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General Anharmonic Force Constants of Carbon Dioxide
Isao Suzuxka

Depariment of Chemistry, Facully of Science, University of Tokyo,
Bunkyo-ku, Tokyo, Japan

Twelve force constants in the general quartic force field of carbon dioxide
have been determined by the least squares method from spectroscopic data on
C*03% and C"0;" together with the four third-order parameters, i.e., s, Az,
Az, and 8 which appear in the Fermi coupling off-diagonal elements. It is shown
that inclusion of these third-order parameters is indispensable to obtain a
reasonable set of anharmonic force constants. From these force constants,
consistent sets of vibrational constants (ws, #ss’), Fermi coupling constants
(W.), and rotation—vibration coupling constants («s) have been derived for
Cc"0;y%, C"0;%, C”0"0" and C"0"0". The calculated vibrational energy
levels and rotational constants agree well with those obtained experimentally.
A potential energy contour map of carbon dioxide is also given and discussed.

INTRODUCTION

In a previous paper (1) we described a method for the least squares determi-
nation of anharmonic force constants from spectroscopic data. This method was
applied to the carbon dioxide and hydrogen cyanide molecules (1, 2). As is well
known, the vibrational energy levels of polyatomie molecules are expressed, to
the second order of approximation, by the formula (3),'

E/hc = Eo/he + 2. w0s(vs + do/2)
+ D mw (o + /200 + do/2) + Dova,, bt O

and the rotational constant associated with each vibrational level by

B, = B — 2. af(vs + du/2) -

where £ is z, y, or 2.

In Refs. (1) and (2), we used two alternative procedures for selecting the
spectroscopic data. In the first method (Method I), we applied a least squares
technique to obtain the anharmonic force constants® which give the best fit to

1 We follow the notations given in Ref. (8), unless otherwise stated. As stated in this
reference, Eqs. (1) and (2) apply to a resonance-free case.

2 In the present paper, ‘‘anharmonic force constants” refer to the coefficients appearing
in Eq. (4) in which the molecular potential is expressed in terms of curvilinear internal
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the derived constants of w, , T , and «, , whereas the adjustment was made in
the second method (Method II) to the band origins of the observed funda-
mentals, overtones and combination tones, and the differences in observed rota-
tional constants (B, — By). As discussed in Refs. (1) and (2), we preferred
Method II over Method I, since in Method I we must either ignore the correla-
tions between the derived constants of w; , % , and a5 , or employ the more cum-
bersome general least squares method in which the weight matrix is no longer
diagonal (2). In the case of carbon dioxide, however, the normal equations were
not stable for Method II, and we could not obtain a reasonable set of force con-
stants unless some constants were constrained at fixed values.

A number of investigations, both theoretical and experimental, have recently
been carried out on the carbon dioxide molecule (4-7). Amat and Pimbert
(4) have pointed out that the traditional method for deriving vibrational
constants and Fermi coupling constant W, ,if applied to the case of strong
Fermi resonance, would lead to isotopically inconsistent results. They have also
shown that the vibrational constants of C03° and other isotopic species given
by Courtoy (8, 9), for example, predict the vibrational energy levels for each
isotopic species very precisely, but lead to an imaginary value of k. , when the
following relationship

Te + B, = (—18)Kin[(1/0) — % (2w + @1)] (3)

is applied. Amat and Pimbert have also given a more refined method for analyz-
ing the vibrational and rotational constants when Fermi resonance is considered.

More recently, Gordon and MeCubbin have made precise infrared measure-
ments on the bands of C03° molecule in the 16 x and 2.8 u regions (5, 6). They
derived, by using the method of Amat and Pimbert, a new set of vibrational
constants, o, , Zsr , and @, for C?03° which differs significantly from that
given by Courtoy (&, 9).

The above facts indicate that, in determining anharmonie force constants from
spectroscopic data, utmost care must be taken in the treatment of Fermi reso-
nance. Therefore, it was considered worthwhile to recalculate the force constants
in the general quartic force field for carbon dioxide, applying various kinds of
constraints for the Fermi coupling off-diagonal elements. We have used exclu-
sively Method II, in which the force constants were adjusted to fit the band
origins and rotational constants of the vibration—rotation bands of c¢*0y’
and C"03°. The main objective of the present investigation is twofold: one
is to obtain a more refined set of constants of the general quartic force field

coordinates (1); they inelude the quadratic force constants, K;; , as well as the cubic and
quartic force constants, Kijx and Kiw. “Vibrational constants’” are the ones appearing in
Eq. (1), namely w, and z,/, by which the vibrational energy levels are described, whereas
“rotation-vibration coupling constants’® are the quantities «, appearing in HEq. (2) by
which the unperturbed rotational constant of each vibrational level may be expressed.
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for carbon dioxide in order to provide a deeper understanding of the intra-
molecular potential in polyatomic molecules. One may also regard the above
procedure as reducing a large number of complicated spectroscopic data on
carbon dioxide to 12 basic force constants which are invariant to isotopic sub-
stitutions. The other objective is, therefore, to obtain a more consistent set
of vibrational constants, rotation—rvibration coupling constants, and Fermi
coupling constants for various isotopic species of carbon dioxide from those
force constants. The conventional approach to the problem of obtaining the
vibrational constants is limited to one isotopic species: the o’s, s, and o’s
are obtained separately for each isotopic species. The various isotopic rela-
tionships between the o’s, #’s and «’s are not necessarily fulfilled by this ap-
proach.? After values of the 12 anharmonic force constants of carbon dioxide
have been determined, we may compute for any isotopic species, sets of the vibra-
tional and vibration-rotation coupling constants, «’s, #’s, and «’s, which fully
satisfy the isotopic relationships. With the above objectives in mind, we have re-
evaluated the anharmonic force constants of the carbon dioxide molecule. The
results are given and discussed in this paper.

DETERMINATION OF ANHARMONIC FORCE CONSTANTS

Since a general procedure for the determination of anharmonic force constants
was given in detail in Ref. (1), only a brief outline of the calculation is given
in this section. The molecular potential is expressed as a function of the curvi-
linear internal coordinates through quartic terms, and it is of the following form
for the case of a linear symmetrical triatomic molecule:

V = Ku(B + R) + KuRiR;y + KR’ + Ku(R® + RS)
+ Kun(Ri + Ry)R + Ku(Ry + Ro)RiRs + Kuu(R* + Rs')
+ Ku(R:' + R)RiRs + KunRi'Ry + Kun(R® + ROHRY
+ KimRiR'Ry + KomRy',

where I; and E; are the two streteching coordinates, while R» is the bending co-
ordinate. Starting from assumed values for the 12 force constants in Kq. (4),
two successive transformations of the coordinate systems are carried out. The
first is a nonlinear transformation from curvilinear internal to difference Car-
tesian coordinates,’ and the second is a linear transformation from difference

3 For such a simple molecule as carbon dioxide, it is not impossible to determine a con-
sistent set of the vibrational constants by applying the least-squares technique to the
known data of entire isotopic species with the proper constraints in the values of vibra-
tional constants; for example w (C705%) = w1(CP02%), 71, (CP05%) = xu(CwOéG) and so on.
This is, however, extremely cumbersome and the isotopic relationships for some z,.- and
for some a, are not trivial. Therefore, we prefer to reduce the observed data to 12 GVFF
constants.

+ As indicated in Eqgs. (4-6) in Ref. (1), the first transformation coefficients depend only
upon the structural parameters of a given molecule.
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Cartesian to dimensionless normal coordinates (g¢.’s), by which the molecular
potential is expressed as, '

Vo= 2 (38)wigd + Doisisk kingii@e + Disisest Kinediditige (5)

where w; is the harmonic frequency, and k;j and k. are, respectively, the cubic
and quartic force constants in dimensionless normal coordinates.

The vibrational and rotational constants in Kgs. (1) and (2) are evaluated
from w;, kij, ke , using Nielsen’s formulae (3). Finally, each vibrational
energy level and its rotational constant are calculated and compared with the
observed. As described in Ref. (1), the above procedure should be modified when
some energy levels are involved in resonance. In this case, the first-order correc-
tions to the vibrational energy levels are obtained by solving a secular determi-
nant which has nonvanishing off-diagonal elements, and some expressions for
25 which have diminishing denominators must be changed. The treatment of
Fermi-Dennison resonance in the specific case of carbon dioxide is described in
the following section.

In order to find the least squares corrections to the initial anharmonic force
constants, a finite difference method is employed (10). In this method, the
Jacobian matrix elements are obtained by changing the value of each force con-
stant in turn by a small amount. Then, the correction vector AK to the initial
foree constants is found by solving the well-known simultaneous equations:

(JP])AK = JPAv, (6)

where P is a diagonal weight matrix, Av represents a column vector consisting
of the differences between the observed and calculated values of the correspond-
ing data. This process is repeated until corrections to the force constants become
negligibly small.

The vibrational energy levels and rotational constants used in the present in-
vestigation are taken from the recent high-resolution measurements of Gordon
and MeCubbin (5, 6) and those of Courtoy (8, 9). Reference is also made to
the publications of Plyler, Blaine, and Tidwell (11) and Taylor, Benedict, and
Strong (12). The vibrational levels and rotational constants of C*03° are mainly
taken from Courtoy (9). The observed data: 33 vibrational levels and 31 rota-
tional constants for C0;° and 26 vibrational levels and 22 rotational constants
for C®04®, are given in the first column of Table I, along with the corresponding
weights in the second column. As discussed in Ref. (1), the levels associated with
higher vibrational quantum numbers are weighted less, since we have dropped

the higher terms such as
ZSZS'ZS” yss’s”(vs + ds/2)(7}s’ + ds’/Z) (vs" + ds”/2)7

from Eq. (2).
Numerical computations were carried out with a Hitac 5020E computer in the
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Computation Centre of the University of Tokyo. The programs for the anhar-
monic problems have been written in Fortran IV along the lines indicated in
Ref. (1), although several modifications have been made. The modifications are,
however, rather technical in nature to shorten the computation time, and they
do not alter the general principle given in Ref. (1). We adopted the value of
7, = 1.1600 A for the equilibrium C-O bond distance.

FERMI RESONANCE IN CARBON DIOXIDE

The problem of Fermi resonance in carbon dioxide, for which the fundamental
vt is located very close to the overtone (2r,)° is well known. In order to obtain
the vibrational energy levels involved in Fermi resonance, we have to solve a
secular determinant for a given polyad. Nielsen (8) showed that the off-diagonal
matrix elements of the determinant are expressed, to the first order of approxi-
mation as,

(1,00, b,0 |0 — Los+ 2,6, 03) = (Wo/2)[ (e + 2)" — &0 (7)

where W, = —kin/A/2. In interpreting the spectrum of carbon dioxide, the
parameter W, in Eq. (7) was found to vary with the vibrational quantum num-
bers (12). Amat and Goldsmith (13), and Maes (14) have shown that W, must
be replaced by

W, =W+ Mo+ Mo+ 2) + N(os + 15), (8)

if third-order correction terms are taken into account. Maes (14) has pointed out
that the Fermi coupling term also varies with the rotational quantum number
J, and a term 8J(J 4+ 1) should be added to Eq. (8). Therefore, the Fermi
coupling off-diagonal element is expressed as

OB —hue/V/2 + Mo+ a0+ 2) + N+ 36) + 87T+ 1] )
X [(02 + 2)2 _ &2]1/2?)}/2.

Usually, the perturbed (observed) rotational constants (B;) of a given polyad
are related to the unperturbed constants (B,°) by the following relation:

B; = 2 ;B/L}, (10)

where L;; represents a fractional contribution of the jth unperturbed level to the
7th perturbed level. This relationship must be modified in the present approxi-
mation, since the constant 8 appearing in the nonvanishing off-diagonal elements
also contributes to the B/’s:

B; = > ; LyulwRy (11)
where R}; = B/, and 5 comes into the off-diagonal element, R?;, in the manner

indicated in Eq. (9). Amat and Pimbert emphasized that when Fermi resonance
is very strong, i.e., the energy difference between the unperturbed levels is small,
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8 should be taken into consideration. They have shown that a very consistent ro-
tational analysis can be made from the assumed value of 2.0 X 107 em™" for 6.
Amat and Pimbert have also pointed out that there exist off-diagonal matrix
elements of the form

(?)1,7)2,[2,?)3“)1 — 2,0 + 4, &, )
= ufl(n + 2)" — &1 [(n + 4)" — &l — D},
which may contribute to the vibrational energy levels of triads, tetrads, and
higher polyads.

In order to caleulate the third-order terms in the Fermi coupling constant,
which are very complicated functions of molecular geometry and vibration con-
stants, we have to expand Eq. (4) further to include quintic and hexic terms in.
the internal coordinates.” This could be done in principle, but it seems quite im-
practical. For this reason we used Eq. (7) in our previous paper (1). However,
the work of Amat and Pimbert has convinced us that the use of N's as well as §
is indispensable, and their omission from the Fermi coupling off-diagonal elements
may put too much strain on the values of the force constants and lead to unsatis-
factory results. In the present caleulation, we have included all or a part of the
N's, 4 and 8§ (hereafter referred to simply as “third-order parameters”) in para-
metric forms, to obtain the perturbed frequencies and rotational constants in-
volved in Fermi polyads. Therefore, the 12 anharmonie force constants of Hq.
(4) as well as the third-order parameters are refined to obtain the best least
squares agreements to 111 vibrational levels and rotational constants of C%03°
and C%03°. The results are given in the following section.

RESULTS AND DISCUSSION

The converged sets of the anharmonie force constants adjusted with or without
the third-order parameters are listed in Table II. First, the 12 anharmonic force
constants alone without the third-order parameters were adjusted to give the
best least squares fit to the observed data. The final set is given in Column (i)
of Table IT. Tn Columns (ii)—(v) are listed the results obtained when the an-
harmonic force constants were refined along with some of the third-order parame-
ters. In addition to the 12 force constants, the parameters \; , A2, and A of Eq.
(8) were included and refined first. While the \,’s were supposed to have the
same values for C”0;° and C*03° in Set (ii), they were adjusted independently
for Set (iii). The results are given in Columns (ii) and (iii); the unprimed X’s
are for C”0;° and the primed ones for C”0;°. In Column (iv) are given the
results attained when & of Eq. (9) was included as well as the three \’s, again

(12)

5 The complete expressions for the third-order parameters are very complicated; Maes
(14) has formulated the expressions for A; and § in terms of ;) Y’s; i.e., the coefficients ap-
pearing in the once transformed Hamiltonian, (»A's . It is readily seen, however, that the
quintic force constants in dimensionless normal coordinates, kiiiez, Kizaaz, and Kizes
contribute, respectively, to A1 , A2, and Xs , while the force constant ki12022 contributes to u.
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Table III.The Computed Values of Harmonic Frequencies (Wi)’ Anharmonicity

- -4 _
Constants (xij) in cm 1, Rotational Constants (ai) in 10 cm 1, and Force Con-

stants in Dimensionless Normal Coordinates (kijk and kijkﬁ) in cmnl. a
() c'?0l’ (1) (ii) (i) (iv) (v) G &M
w, 1349, 97 1349.17 1348.13 1354. 31 1353.96 1354, 07
w5, 674, 85 675,21 675.99 672,85 673.17 672. 95
Wa 2395, 89 2395, 66 2395, 43 2396. 32 2396.29 2396. 30
X -2.38 -2,54 -2.28 -2.93 -2.94 -3.10
Xy, 1.01 0.96 3.47 -4,61 ~3.64 -5.37
LI -18.50 -17, 60 -17.56 -19, 82 -19.66 ~-19,27
X,y -0,23 -0.21 -0.96 1.35 1. 10 1.59
X, -12.61 -12.93 -12.91 -12,31 -12,37 -12,51
Xaq ~-12.40 -12, 44 -12,41 -12,47 ~-12.47 -12.50
XIZIZ -0.38 -0. 44 -0.19 -0,97 -0.88 ~1,01
ey 11.53 12.55 12.38 12. 41 12.32
a, -6.79 -7.37 -7.37 -7.40 -7.37
ay 30.25 30. 43 30.53 30, 60 30.58
klll -43.53 -45.91 -45.47 -45,78 -45.56
klZ.Z 69. 84 74,07 73.94 74,72 74.47
k133 -245.53 -246,57 -247, 05 -249. 14 -248.93
kllll 1.92 2.22 2,31 1.92 1.87
kllZZ -4.85 -5,58 -3.00 -11.15 -10.13
k1133 18,91 21.35 21,27 19, 52 19.52
1(22‘22 1.20 1,38 0,88 2.45 2.27
k2233 ' -26.81 -27.97 -27.95 -27.56 -27.57
k3333 5,98 6.08 6.17 6,30 6.28

= The values given in columns (i)-(v) are computed from the corresponding sets of
force constants in columns (i)-(v) of Table II. The values given by Gordon and McCubbin
(8) are shown in the column designated by G & M.
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Table III,
'

() c®ol®

w, 1349. 97
w, 655. 65
Wy 2327. 41
x5y -2.38
%, 0.99
X3 -18.05
%55 -0.22
X,3 -11.82
Xgq -11. 64
XEZEZ -0. 35
) 11.53
a, -6.40
ay 29.15
klll -43.53
kIZZ 67. 86
k133 -238. 54
kllll 1.92
kllZZ -4.71
k1133 18. 37
k2222 1.13
k2233 -25.31
k3333 5. 64

( Continued)

(ii)

1349.

655.

2327,

29,

-45,

71.

-239.

20,

-26.

17

99

48

.54

.95

17

.20

.12

.68

.41

.55

.99

32
91
96

55

.22

.43

75

.31

40

.74

(iii)

1348,

656.

2327.

-2.

3.

-17.

-0.

-12.

-11,

29.

-45,

71.

-240.

20.

0.

-26.

5.

31

75

26

28

39

13

91

10

65

.17

.38

.98

42

47

85

0z

.31

.91

67

83

38

82

(iv)

1354,

653.

2328,

-19.

=11,

-11.

29,

-45,

72,

-242.

-10,

18,

-26.

31

70

12

.93

.46

33

.28

54

71

.91

.41

.01

48

78

60

05

.92

83

96

.32

02

.95

(v)

1353,

653,

2328,

29,

-45,

72,

-241.

18.

-26.

96
96

09

.94

.52

.17

.03

.59

.71

. 83

.32

.99

47

56

36

84

. 87

.83

97

.14

02

.93

491

isotopic invariance of both NMs and & was assumed. This last restriction was re-
moved in Set (v), in which a combined set of 12 anharmonic force constants,
six M’s and two &’s was refined, and the results are given in Column (v). Also
included at the bottom of Table IT are the weighted sum of the squared devia-

tions: S = D wi(»?™ —

constants.

cale

)2 computed from the corresponding sets of force
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The caleulated vibrational band centers (»;) and the differences of the effective
rotational constants (B, — By) from Sets (i-v) may be obtained from the
corresponding columns of Table I, where, however, only the differences between
the observed and calculated values are given to save space.

In Table III are listed the harmonic frequencies (w,), anharmonic constants
(%ss), vibration—rotation coupling constants (a,), as well as the cubic and
quartic force constants in dimensionless normal coordinates (k. and ki)
calculated from the corresponding sets of force constants. A number of calcula-
tions have also been made by using other combinations of third-order parame-
ters; the results are not tabulated here but will be referred to in the following
discussions.

The force constants given in Column (i) of Table I1 correspond to those given
in Column (vi) of Table I in Ref. (1). It should be noted, however, that the
present set (i) is obtained without any constraints on the values of force con-
stants, while a few force constants were held fixed in Set (vi) of the previous
paper. The reason that we have succeeded in obtaining Set (1) without any con-
straints is not altogether clear, since the observed data we have used here are only
slightly different from those used in Ref. (1): the most recent values of Gordon
and McCubbin for C*0,° have replaced some of the previous data, and the rela-
tive weights of the vibrational levels to the rotational constants were increased.
The latter change may have served to stabilize the normal equations.’® As may
be seen from Tables II and ITI, the inclusion of \’s as adjustable parameters
does not alter the values of force constants nor the fit of the calculated values to
the observed too significantly, unless \/’s are taken independently for C*03° and
C"0;°. When six \’s are refined as in Set (i), the agreement between the
calculated and observed frequencies is greatly improved, while that for the ro-
tational constants is not. As a result, the sum of the squared deviations, S, has
decreased from 151 to 25. However, the converged values for the six \’s are not
entirely satisfactory; the values of s for C”03° are found to be far from those
for C”03°, which can hardly be reconciled with the theoretical considerations.
Next, the rotational third-order parameter is included, and is refined simultane-
ously with the 12 anharmoniec force constants and three N’s to obtain Set (iv),
again assuming isotopic invariance for the third-order parameters. As shown in
Table 11, the addition of a single parameter § to Set (ii) has a startling effect, the
value of S decreasing from 112 for Set (ii) to 4.7 for Set (iv). The vibrational
energy levels and effective rotational constants computed from Set (iv) agree
very well with the observed. The deviations of the calculated frequencies from
the observed are less than 1 em™ for all the levels considered, including the levels

8 It was rather unfortunate that the values of K113 and K33 were fixed at —2.383 and
—5.924 md/As, respectively, which are quite different from the values obtained in the
present work. This may also bave caused the difficulty in obtaining a converged set with-
out constraints.
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with relatively high quantum numbers, and those for the effective rotational
constants seldom exceed 1.0 X 10™* em™. The agreement is even better for the
fundamentals, first overtones, and binary combination tones, for which the
effects of higher order terms such as y. .~ are expected to be smaller. The average
deviations are about 0.2 em™ for the vibrational levels, and 0.2-0.3 X 10 ™* em™
for the rotational constants. Finally, the third-order parameters 6§ and X are re-
fined independently for C0;° and C”0;° in Set (v), thus eight third-order
parameters along with the 12 anharmonic force constants are adjusted. The con-
verged values are given in Table IT and the corresponding computed frequencies
and rotational eonstants may be obtained from Column (v) of Table I. No sig-
nificant improvement is achieved in the fit (S = 3.9); however, it must be noted
that the converged values of the third-order parameters are much more reason-
able than those in Set (iii). With the exception of A/ /A1, the ratios of A.'/A,,
N /Ns, and §'/6 are quite acceptable for C™-substitution. This indicates that
simultaneous refinement of Ms and § is necessary to obtain a reasonable set of
these parameters and the neglect of § causes the diserepancies in the values of
the Ms in Set (iii).” However, we feel that we may safely disregard the isotopic
variances in the third-order parameters in carbon dioxide, namely AN; = \; — A/
and A8 = & — & to the present approximation. In the following discussion we will
use mainly Set (iv).

Attempts were also made to include the parameter w in the refinement process.
However, it was found that v neither affects the values of other parameters, nor
improves the data fit too significantly. Its value is not very well determined:
u = 0.025 &+ 0.020 e . Therefore, the significance of « is not discussed here.

Values of Force Constants

The present calculation confirms our previous conclusions with regard to the
principal diagonal force constants: the diagonal stretching potential follows
closely the pattern of the Morse funetion for a given bond, we have ¢y = — K/
Ky = 2377 and o = Kun/Ku = 3.327, while the Morse function predicts
a" = Ta,"/12 = 3.296. The bending potential is almost harmonic with a vanish-
ing cubic constant and a small quartic force constant.

Only the value of K is strongly affected by the inclusion of the third-order
parameters \: the converged value of —0.69 for Set(i) is considerably different
from those found in the range of —0.59 to —0.60 for Sets (ii~v). The inclusion
of & has a considerable effect upon the off-diagonal quartic force constants,
Kz , Kuzz , and Ky , the values of these force constants being reduced to about
one half to one sixth.,

As may be seen from Table I1, the values of the quadratic and cubic force
constants (Set (iv)) are well determined with very small dispersions. It is in-

?We have tried to adjust & alone with 12 force constants, ignoring the X’s, the results are
not satisfactory with the value of § = 36.
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teresting to note that their values also agree remarkably well with those published
previously (7, 7, 15). The values of the quartic force constants, on the other hand,
differ considerably from those reported earlier, this was, however, not surprising,
since those values must be considered to have rather large dispersions (cf. Table
I of Ref. (1)). The simultaneous refinement of the anharmonic force constants
and the third-order parameters seems necessary to obtain the values of quartic
force constants with reasonably small dispersions.

We may draw the potential energy map of the carbon dioxide molecule with
the aid of the anharmonic force constants just obtained. In Fig. 1, we plotted
the potential energy surfaces of carbon dioxide around its equilibrium position
when its linearity is retained: B, = A6 = 0. The abscissa and ordinate corre-
spond, respectively, to the two stretching coordinates r; and . In Fig. 2 we

A
2.0

1.6

r; 14

1.2

1.0+

0.8

Fi1c. 1. Potential energy contour map of carbon dioxide around its equilibrium position.
Displacement along ro-c is taken as abscissa and that along ro_o as ordinate, while the
linearity of the molecule is retained. The contours are drawn at intervals of 2.0 X 10~2 erg.
The equilibrium bond distances are indicated by r.. The lines Aa and Bb represent two
symmetry coordinates, i.e., the symmetric stretching (S:) and the antisymmetric stretch-
ing (83 coordinates, respectively.



ANHARMONIC FORCE CONSTANTS OF CO. 495

o}
2.0

r2 1.4
1.2
1.0
0.8 -
1 ! | i L I 1
0.8 1.0 1.2 1.4 1.6 1.8 2.0 A

Fic. 2. Potential energy contour map of carbon dioxide, when the molecule is assumed
to have a bent configuration; R = A8 = 45°. Displacement along ro_c is taken as abscissa,
and that along rc_o as ordinate. The contours are drawn at intervals of 2.0 X 102 erg. The
dark circle indicates the potential minimum.

plotted the potential contour map when the molecule is assumed to have a bent
form: B, = A0 = 45°. The lines Aa and Bb in the figures represent two sym-
metry coordinates; the symmetric stretching (S;) and the antisymmetric stretch-
ing (8;) coordinates. The general patterns of the potential energy contours are
alike in both cases, except that the potential along the S; coordinate is slightly
steeper in the deformed configuration. It is also noted that the potential minimum
is no longer at the origin when the molecule is in the bent configuration, but it
shifts slightly toward longer bond distances (but still on the line Aa), as indi-
cated by the dark circle in Fig. 2. This would indicate that the two C-O bonds
tend to stretch when the bending vibration is highly excited. This is further
illustrated in Fig. 3, in which position of the potential minimum is plotted as a
function of deviation of the valence angle from linearity: R, = A#.

The dissociation energy of a C—0 bond may also be evaluated from the stretch-
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ing force constants, Ky and Kiyy , if we assume a Morse type potential. The
dissociation energy D, is related to Ky and Ky by

Kn = Dealz, (123,)
Klll = '—Dea13. (12b)

From the values of 8.0112 md/ A and —18.9894 md/zo&f*, respectively, for Ky and
Ku , we obtain D, = 1.42 X 107" erg = 8.85 ¢V. This corresponds to the disso-
ciation of CO; in its ground electronic state to CO (') + O (*D) but not to
their ground states CO ('Z) + O (*P) (16). In order to calculate the dissociation
energy of CO, to O + C -+ O, it is more convenient to use the symmetry coordi-
nate S; = (R1 + Rs)/A/2. The force constants associated with the symmetric
stretching coordinate are given as

Fy = Ku + Kis/2, (13a)
Fu = (Knl + Klla)/\/§7 (13}3)
Fuun = (2Kun + 2Ky + Kus) /4. (13c)

Their values are, respectively, 8.642 md/jci, —14.809 md/foxz, and 15.719 md/ A%

=

[=3

w
T

0.02

(. Twin~ re)

10° 20° 30° 40° 507 60°
Ry=46

¥1e. 3. The potential energy minimum as a function of the angle bending coordinate
R, = Ag. The displacement of the potential minimum from its equilibrium (rmin — 7e) is
drawn for a given bending coordinate Ag.
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It is readily seen that the potential energy along the symmetry coordinate S; also
follows closely the Morse function. We find by = —Fuy/Fin = 1.714 and by =
Fuu/Fu = 1.819, while the Morse type potential predicts the value of by =
7b,°/12 = 1.713. The estimated value of D, in this case is around 18 eV, which
is not far from the value of 16.54 eV (381.54 keal/mol) determined thermo-
dynamically (17).°

Unperturbed Energy Levels

The unperturbed vibrational energy levels and rotational constants are com-
puted from Set (iv). The values for a few typical polyads are given in Table 1V,
The computed value for Eidy is actually lower than that of Eooo in accordance
with the latest vibrational analysis (4, 6). It is also worth mentioning that the
unperturbed levels of C*?0;° in some polyads are also very close, the last tetrad
in Table IV being an example. This may be the reason that & and 8" in Set (v)

are determined with almost equal uncertainties.

Application to O**-Substituted Carbon Dioxide

As pointed out earlier, the anharmonic force constants are invariant to iso-
topic substitutions. We are now able to compute the vibrational and rotational
constants for any isotopic species of carbon dioxide, once the force constants have
been determined with reasonable accuracy. This has been done for C*0"0*® and
C?0"0", and the computed constants are given in Table V. Several vibrational
levels and their rotation constants were reported for these species (8, 9, 18), and
the calculated values are compared with the observed in Table VI. The agree-
ment is generally very good. This shows that the vibrational levels and rotation
constants of C?0'°0" and C*0'°0"® can be explained satisfactorily from the sets
of constants, w, , Zse , W, and a, from the levels of C?0;° and C*03°. In Table
VII, we summarize the values of Fermi coupling constants for five isotopic
species of carbon dioxide.

Berney and Eggers (18) considered the possibility of Fermi resonance between
(21,)° and »y for O"-substituted molecules. Both levels belong to the same
symmetry species, because of the lower symmetry of the molecule (Cw,) and
k13 is no longer zero. However, the computed value of ki is —4.46 em™ for
C"0"0", very different from the estimated value given by these authors (11.45
em ™). The vibrational band centers do not seem to be affected by this kind of

—1
resonance more than 0.02 cm -,

8 This value obtained from the following relations:

CO:(g) = CO(g) + 1/20:(g) 66.77 keal/mol
1/20:(g) = O 58.58 keal/mol
CO(g) =C+ O 256.19 keal/mol

Total 381.94 kecal/mol



TABLE IV

Tue CarcuLarenr UNPERTURBED AND PERTURBED LEVELS (IN cM™!) aND RoTATIONAL
ConsTaNTs (IN 1075 cm!) FrROM SET (1v) FOR SOME PoLYADS

Level (E,)° E, Eons (By)° B, Bous
(a) G20
1 0 0] 1333.04 1388.01 1388.19 38807 39019 39020
10 20 0] 1339.67 1285.60 1285.41 39169 39047 39048
"2 0 17 4971 .54 5009.42 5009. 61 38467 38752 38751
1 20 1 4969.11 4977.82 4977.81 38730 38650 38654
|0 40 1| 4990.15 4853 .58 4853.63 39011 38816 38818
3 0 1 6273.94 6502.81 6503.05 38343 38804 38798
2 90 1 6268.15 6348.26 6347.81 38615 38648 38644
1 40 1 6285.83 6228.15 $227.88 38887 38665 38668
0 60 1 6326.98 6075.69 6075.93 39159 38887 38868
(b) C*05°
m1 0 07 1334.33 1370.23 1370.05
10 20 0] 1301.65 1265.75 1265.81
2 0 17 4907 .65 4991 .47 4991.31 38480 38667 38667
1 20 1 4868.16 4887.35 4887.35 38744 38681 38681
[0 40 1| 4850.92 4747.91 4748.01 39009 38886 28881
(3 0 17 6210.94 6363.77 6363.58 38355 38700 38701
2 20 1 6168.38 624240 6241.93 38620 38592 38583
1 40 1 6148.07 6119.85 6119.56 38884 38754 38756
|0 69 1] 6150.00 5951.41 5951.53 39149 38964 38963
TABLE V

Trr CoMPUTED VIBRATIONAL AND RoTaTioNaL CoNsTANTS, THE CUBIC AND QUARTIC
ForceE CoNsTANTS IN DivMENSIONLESS NorMAL COORDINATES FOR C2016018
AND C1O16018 (1n cm™1)

ClZOlGOlS ‘C13016018 CIZOIGOIS CISOIGO]K
wy 1315.21 1315.13 ki —43.85 —43.86
wa 667.72 648.42 k1s2 73.01 70.88
w3 2378.53 2309.85 ks —243.33 —236.24
T —2.76 —2.76 ks —4.46 —4.78
AT —‘445 —430 k223 _650 —667
Z13 —19.04 —18.55 k333 7.87 8.21
Lo 134 126 k1111 181 181
Tos —12.18 —11.41 k1122 —10.73 ~10.42
T3 —12.34 —11.59 ki1 18.77 18.22
Tigly —0.95 —0.90 Faaos 2.42 2.28
ay X 10* 11.38 11.38 k2233 —25.64 —25.65
as X 10 —~7.03 —6.67 Fsass 6.22 5.87
as X 10t 28.79 27.70

Three quartic force constants, i.e., kisss , k1113 , and kis2;3 are not zero in these molecules,
but they do not contribute to E,/he.

498
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TABLE VI

TaE OBSERVED AND CALCULATED VIBRATIONAL LEVELS (cM~™!) aNDp THEIR

Rorarronarn Constants (1074 em™1) wor C120101¢ snp CL3Q16018

2 28905 Vobs Veale

(a) 012016018
2 0 0] 2757.14 2755.79
1 20 0 2614.20 2614.60
L0 40 0| 2500.73 2501 .69
2 0 17 5042.54 5041.61
1 20 1 4904.85 4904 .88
Lo 40 1| 4791.26 4791.82
(1 1t 0] 2049.68 2048.66
[0 3 0 1901.90 1902.46
1 0 17 3675.13 3674.74
Lo 20 1| 3571.14 3571.41
00 1 2332.16 2332.15
00 2 4639.48 4639.61

(b) 013016018
2 0 1 4924 .99 492438
1 20 1 4814.53 4814.58
0 4° 1 4692.12 4692.12
1 0 17 3587.51 3587.32
0 20 1 3490.35 3490.57
00 1 2265.98 2266. 00

(Bv - BO)obs (Bu - BO)calc
9.0 9.2
—4.3 —4.4
2.5 3.2
—20.7 —20.3
—33.55 —33.55
—2.5 —24.4
—26.09 —25.99
—28.78 —28.84
—98.70 —28.76
—57.80 —57.52
—27.0 —27.2
—33.3 —33.6
—16.3 ~16.4
—29.0 —30.0
—22.7 —22.7
—28.3 —27.7

TABLE VII

Fermi Coupring ConstaNTs W,

W, = —k122/\/é cm™1

c 05’
c®0°
012016018
013016018
c"0,°

—52.84
—51.34
—51.63
—50.12
—50.52

CONCLUSION

It has been shown that a reasonable set of constants in the general quartic
force field of carbon dioxide can be obtained by the least squares method, pro-
vided that the third-order parameters, M\, N, Az, and & in the Fermi coupling
off-diagonal elements are refined simultaneously with the force constants. Vibra-
tional band centers and effective rotational constants have been computed from
the converged set, Set (iv), of force constants and third-order parameters. Excel-
lent agreement between the calculated values and the corresponding experimental
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values is found for both C*0;® and C*05°, the average deviations being 0.2 em ™

for the vibrational levels and 0.3 X 10~ ¢m™ for the rotational constants. It has
also been shown that the vibrational levels and rotational constants of C*0**0"*
and C®0"0" are accounted for by Set (iv), although the fit is slightly inferior
to that for C03° and C®0;°; this was expected since the observational data for
C"?0"0"® and C*0"0" were not included in the refinement process. This would
indicate that a further improvement in the values of the anharmonic force con-
stants ean be expected, if highly precise measurements of appropriate vibration—
rotation bands are made for C?0'°0'® and C*0"0",

The anharmonic force constants also serve to give a quantitative picture of
potential energy surfaces, especially around the equilibrium position of the car-
bon dioxide molecule; the stretching diagonal force constants are shown to be
represented well by the Morse function. An estimate of the dissociation energy
from the values of quadratic and cubic force constants by assuming the Morse
function has been made with fair success.

It is believed that the present results confirm the validity and usefulness of
our method, since a large number of spectroscopic data of various isotopic species
of carbon dioxide are interpreted satisfactorily in terms of 16 basic parameters of
the molecule, namely 12 anharmonie force constants and four third-order param-
eters.

ACKNOWLEDGMENT

The author is very grateful to Professor T. Shimanouchi for helpful discussions.

Recrivep: June 23, 1967
REFERENCES

1. M. A. ParisEav, 1. Suzuki, anp J. OVEREND, J. Chem. Phys. 42, 2335 (1965).

2. 1. Svzuki, M. A. PArisEAU, AND J. OVEREND, J. Chem. Phys. 44, 3561 (1966).

3. H. H. N1eLsEN, Rav. Mod. Phys. 23, 90 (1951); in “Handbuch der Physik.” (S. Fligge,
ed.), Vol. 38. Springer, Berlin, 1959.

4. G. Amar aND M. PIMBERT, J. Mol. Speciry. 16, 278 (1965).

5. H. R. GorpoN anp T. K. McCusBIN, J. Mol. Spectry. 18, 73 (1965).

6. H. R. Gorpon anp T. K. McCussin, J. Mol. Spectry. 19, 137 (1966).

7. K. Xucuitsu aAND Y. Morino, Bull. Chem. Soc. Japan 38, 805 (1965).

8. C. P. Courroy, Can. J. Phys. 35, 608 (1957).

9. C. P. Courroy, Ann. Soc. Sci. Bruzelles 73, 5 (1959).
10. D. E. Mann, L. Fano, J. H. MEeaL, anp T. StumaNouvcHt, J . Chem. Phys. 27, 51 (1957).
11. E. K. PruyLer, L. BuaiNg, anp E. D. TiowEeLL, J. Res. Natl. Bur. Std. 55, 183 (1955).

J.

Tavror, W. 8. BeNEpicT, AND J. STRONG, J. Chem. Phys. 20, 1884 (1952).

13. G. Amar anp M. GoLpsmiTh, J. Chem. Phys. 23, 1171 (1955).

15. ). Prrva, Collection Czech. Chem. Commun. 23, 777 (1958).

14. S. Mags, Cahiers Phys. 14, 125 (1960); J. Mol. Speciry. 9, 204 (1962).

16. G. HerzBERG, “Electronic Spectra and Electronic Structures of Polyatomic Mole-
cules,”” p. 430. Van Nostrand, Princeton, New Jersey, 1966.

17. F. D. Rossini, “Selected Values of Chemical Thermodynamic Properties,” U. S.
Natl. Bur. Standards Circular 500, Washington, D. C., 1952.

18. C. V. Berney anDp D. F. KEccErs, J. Chem. Phys. 40, 990 (1964).



