum at J = 11M 
and only then decreases monotonically as J increases. 

Using Eqs. (22) and (23), we can summarize the results of the perturbation 
analysis for the A - X interaction in terms of the reduced matrix elements SYfp 
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TABLE VII 

Level Crossings and Maximum ); Character for Components of A211 State 

103 

v” ” 

(xi,+ Is%+) 
f 

I, $2'") 

.~ - 

4 0 

5 1 

6 2 

7 3 

8 4 

9 5 

10 6 

11 7 

12 a 

13 9 

14.0 10 

15,y 11 

lb,_! 12 
2 

19 
18'3 

15 

e parity levels 

J 
cross a Jmaxb %axC 

~__- 

98.5 

91.5 

89.5 

76.5 

67.5 

57.5 

44.5 

24.5 

e 

e 

6.5 

52.5 

45.5 

60.5 

99.5 1.9 84.5 84.5 0.4 

91.5 3.0 77.5 77.5 1.7 

90.5 16.2 72.5 73.5 3.8 

76.5 19.2 62.5 62.5 10.4 

67.5 35.5 53.5 53.5 13.8 

57.5 26.9 46.5 44.5 22.5 

44.5 47.9 30.5 31.5 34.8 

25.5 42.8 12.5 13.5 42.6 

19.5 0.1 e 14.5 0.03 

28.5 0.03 e 21.5 0.01 

6.5 2.3 1.5 2.5 0.9 

52.5 8.9 47.5 48.5 0.1 

45.5 0.8 

60.5 36.0 

41.5 42.5 0.1 

50.5 51.5 15.5 

fparity levels 

J 
cross Jmax rnlax 

--- 

e parity levels 

J 
cmss Jmax %ax 

d dd 

d dd 

d dd 

92.5 92.5 5.1 

83.5 84.5 12.2 

74.5 74.5 23.0 

62.5 62.5 41.3 

44.5 44.5 34.4 

e 10.5 5.4 

e 7.5 0.2 

15.5 15.5 2.5 

55.5 56.5 0.2 

49.5 49.5 1.1 

69.5 70.5 9.3 

f parity levels 

J 
ci-0~s 'max ‘max 

.~__ 

98.5 d d 

90.5 91.5 0.03 

88.5 89.5 1.9 

75.5 76.5 0.05 

66.5 67.5 4.3 

57.5 57.5 35.8 

44.5 44.5 39.6 

26.5 26.5 31.7 

e 0.5 2.9 

e 0.5 0.2 

9.5 10.5 23.9 

51.5 51.5 0.1 

44.5 44.5 0.8 

54.5 60.5 0.8 

---- 
"J value immediately before the CrOssing 

bJ valw having maximum E character 

5 character of n state 1%) 

dJ > 100 and/or %T. < 0.0005 

eJ < 0 

f. v%mic level for which crossing 
J-value is tabulated is underlined 

15 17 19 21 23 25 27 29 31 33 

4 ’ I I / I j II I+ /I II II 

i I 1 I I I I I I I I .A III II 
33 35 37 39 41 43 45 47 49 51 

J-112 

FIG. 3. Au = (q,e,ert”rb<d - ~“~~~~~~~) vs J -+ ‘/*i for e (0) andf (0) parity levels ofA2111i2 (0’ = 7): 
data from the 17,2t band. 
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Au /cm” 

FIG. 4. Percentage 2 character vs AY = (Q - vn) forfparity levels of IIs,2 (0) and II112 (0) (19 = 7): 
data from the (7,2) band; the solid lines serve only to connect the points corresponding to different 
J values. 

and Xg. The weighted average values of these quantities are 

zp = -(16.15 ~fr 0.13) cm-l, 

%$+!F = 0.0734 + 0.0024 cm-‘. 

The values of (Y from the u’ = 0, 3,4,7, and 8 levels, and of p from the U’ = 7 and 
8 levels, have each been divided through by the appropriate vibrational integral, 
and the resulting reduced matrix elements averaged to obtain the above quantities. 
Consistent values of Xzp and %‘fF were obtained from each measurement. 

VI. DISCUSSION 

The analysis presented here represents the most complete evaluation to date of 
all available CN spectroscopic data, including A - X and A - B perturbation 
interactions. The deperturbed constants, together with the perturbation terms 
which affect all A-state levels and all X-state levels with u” 2 4, reproduce the 
14 000 measured transitions in this system with accuracy an order of magnitude 
greater than in either of the previous analyses (4, 5). The variance accurately 
reflects the experimental error of the individual measurements. A nonrigorous 
estimate of the average absolute accuracy of calculated individual line frequencies 
can be obtained by multiplying the variance of the merged constants by the ex- 
perimental uncertainty in measured line positions; this gives t0.008 cm-’ for 
transitions with II’, U” 5 4, J s 100. This predictive ability should be particularly 
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. . 
’ . 

l- * . 
l . 

l l . 

I I I I I I I 
l ’ . 0 

2 4 6 8 10 12 14 16 18 20 

J*1/2 

FIG. 5. Percentage X character vs J + l/i for e (0) andf (0) parity levels of ATI,,, (u’ = 8); data 

from the (8,3) band. 

useful in studies of the solar spectrum, in which it is necessary to predict the 
positions of lines in the CN Red bands for J up to - 150 and 13C and 15N isotopic 
species. Since perturbations have a profound effect on these bands,2 and there is 
no such thing as a “typical” or “routine” treatment, the following detailed in- 
structions are provided for the optimum use of the constants presented here in 
calculating transition frequencies for both observed and hitherto unobserved CN 
A’%-X2J2+ transitions. 

It is necessary to set up an effective Hamiltonian matrix for both the upper and 
lower levels for any A-X (v’ ,u”) band. The vibronic levels explicitly included in 
each matrix are determined by the specific v.,, or ux level and the desired range 
of J-values. The Hamiltonian should include the desired uA or ux level and all pos- 
sible B%, A%, and X2 perturbing levels. The relevant perturbers may be deter- 
mined from a crossing diagram similar to that in Fig. 1. All vibrational levels that 
cross the main level between J = 1% and the maximum J-value must be included. In 
addition, it is advisable to include the next higher and lower vibrational levels of 
each perturbing electronic state. The necessary perturbation matrix elements are 
computed by multiplying the electronic factors 

A -X A - B(M) 

4kJfJxJ - 16.15 cm-’ -8.9 
PI&,,z +0.0734 +I.36 

by vibrational factors computed from RKR potential curves derived using the 
merged constants in Table IV. The effective Hamiltonian should then be set up 
using the matrix element definitions in Table II, constants for the X22 and A211 
levels from Tables IV-VI (or from the band-by-band constants in the Supplement), 

2 In fact, most of the Berkeley bands break off at high J. just at the onset of a new perturbation 
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and constants for theB*Z levels from Ref. (50). Levels for which constants are not 
listed in Table V may be adequately represented by the yv, pu, and qv expansions in 
Eqs. (21a)-(21~). Although all constants obtained here were derived from observed 
levels of 12C14N, we believe that the deperturbed and merged nature of these con- 
stants makes them suitable for prediction of spectra of other isotopes after apply- 
ing the usual isotopic shift formulas. Of course, vibrational integrals used in the 
computation of perturbation parameters must be recalculated for the appropriate 
isotope. 

It should be noted that the constants for VA 2 10 are calculated with the A - B 
perturbation parameters of Meakin and Harris (43), which are not in good agree- 
ment with more recent values of Cook and Levy (44). Thus caution should be 
exercised in computing line frequencies where the A - B perturbations become 
more significant, which is for VA 2 12. Hopefully, work in progress (60) on the CN 
Violet (B*Z+-X*C+) system will resolve this remaining source of uncertainty. 

A comparison of the perturbation matrix elements %‘zp and S%‘~~, found here 
for CN, with those for isoelectronic systems would provide useful information 
with regard to the electronic structure of these molecules. Unfortunately, an 
analysis of these systems, comparable in extent to the present work on CN, has 
not been carried out. A perturbation at J’ = 13l/ in the 4-O band of the (Y system 
of BO (A*II-X*x+) was noted by Jenkins and McKellar (51) but no interaction 
constant was obtained, and more recent work (52), on the O-2 band did not reveal 
any perturbations. Bulthuis and co-workers (53, 54) found perturbations in the 
8-O band of the CO+ A-X system (J = 14%) and in many J-levels of the 13- 1 and 
13-2 bands of this system. They identified the perturbing level as v = 18 of the 
X*C+ state, and found its location relative to v’ = 13, but did not derive the cou- 
pling coefficients. More recent work (55) on the 2-O band did not reveal any 
additional perturbations. 

As a result of the inversion symmetry in N:, no perturbations exist between 
the A*ll, and X*Ci states. Analyses of the B*C$ - X22: first negative system 
have revealed numerous perturbations between vibrational levels of the B and A 
states (56-59), and parameters comparable to those found in the present study 
have been obtained in the most recent of these analyses (59). Work in progress 
(60) on the CN Violet bands should result in improved values for the correspond- 
ing perturbation parameters for CN, which affect high v’ levels of the A state. Fur- 
ther work on these isoelectronic species, directed toward locating both A - X and 
A - B perturbations, should provide data of interest for comparison with molec- 
ular-structure calculations. 
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