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Inverse Perturbation Analysis: Improving the Accuracy 

of Potential Energy Curves1 

WARREN M. KOSMAN~ AND JUERGEN HINZE 

Department of Chemistry, University of Clzicago, Chicago, Illinois 60637 

The equation for the first-order energy correction is used inversely to find the perturbation 
responsible for the energy correction. In the specific application to the calculation of a potential 
energy curve from the spectroscopic term values, the sought perturbation is a correction to an 
approximate potential curve. Consequently, an approximate potential curve (e.g. an RKR 
(Rydberg-Klein-Rees) curve) can be improved until the eigenvalues calculated for this curve 
agree with the spectroscopic term values within the experimental uncertainty. Results are 
given for the X22+ state of HgH. 

I. INVERSE PERTURBATION ANALYSIS 

According to perturbation theory, the first-order energy correction to some nth state, 

E,‘, is calculated 

&’ = (ILn”IH’jLo). (1) 

Equation (1) is utilized when the total Hamiltonian, H, in the Schroedinger equation, 

H& = Ekn, (2) 

is composed of a major zeroth-order contribution, Ho, and a small perturbation, H', 

H = Ho+ H'. (3) 

The wavefunctions in Eq. (l), assumed to be normalized, are the eigenfunctions of the 
zeroth-order Hamiltonian : 

H"#nO = E,O$,,O. (4) 

In the usual application of Eq. (l), a first-order energy correction is sought for a known 
perturbation to a known zeroth-order Hamiltonian. Such a calculation is successful if 

the perturbation is small. The authors suggest using Eq. (1) in an inverse manner, 
namely to find an unknown perturbation from a known energy correction. Again success 
is expected if the perturbation is small. 

1 This research was supported in part by Grant GP-33892x of the NSF and by an ARPA Grant to the 
Material Research Laboratory. 

2 Present address: Department of Chemistry, Ohio State University, Mansfield Regional Campus, 
Mansfield, OH 44905. 
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II. APPLICATION TO POTENTIAL ENERGY CURVE ANALYSIS 

In the remainder of this paper we will examine the application of inverse perturbation 

analysis (IPA) to the problem of calculating an accurate potential energy curve from 

its spectroscopic term values. The pertinent equation is the radial Schroedinger equation : 

( 
h d2 

--- + U,(r) R,+r(r) = E,,&,J(~). 
43r/.lc 1lY > 

In Eq. (5) r is the internuclear distance in cm, p is the reduced mass of the nuclei in 

grams, U,(r) is the effective potential governing the vibration of the nuclei in cm-‘, 

all other constants have their usual meanings in cgs units,3 and v and J are the vibra- 

3 Unless specifically noted otherwise, cgs units are used throughout the paper except for energies which 

are expressed in cm-l. 

tional and rotational quantum numbers, respectively. UJ (r) is composed of two terms, 

a rotationless potential energy term, U,(r), and a centrifugal potential term whose form 
depends on the particular angular momentum coupling case which is applicable for the 

system under consideration. For example, for a ‘Z state we have 

h J(J+ 1) 
UJ(T) = Uo(r) + - 

4?r/.Lc r2 * 
(6) 

One would like to find the exact rotationless potential producing the observed spec- 

troscopic term values. 
If one has a good approximate (zeroth order) rotationless potential energy function, 

UoO(r), then the actual rotationless potential energy function and the approximate 
rotationless potential energy function differ by a correction, Au,(r), 

U,(r) = U$(r) + Au,(r). (7) 

The true Hamiltonian and the approximate (zeroth order) Hamiltonian differ by the 

same correction, 
H = Ho + AU,(r), (8) 

since the kinetic energy operator is identical in both. Consequently, the correction 
needed to improve an approximate potential can be treated as a perturbation to the 
Hamiltonian formed with the approximate potential. Hence, using Eq. (l), 

where the radial wavefunctions in Eqs. (9) are the normalized solutions of the zeroth- 
order radial Schroedinger equation, 

73 a? v = . . . 
--- + U.rO(r) 

4?r/.lc dr2 
> R,,.rO(r) 

0, 1, 2, 
= E”,J”~n,Jo(~) 

) 

(10) 
J = 0, 1, 2, . . . . 

Collectively, Eqs. (9) form a set of linear integral equations to be solved for the unknown 
kernel, AUo(r). A set of ordinary linear equations can be obtained by expanding the 
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kernel in some suitable basis, 

95 

AlTo = F cifi(r). (11) 

The resulting set of linear equations, 

E&J’ = T ci(~v,J”I fil KJJ”) 
D = 0, 1) 2, . . . ) 

(12) 
J = 0, 1, 2, . . . ) 

are to be solved for the expansion coefficients, the ci’s. 

Actually, the first-order energy corrections in Eqs. (12) are not known. However, 

they can be approximated as being the entire energy correction, namely the difference 

between the observed spectroscopic term values and the appropriate eigenvalues cal- 

culated for the approximate potential using Eqs. (10) 

E v,J ‘zE -E 8.J 2) ,.I”. (13) 

Substitution of the approximation into Eqs. (12) yields the actual set of equations to 
be solved in this application of IPA, 

- Es,J” = F G(R”J”I _fijRn,J”) 
2’ = 0, 1, 2, . . . ) 

F -v..r (14) 
J = 0, 1, 2, . . . . 

In the practical application of Eqs. (14), three approximations are made. The first 
was already mentioned in regards to Eq. (13). The second approximation is that the ex- 

pansion of AlTo in Eq. (11) has to be truncated to a finite expansion. The third approxima- 

tion is that the radial Schroedinger equations, Eqs. (lo), have to be solved numerically. 

Because of these approximations it is not expected that the system of linear equa- 
tions, Eqs. (14), can be satisfied exactly. Instead these equations are solved in a least- 

squares manner for a “best” set of expansion coefficients. Consequently, the potential 
energy correction, Au,(r), calculated with these “best” expansion coefficients will not 

be the true correction but only a partial correction. This correction can be used to cal- 
culate a new, improved approximate potential, Uo” (Y), and the whole procedure can be 
iterated with this improved approximate potential. 

In summary, the procedure flows according to the following steps. 

(1) 
(2) 
(3) 
(4) 

(5) 
(6) 

(7) 

(8) 

Obtain some initial approximate potential, ITo” (e.g. an RKR potential). 
Solve Eqs. (10) for the zeroth-order eigenvalues and eigenfunctions. 

Calculate the E,,J”s using Eq. (13). 
If the 1 Ev,~’ I’s are all less than some desired threshold (e.g. the experimental 

uncertainty), stop; if not, continue. 
Calculate the expectation values, (R,,JOI fil R,,J”). 
Solve the system of linear equations, Eqs. (14), for the “best” set of expansion 
coefficients. 
Update the approximate potential 

Uoo(new) = Uoo(old) + Aljo. 
Go to Step 2. 
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E’IG. 1. The Davidson potential. 

III. TESTING THE INVERSE PERTURBATION ANALYSIS 

A simple test of the above theory is possible. One can start with a given potential, 

purposely distort this potential to obtain an initial approximate potential, and then 
apply the inverse perturbation analysis to the approximate potential to see if it yields 

the original potential. 

Such a test was conducted. For this test, the original known potential was chosen to 
be the Davidson potential (I), 

U,,(r) = ur2 + b/r2 - 2 (ab)+, (15) 

although any reasonable potential could have been selected as a starting point. The 

TABLE I 

ACCURACY OF THE APPROXIMATE POTENTIAL ENERGY CURVE 

l- 
o 

(in A) 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

u. (r) - u”o (r) (ln cm 
-1 

) 

INITIALLY AFTER 1st ITERATION 

60 

13 

-5 

-2 

-0.3 

0.5 

-2 

-0.1 

0.04 

0.03 

-0.006 

-0.008 

-0.02 

-0.02 

-0.01 

-0.006 
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TABLE II 

ACCURACY OF THE EIGENVALUES FOR THE APPROXIMATE POTENTIAL 

J 

0 

1 

2 

3 

4 

5 

6 

7 

8 

IEY, J - E;,,I a (in cm-‘) 

INITIALLY AFTER I:t INTERATION 

co.002 

0.002 

0.011 

0.018 

0.029 

0.042 

0.057 

0.075 

0.092 

<0.002 
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aNumerical accuracy used for solving radial Schroedinger Equation =~0.002 cm -1 . 

eigenvalues of this Davidson potential, which can be found analytically, 

,(,,,=~(~~[(~+I)+l~~+,i,+1)+:):]--2(~~)’, (16) 

were consequently treated as being the observed spectroscopic term values. The initial 

approximate potential to this Davidson potential was found by subtracting an adjust- 

ment function, 6lJ0, 
voO(Y) = IT,(r) - 6c:o(r). (17) 

The adjustment function was selected to produce an approximate potential horizontally 
shifted from the original potential in the neighborhood of the minimum, a shift cal- 

culated to be representative of what one might expect of a first-order Dunham analysis 
according to Kosman and Hinze (2). The inverse perturbation analysis was then applied 
to I’uO(r). 

Specifically, Fig. 1 shows the Davidson potential which was used for the test with 

a = 313.5 [cm-l/A21 and b = 15365 [cm -l AZ] chosen to approximately fit the AZ+ 

curve of LiH. The reduced mass chosen was also appropriate for LiH. The actual 
form of the adjustment function used was 

SlJ,(r) = - 15.3697/r2 + 2.1942 + 9.79. 10+r2, (18) 

where r is in A. The form of the potential correction function, AU,(r), was chosen to 
be similar to that of SC:,(r), 

AU,(r) = c-z/r2 + C-~/Y + co + clr + ~21~. (19) 
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Consequently, A U0 (r) could have been calculated exactly to equal 6 UO (Y). Although this 
was not the case, the results obtained nevertheless indicate the validity and accuracy 

of the inverse perturbation analysis. 

A. Error in the Approximate Potential Before and After Improvement 

Table I shows the deviation of the approximate potential from the Davidson potential 

before and after the first iteration. Note the substantial improvement in the accuracy 

of the approximate potential curve. 

B. The Error in the Eigenvalues Before and After Improvement 

The eigenvalues calculated for the initial approximate potential are in excellent 

agreement with those for the original Davidson potential for the J = 0 rotational state. 

This is expected since the two curves differed primarily by a horizontal translation. 

But all the vibrational levels calculated for higher J values deviate from those of the 
original Davidson potential by a constant amount. This constant deviation increases 

as J increases. However, after the first iteration of the IPA all of the calculated vibra- 
tional--rotational energy levels agree with those of the original Davidson potential 

within the numerical accuracy used for solving the radial Schroedinger equation. These 

results are shown in Table II. 
The reported improvement was obtained by using the eigenfunctions and eigenvalues 

for v = 0 through 13 each with J = 0 through 8, which clearly yields a highly over- 

determined system of linear equations of type Eq. (14). Fewer values would have been 
sufficient for the analytical test case, and we could have chosen a larger perturbation, 

with which more than one iteration would have been required. However, we did not 

deem it necessary to carry on more extensive tests on the model potential chosen; 

rather we wanted to test the method on a real system. 

IV. APPLICATION OF THE INVERSE PERTURBATION ANALYSIS 
TO THE XE+ STATE OF HGH 

As noted in the authors’ previous paper (Z), the inaccuracy in a semiclassically de- 
termined potential energy curve is reduced mass dependent; the error is only expected 
to be significant for diatomic molecules with small reduced masses. Then for these 
molecules in particular, the inverse perturbation analysis may yield significant improve- 

ment when applied to their semiclassically determined approximate potentials. 
HgH is one such molecule. Its X22+ state possesses only five observed vibrational 

levels; consequently, the G, and B, expansions, needed for a semiclassical analysis, are 
rather short. Furthermore, the ground state of HgH is quite anharmonic. For these 
reasons, the X’W state of HgH appears ideally suited for the application of the inverse 
perturbation analysis. 

Excellent experimental data are available for the vibrational-rotational term values 
of the X22+ state (3-8). The spectroscopically observed term values used in the present 
analysis are those given by Porter (6) and Eakins and Davis (8). 

The spin coupling in the X22? state of HgH behaves according to Hund’s case b (9). 
The total angular momentum quantum number, J, assumes two possible values for 
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each nonzero rotational quantum number excluding spin, N, namely J = N + f and 

J = N - 3. The doublet splitting for each N can be reduced to a single rotational level 

by subtracting the spin contribution from the component with J = N + $ ; thus, 

where 
E u,~ = FI(v, N) - 3rN, (20) 

Y = CFl(v, N) - Fz(v, N)II(N + 4). (21) 

In Eqs. (20) and (21), F 1 is the component with J = Iv + + and Fs is the component 
with J = N -$. The spin reduced vibrational-rotational term values, the Eo,~‘s, are 

considered to be the eigenvalues of the radial Schroedinger equation with the effective 

potential 

UN(~) = U,(r) + (~~/~w)CN(N + 1),‘r21. (22) 

The initial approximate potential curve was determined by a Rydberg-Klein-Rees 
(RKR) analysis (10-12) with the term values fitted by the polynomial expansions 

G, = -671.288 + 1384.092(v + +) - 80.9044(~ + 3)” 

- 3.4883(v + +)” - 1.5413(v + $)4, (23) 

and 

B, = 5.67853 - 0.68905(0 + +) + 0.26427(v + $)” 

- O.O92617(v + 3)” + O.O047833(v + 3)“. (24) 

These expansions were then used in the RKR analysis to determine the classical turning 

points, rmin and rmax, 

Ymin = (f” + f/g)” - f7 (25) 

rmax = (_f” + f/g)” + f, (26) 

where 

j = $(r*nax - rmin) = (h/47r/lG)* 
/ 

’ [G(v) - G(v’)]W, 
omin 

I’ 
" 

g = 3(r1,13x-1 - Y,,,inl) = (47rpC/fi)i B(v’)[G(zl) - G(v’)]-+iv’. (28) 
vmin 

But the analysis was not trusted beyond the v = 3 level, because the short expansion 
used in Eq. (23) cannot adequately represent G.. In fact, the G,, in Eq. (23) has a maxi- 

mum between v = 3 and v = 4. Thus the potential curve was extrapolated beyond the 
11 = 3 level. A possibly better starting RKR curve could have been obtained by using 

mass reduced quantum numbers and all the isotopic data available for HgH, HgD, and 
HgT, but for our test this was not deemed necessary. 

The inverse perturbation analysis proved to be very dependencon the expansion of 
AU,(r). The expansion given by Eq. (19) was inadequate. After three iterations the 
eigenvalues for the v = 0 level were all vastly improved, but the higher vibrational levels 

were not converging. Adding r3 and 71 terms to the expansion did not help much. Con- 
vergence was gained by switching to Legendre polynomials transformed to be orthogonal 
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N 

0 

2 

4 

6 

8 

TO 

I2 

I4 

I6 

18 

20 

22 

24 

26 

- 

F 

TABLE III 

X2X+ Stateof HgH 

E - E; N (in .m~-')~ 
v,N , 

v=o 

RKR 

-1.89 

-2.10 

-2.45 

-2.97 

-3.65 

-4.49 

-5.47 

-6.55 

-7.67 

-8.76 

-9.73 

-10.48 

-10.96 

-Il.li 

lpAb - 
0.09 

0.02 

0.01 

0.00 

0.00 

0.W 

.0.02 

-0.04 

0.00 

-0.05 

.0.03 

0.02 

0.06 

0.10 

- 

lr v=l lr 
RKR 

11.51 

11.59 

11.73 

11.93 

12.19 

12.42 

12.57 

12.57 

12.27 

11.60 

10.10 

6.45 

- 
IPA 
- 

-0.01 

o.oc 

-0.01 

-0.0: 

-0.0: 

-0.0: 

-0.01 

o.oc 

-0.01 

0.01 

o.oc 

O.l( 

- 

IPA 

v=2 
- 

RKR 
- 

3.40 

3.45 

3.65 

3.91 

4.28 

4.70 

5.10 

4.77 

0.57 

0.02 

-0.02 

-0.02 

-0.04 

0.00 

0.W 

0.19 

0.25 

-1.41 

- 

V’ 

IKR 

.I.02 

.I.42 

.2.60 

.5.56 

4.39 

"Valuer of EY N from brter (5) and Eakin and Davis CL). 

bl nverse Perturbation Analyrir. 

=N o v = 4 levels were found for the initial RKR curve 

on the interval [a, b] 

where 

AU,(r) = 5 ciPi(~), 
i--O 

X = [2r - (a + b)]/(b - a). 

:3 
- 
PA 
- 

2.35 

2.55 

2.88 

2.91 

1.58 

I- v=4 
- 

lKRC 
- 

IPA 

2.03 

1.20 

-1.06 

-5.64 

(29) 

(30) 

The interval [a, b] is selected to correspond to the range over which the radial wave- 
functions are expected to be large. For the X2X+ state of HgH the interval was chosen 
to be Cl.0 A, 5.5 a]. We would expect faster convergence had we chosen a set of orthog- 
onal functions which exhibit the proper behavior in the limit as r approaches zero and 
infinity, however we did not test this. 

The results are shown in Table III. This table shows the deviation between the ob- 
served spectroscopic term values and the calculated eigenvalues for both the initial 
RKR potential and the potential improved by the inverse perturbation analysis. Note 
the vastly improved agreement for the latter potential. 

The initial RKR potential and the improved approximate potential are given in 
Table IV. Note the above mentioned shift in the region of the minimum. This shift 
is graphically presented in Fig. 2. 
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TABLEIV 

POTENTIAL ENERGYCURVE FORTHEX*I+STATEOFHgH' 

r RKR 

1 
1:467&l 
1.47201 
I.48006 
1.48554 
1.49207 
1.49976 
1.50875 
1.51926 
1.53125 
1.54476 
1.56002 
1.57761 
1.59906 
1.62899 
1.65241 
1.67050 
1.69938 
1.7l371 
I.71841 
1.72281 
1.72766 
I.74349 
I.78104 
1.80923 
1.85219 
1.91897 
1.97512 
2.02633 
2.07526 
2.12373 
2.17326 
2.22534 
2.28155 
2.34351 

3637. 
2952.797 
2801.110b 
2533.823 
23.52.434 
2168.5Boc 
1954.1M 
1720.712 
1469.953 
1203.240d 
921.838 
626.871 
319.313 
o.oooe 

. 330.382 

. 499.547 
- 585.099 
. 657.455 
- 669.904 
- 671.149 
- 671.149 
- 669.904 
- 657.455 
- 585.099 
- 499.547 
- 330.382 

o.oooe 
319.313 
626.871 
921.838 
1203.24od 
1469.953 
1720.712 
1954.106 
2168.5aoc 

%ngth i 

by,3 

=v=*, 
d 
v=1, 

e"=O. 

4 and energy in an , 

IPA 

?-smz 
2766.376 
2637.285 
2409.042 
2262.O22 
2094.931 
1908.848 
1704.550 
1482.450 
1241.897 
982.358 
703.503 
404.993 
85.771 

- 258.362 
-444.790 
- 545.322 
- MI.504 
- 664.818 
- 669.406 
- 672.437 
- 674.393 
- 671.395 
- 614.&15 
- 534.476 
- 364.625 
- 20.034 
314.201 
632.165 
532.415 
1214.781 
1479.331 
1725.868 
1953.454 
2159.839 

-1 

-_ 
‘E 
” 

-2 

0-g 

r 

2.41345 
2.49466 
2.55000 
2.6OOOO 
2.65000 
2.71686 
2.75000 
2.80000 
2.90000 
3.ooooo 
3.lOooo 
3.2OOM) 
3.30000 
3.40000 
3.5owo 
3.6OOM) 
3.7oow 
3.8OwO 
3.90000 
4.00000 
4.1cooo 
4.2COOO 
4.30000 
4.40000 
4.5oooo 
4.6OWO 
4.7cooo 
4.80000 
4.wmil 
5.00000 
5.lom 
5.2OOW 
5.3cml 
5.40000 
5.5oao 

RKR 

2362.434 
2533.823 

28ol.llob 

2937.665 

3008.787 

3025.343 

3029.995 

3031.505 

3032.0% 

0 v:o 

M 

-1PA 
---RKR 

-500 

1.5 

I& 

2.0 

- 
IPA 

1341 
2551:343 
2660.602 
2735.803 
2785.992 
2815.806 
2827.025 
2839.OLW 
2860.200 
2877.LW 
289l.ooO 
2902.500 
2911.300 
2920.800 
2928.500 
2935.500 
2942.000 
2948.400 
2954.700 
2961.8M) 
2969.m 
2979,2&I 
2985.m 
2990.000 
2993.700 
2997.600 
3ooo.5ca 
3002.900 
3005.9oo 
3007.700 
3009.800 
3011.100 
3012.700 
3013.800 
3014.800 
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FIG. 2. The initial RKR (Rydberg-Klein-Rees) curve and the improved IPA (inverse perturbation 

analysis) curve in the region of the potential minimum. 
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It should be noted that the potential correction function, AU,(Y), is best determined 

in the region where the wavefunctions in Eqs. (9) are large. Thus AU,(r) is dependent 
on the distribution of equations actually used in Eqs. (14). The equation for every 

observed vibrational-rotational term value need not be used, as long as there are more 
equations than unknown coefficients. But using only equations involving low vibrational 

states weights the system of equations so as to determine AU,(r) only in the region of 

the potential minimum where the wave functions are large. Shifting the distribution to 
include higher vibrational states broadens the range over which AlTo is a reliable 

correction. Beyond that range, AU,(r) becomes poor as expected for a function expanded 
in a finite set of polynomial functions. Consequently, the long-range behavior for the 

improved approximate potential in Table IV is not determined well by the spectroscopic 

data available. We have chosen this long-range behavior to agree with that determined 

by Stwalley (13) from collisional data. 

V. DISCUSSION 

Recently there has been great interest in improving the accuracy of potential energy 

curve calculations. Two iterative potential curve improvement schemes have been pro- 
posed; one by Albritton, Harrop, Schmeltekopf, and Zare (14) and the other by Kirsch- 

ner and Watson (15). Both iterate by using G, and B, expansions to determine the 

approximate potential by an RKR analysis and then use the approximate potential to 

correct the G, and B, expansions. Since both involve a semiclassical approximation in 

each iteration, whereas the inverse perturbation analysis proposed here is purely 
quantum mechanical within the iteration cycles, a direct comparison of these methods 

with the one proposed here is not entirely appropriate. In particular the method of 

Albritton et al., optimizing the data analysis itself, should be seen as complimentary 

to the IPA proposed here. However, it should be pointed out that the RKR procedure 

and the two iteration schemes mentioned above are specific to determining diatomic 

potential energy curves, whereas the inverse perturbation analysis given here is general 
and may be extended readily to potential energy surfaces using collision data or that 
from a spectroscopic normal coordinate analysis. 

It should be noted, however, that the inverse perturbation analysis assumes the 
separation of electronic and nuclear motion; hence, it assumes that the adiabatic ap- 
proximation is valid. If the adiabatic approximation breaks down, the inverse perturba- 

tion analysis will nevertheless attempt to find some potential curve which will satisfy 

the spectroscopic data within the adiabatic approximation, even though in these cases 
a potential for the nuclear motion has lost its physical meaning. 

VI. CONCLUSION 

In the test involving the known Davidson potential, the inverse perturbation analysis 
was shown to improve the accuracy of the approximating potential, vastly improving 
the agreement between the calculated and actual eigenvalues. In the application involv- 
ing the X22+ state of HgH, the inverse perturbation analysis was shown to improve the 
agreement between the calculated eigenvalues and the observed term values. The inverse 
perturbation analysis is thus demonstrated to be a viable technique forlimproving the 
accuracy of experimentally determined potential energy curves. In the case of HgH, it 
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is reasonable to assume that the final corrected potential is approaching the actual 

physical potential. 

RECEIVED: September 4, 1974 
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