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General Anharmonic Force Constants of Carbon Dioxide 

ISAO SuzuKI 

Department of Chemistry, Faculty of Science, University of Tokyo, 
Bunkyo-ku, Tokyo, Japan 

Twelve force constants in the general quartic force field of carbon dioxide 
have been determined by the least squares method from spectroscopic data on 
C120~ ~ and C13Ola together with the four third-order parameters, i.e., X~ , X2, 
X3, and ~ which appear in the Fermi coupling off-diagonal elements. I t  is shown 
that  inclusion of these third-order parameters is indispensable to obtain a 
reasonable set of anharmonic force constants. From these force constants, 
consistent sets of vibrational constants (~o~, x~j), Fermi coupling constants 
(We), and rotation-vibration coupling constants (a,) have been derived for 
C1:0~ 6, C130~ 6, C12016OLS and ClaO160 is. The calculated vibrational energy 
levels and rotational constants agree well with those obtained experimentally. 
A potential energy contour map of carbon dioxide is also given and discussed. 

INTRODUCTION 

I n  a prev ious  p a p e r  (1)  we descr ibed  a m e t h o d  for  t he  leas t  squares  de t e rmi -  
n a t i o n  of a n h a r m o n i e  force cons tan t s  f rom spect roscopic  da t a .  Th is  m e t h o d  was 
app l i ed  to t h e  ca rbon  dioxide  and  h y d r o g e n  cyan ide  molecules  (1, 2) .  As  is well  
known,  t he  v i b r a t i o n a l  energy  levels of p o l y a t o m i c  molecules  a re  expressed,  to  
t he  second o rde r  of app rox ima t ion ,  b y  the  fo rmula  (3) ,  ~ 

E/hc = L;/hc + ~ ~(~  + dJ2) 

+ ~-~>~, x,~,(v~ -t- d,~/2)(v~, ~- d~,/2) -1- ~_,~>_t' x ~ ,  ~tC~, (1)  

a n d  the  ro t a t i ona l  cons t an t  assoc ia ted  w i t h  each v i b r a t i o n a l  level  b y  
(2) 

B~ ~ = B~ s -- ~-~ a~(v~ + d~/2) 

where  ~ is x, y, or z. 
I n  Refs.  (1)  and  (2) ,  we used  two a l t e rna t i ve  p rocedures  for select ing t h e  

spec t roscopic  da ta .  I n  the  f irst  m e t h o d  ( M e t h o d  I ) ,  we app l i ed  a leas t  squares  
t echn ique  to  o b t a i n  t h e  anha rmon ie  force cons tan t s  2 which  give t he  bes t  fit to  

We follow the notations given ill Ref. (3), unless otherwise stated. As stated in this 
reference, Eqs. (1) and (2) apply to a resonance-free case. 

2 In the present paper, "anharmonic force constants" refer to the coefficients appearing 
in Eq. (4) in which the molecular potential is expressed in terms of eurvilinear internal 
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the derived constants of ~o,, xd , and c~s, Whereas the adjustment was made in 
the second method (~Iethod II) to the band origins of the observed funda-. 
mentals, overtones and combination tones, and the differences in observed rota- 
tional constants (B~ -- B0). As discussed in Refs. (1) and (2), we preferred 
Method I I  over Method I,  since in Method I we must  either ignore the correla- 
tions between the derived constants of ~0~, x~,,, and a , ,  or employ the more cum- 
bersome general least squares method in which the weight matr ix  is no longer 
diagonal (2). In  the ease of carbon dioxide, however, the normal equations were 
not stable for Method I I ,  and we could not obtain a reasonable set of force con- 
stants unless some constants were constrained at fixed values. 

A number  of investigations, both  theoretical and experimental, have  recently 
been carried out on the carbon dioxide molecule (4-7) .  Amat  and Pimbert  
(4) have pointed out tha t  the traditional method for deriving vibrat ional  
constants and Fermi coupling constant  W~, if applied to the ease of strong 
Fermi resonance, would lead to isotopically inconsistent results. They  have  also 

12 16 shown that the vibrational eonstants of C 02 and other isotopic species given 
by Courtoy (8, 9), for example, predict the vibrat ional  energy levels for each 
isotopic species very precisely, but  lead to an imaginary  value of/c~22, when the 
following relationship 

x22 + 3 x ~ :  = ( - - l~)k~:~[(1/~o~)  - -  1/~(2~o2 H- ~0~)] (3 )  

is applied. Amat  and Pimber t  have also given a more refined method for analyz- 
ing the vibrational and rotational constants when Fermi resonance is considered. 

More recently, Gordon and N[cCubbin have made precise infrared measure- 
ments on the bands of C~20~6 molecule in the 16 ~ and 2.8/~ regions (5, 6 ) .  They 
derived, by  using the method of Amat  and Pimbert ,  a new set of vibrat ional  

C O~ which differs significantly from that  constants, ~0~, x~,,, and xe2~ for le ~6 
given by Courtoy (8, 9). 

The above facts indicate that ,  in determining anharmonie force constants from 
spectroscopic data, u tmost  care must  be taken in the t rea tment  of Fermi  reso- 
nance. Therefore, it was considered worthwhile to recalculate the force constants 
in the general quartie force field for carbon dioxide, applying various kinds of 
constraints for the Fermi coupling off-diagonal elements. We have used exclu- 
sively Method I I ,  in which the force constants were adjusted to fit the band 

C 02 origins and rotational constants of the vibra t ion-rota t ion bands of ~ ~6 
13 16 and C O2. The main objective of the present investigation is twofold: one 

is to obtain a more refined set of constants of the general quartic force field 

coordinates (1); they include the quadratic force constants, K u , as well as tim cubic and 
quartie force constants, K~jk and Kijkt. "Vibrational constants" are the ones appearing in 
Eq. (1), namely coo and x,~,, by which the vibrational energy levels are described, whereas 
"rotation-vibration coupling constants" are the quantities c~, appearing in Eq. (2) by 
which the unperturbed rotational constant of each vibrational level may be expressed. 
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for carbon dioxide in order to provide a deeper understanding of the intra- 
molecular potential in polyatomic molecules. One may  also regard the above 
procedure as reducing a large number of complicated spectroscopic data on 
carbon dioxide to 12 basic force constants which are invariant to isotopic sub- 
stitutions. The other objective is, therefore, to obtain a more consistent set 
of vibrational constants, rotat ion--vibrat ion coupling constants, and Fermi 
coupling constants for various isotopic species of carbon dioxide from those 
force constants. The conventional approach to the problem of obtaining the 
vibrational constants is limited to one isotopic species: the co's, x's, and a 's  
are obtained separately for each isotopic species. The various isotopic rela- 
tionships between the co's, x's and a's are not necessarily fulfilled by this ap- 
proach. 3 After values of the 12 anharmonic force constants of carbon dioxide 
have been determined, we may compute for any isotopic species, sets of the vibra- 
tionM and vibrat ion-rotat ion coupling constants, co's, x's, and a's, which fully 
satisfy the isotopic relationships. With the above objectives in mind, we have re- 
evaluated the anharmonic force constants of the carbon dioxide molecule. The 
results are given and discussed in this paper. 

DETERMINATION OF ANHARMONIC FORCE CONSTANTS 

Since a general procedure for the determination of anharmonie force constants 
was given in detail in Ref. (1), only a brief outline of the calculation is given 
in this section. The molecular potential is expressed as a function of the curvi- 
linear internal coordinates through quartic terms, and it is of the following form 
for the ease of a linear symmetrical triatomie molecule: 

V = Kn(R12 -t- R~ e) ~- K13/~Ra @ K22~22 -t- Km(R~ 3 -t- R33) 

-~- K~22(RI ~- R~)R22 + K~3a(R~ -t- Ra)RIR3 -~- Km~(R~ 4 -~ R34) 
(4) 

-t- Km3(R~ 2 ~- R32)RIRa + KmaR~2R32 -~- Km~(R~ 2 + R32)R22 

+ K122~R1R22R3 + K~222R~ 4, 

where R1 and R3 are the two stretching coordinates, while R2 is the bending co- 
ordinate. Starting from assumed values for the 12 force constants in Eq. (4), 
two successive transformations of the coordinate systems are carried out. The 
first is a nonlinear transformation from curvilinear internal to difference Car- 
tesian coordinates, 4 and the second is a linear transformation from difference 

3 For such a simple molecule as carbon dioxide, it is not impossible to determine a con- 
sistent set of the vibrational constants by applying the least.squares technique to the 
known data of entire isotopic species with the proper constraints in the values of vibra- 
tional constants; for example o~,(C~O~ 6) = ~o~(C~30~6), x~(C~20~6) = x~(Ct~O~) and so on. 
This is, however, extremely cumbersome and the isotopic relationships for some x~, and 
for some a~ are not trivial. Therefore, we prefer to reduce the observed data to 12 GVFF 
constants. 

4 As indicated in Eqs. (4-6) in Ref. (1), the first transformation coefficients depend only 
upon the struc~urM parameters of a given molecule. 
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Cartesian to dimensionless normal coordinates (q~'s), by which the molecular 
potential is expressed as, 

V =  ~_,i 1 2 (1/~)~qi + ~_,i>_j>_k k~kqiq~qk + ~-~>~>k>~ kijk~q~qjqkqc , (5) 

where ¢o~ is the harmonic frequency, and k~k and ki~ke are, respectively, the cubic 
and quartic force constants in dimensionless normal coordinates. 

The vibrational and rotational constants in Eqs. (1) and (2) are evaluated 
from ~ ,  kijk, k~sl~ , using Nielsen's formulae (3). Finally, each vibrational 
energy level and its rotational constant are calculated and compared with the 
observed. As described in Ref. (1),  the above procedure should be modified when 
some energy levels are involved in resonance. In  this case, the first-order correc- 
tions to the vibrational energy levels are obtained by solving a secular determi- 
nant  which has nonvanishing off-diagonal elements, and some expressions for 
x~, which have diminishing denominators must be changed. The t rea tment  of 
Fermi-Dennison resonance in the specific case of carbon dioxide is described in 
the following section. 

In order to find the least squares corrections to the initial anharmonic force 
constants, a finite difference method is employed (10). In this method, the 
Jacobian matrix elements are obtained by changing the value of each force con- 
stant in turn by a small amount.  Then, the correction vector AK to the initial 
force constants is found by solving the well-known simultaneous equations: 

( JPJ )  AK = :IPAv, (6) 

where P is a diagonal weight matrix, Av represents a column vector consisting 
of the differences between the observed and calculated values of the correspond- 
ing data. This process is repeated until corrections to the force constants become 
negligibly small. 

The vibrational energy levels and rotational constants used in the present in- 
vestigation are taken from the recent high-resolution measurements of Gordon 
and McCubbin (5, 6) and those of Courtoy (8, 9). Reference is also made to 
the publications of Plyler, Blaine, and Tidwell (11) and Taylor, Benedict, and 

C O2 are mainly Strong (12). The vibrational levels and rotational constants of ~3 ~8 
taken from Courtoy (9). The observed data: 33 vibrational levels and 31 rota- 
tional constants for C120~ 6 and 26 vibrational levels and 22 rotational constants 
for C~30~ 6, are given in the first column of Table I, along with the corresponding 
weights in the second column. As discussed in Ref. (1), the levels associated with 
higher vibrational quantum numbers are weighted less, since we have dropped 
the higher terms such as 

~-'~.~>~,>~,, y~,~,,(v~ ~- g~/2)(v~, + d~,/2)@~,, -t- d~,,/2), 

from Eq. (2). 
Numerical computations were carried out with a Hitac 5020E computer in the 
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Computation Centre of the University of Tokyo. The programs for the anhar- 
monic problems have been written in Fortran IV along the lines indicated in 
Ref. (1), although several modifications have been made. The modifications are, 
however, rather technical in nature to shorten the computation time, and they 
do not alter the general principle given in Ref. (1). We adopted the value of 
re = 1.1600 A for the equilibrium C-O bond distance. 

FERMI RESONANCE IN CARBON DIOXIDE 

The problem of Fermi resonance in carbon dioxide, for which the fundamental 
pl ° is located very close to the overtone (2,2) ° is well known. In order to obtain 
the vibrational energy levels involved in Fermi resonance, we have to solve a 
secular determinant for a given polyad. Nielsen (3) showed that the off-diagonal 
matrix elements of the determinant are expressed, to the first order of approxi-~ 
mation as, 

@1, v2, ~2, v~ [ vl -- 1, v~ + 2, ~ ,  v3) = ( W j 2 ) [ ( v ~  + 2) 2 - ~2~]'2vI/2 (7) 

where We = --k122/~v/2. In interpreting the spectrum of carbon dioxide, the 
parameter We in Eq. (7) was found to vary with the vibrational quantum num- 
bers (12). Amat and Goldsmith (13), and 1Vines (14) have shown that We must 
be replaced by 

W~ = We q- X~v~ -t- X2(v2 q- 2) q- Xa(v3 q- ~ ) ,  (8) 

if third-order correction terms are taken into account. 3/Iaes (14) has pointed out 
that the Fermi coupling term also varies with the rotational quantum number 
J, and a term ~ J ( J  q- 1) should be added to Eq. (8). Therefore, the Fermi 
coupling off-diagonal element is expressed as 

(1~)[--k~2~/M/2 q- X~v~ q- X2(v~ q- 2) q- X3(v3 q- }/22) q- ~ J ( J  -Jr" 1)] 
- -  ~, 211/2yl/2 ( 9 )  

X [ ( v ~ + 2 )  ~ ~ j  ~ . 

Usually, the perturbed (observed) rotational constants (Bi) of a given polyad 
are related to the unperturbed constants (B °) by the following relation: 

B °L2 B~ = ~ j~j~, (10) 

where Lj~ represents a fractional contribution of the j th  unperturbed level to the 
ith perturbed level. This relationship must be modified in the present approxi- 
mation, since the constant ~ appearing in the nonvanishing off-diagonal elements 
also contributes to the B~'s: 

L 0 Bi  = ~_,~ iiLk~Rsk , (11) 

where R~ B 0 and ~ comes into the off-diagonal element, R~3", in the manner 
indicated in Eq. (9). Amat and Pimbert eInphasized that when Fermi resonance 
is very strong, i.e., the energy difference between the unperturbed levels is small, 
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should be taken hlto consideration. They  have shown tha t  a very consistent ro- 
tat ional  analysis can be made f rom the assumed value of 2.0 X 10 .5 em -~ for & 
A m a t  and Pimbert  have also pointed out tha t  there exist off-diagonal matr ix  
elements of the form 

(vl, v2,  ~2 , va l v~ - 2, v~ + 4, ~2 , va) 
= u{[(v2 -t- 2) ~ -- g2] [@2 -t- 4) 2 -- ~22]v,(vl --  1)} 1/2, (12) 

which m a y  contribute to the vibrat ional  energy levels of triads, tetrads, and 
higher polyads. 

I n  order to calculate the third-order terms in the Fermi coupling constant,  
whieh are very  eomplicated functions of molecular geometry and vibrat ion con- 
stunts, we have to expand Eq. (4) fur ther  to include quintie and hexic terms in 
the  internal coordinates. '~ This eould be done in prineiple, but it  seems quite im~ 
practical. For  this reason we used Eq. (7) in our previous paper  ( I ) .  However,  
the work of Amat  and Pimber t  has eonvineed us tha t  the use of X's as well as 
is indispensable, and their  omission from the Fermi coupling off-diagonM elements 
m a y  put  too much strain on the values of the force constants and lead to unsa t i s  
factory results. In  the present calculation, we have included all or a par t  of the 
X's, u and ~ (hereafter referred to simply as "third-order  parameters")  in para ,  
mett le  forms, to obtain the per turbed frequeneies and rotational constants in- 
volved in Fermi polyads. Therefore, the 12 anharmonie force constants of Eq.  
(4) as well as the third-order parameters  are refined to obtain the best least 

C 02 squares agreements to 111 vibrat ional  levels and rotational eonstants of 12 16 
and ClaO 16. The  results are given in the following section. 

RESULTS AND DISCUSSION 

The converged sets of the anharmonie foree constants adjusted with or without  
the third-order parameters  are listed in Table  I I .  First, the 12 anharmonic force 
constants alone without the third-order parameters  were adjusted to give the  
best least squares fit to the observed data.  The final set is given in Column (i) 
of Table  I I .  I n  Columns ( i i ) - ( v )  are listed the results obtained when the an- 
harmonic foree eonstants were refined along with some of the third-order parame-  
ters. In  addition to the 12 force constants, the parameters  Xl, X2, and ha of Eq. 
(8) were included and refined first. While the X~'s were supposed to have  the  

12 16 13 16 same values for C 02 and C 02 in Set (ii), they were adjusted independently 
for Set (iii). The results are given in Columns (ii) and (iii); the unprimed X's 
are for CI~O~ 6 and the primed ones for C130~ 6. In  Column (iv) are given the 
results at tained when 6 of Eq. (9) was included as well as the three X's, again 

The complete expressions for the third-order parameters are very complicated; 1Vines 
(14) has formulated the expressions for X~ and ~ in terms of (.~)Y's; i.e., the coefficients ap- 
pearing in the onee transformed Hamiltonian, (p)h%. It is readily seen, however, that the 
quintie force constants in dimensionless normal coordinates, km~2 ,  Ic1~222, and /~1223a 
contribute, respectively, to X~, X2, and M, while the force constant k1~222~ contribtltes to u. 
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Table III. The Computed Values of Harnxonic Frequencies (w i ), Anharmonicity 

Constants  (x.,) in cm -1, Rotational Constants  (at) in l ( ~ c m  -1, and Force  Con- 1j 
-1 a 

s tants  in Dimens ionless  Normal  Coordinates  (kij k and kljkf ) in cm 

12 16 
(a) G 0 2 (i) (ii) Oii) {iv} (v) 

w I 1349,97 1349.17 1348.13 1354,31 1353.96 

w 2 674.85 675. ZI 675.99 672,85 673.17 

w 3 2395,89 2395.66 Z395.43 2396.32 2396.29 

Xll -2.38 -2.54 -2.28 -2.93 -2.94 

x12 1.01 0.96 3.47 -4.61 -3.64 

x13 -18.50 -17.60 -17,56 -19.82 -19.66 

x22 -0.23 -0.21 -0.96 1.35 1.10 

x23 -IZ.61 -12.93 -iZ.91 -12.31 -12.37 

x33 -12.40 -12.44 -12.41 -12.47 -IZ.47 

x ~  -0 .38  -0 .44  -0 .19  -0 .97  -0 .88  

a I 11.53 12.55 12.38 12.41 12.32 

~2 -6.79 -7.37 -7.37 -7.40 -7.37 

~3 30.25 30.43 30.53 30.60 30,58 

kll I -43.53 -45.91 -45.47 -45.78 -45.56 

klz 2 69.84 74.07 73.94 74.72 74.47 

kl33 -245.53 -246.57 -247.05 -249.14 -248.93 

k l l l i  1.92 2.22 2.31 1.92 1.87 

kllzZ -4.85 -5.58 -3.00 -11.15 -10.13 

ki133 18.91 ZI.35 21.27 19.52 19.52 

k2222 I.ZO 1.38 0.88 2.45 Z. Z7 

k2233 -26.81 -27.97 -27.95 -27.56 -27.57 

k3333 5.98 6.08 6.17 6.30 6.28 

G & M 

1354.07 

672.95 

2396.3O 

-3. i0 

-5.37 

-19.27 

1,59 

-12.51 

-12.50 

-i.01 

The values given in columns ( i ) - (v)  are computed  f rom the  corresponding sets  of 
force cons tan ts  in  columns ( i)-(v)  of Tab le  I I .  The  values given by  Gordon and M c C u b b i n  
~8) are shown in the  column des ignated  by  G & M. 
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Table I I I .  ( C o n t i n u e d )  
J 

13 16 
(b )  C O Z ( i )  ( i i )  ( i i i )  ( i v )  (v )  

w 1 1 3 4 9 . 9 7  1349.  17 1 3 4 8 . 3 1  1354 .31  1 3 5 3 . 9 6  

w 2 6 5 5 . 6 5  6 5 5 . 9 9  6 5 6 . 7 5  6 5 3 . 7 0  6 5 3 . 9 6  

w 3 2 3 2 7 . 4 1  2 3 2 7 . 4 8  2 3 2 7 . 2 6  2328.  12 2 3 2 8 . 0 9  

X l l  - 2 ,  38 - 2 . 5 4  - 2 . 2 8  - 2 . 9 3  - 2 . 9 4  

x12 O, 99 O. 95 3.39 -4.46 -3, 52 

Xl3 -18.05 -17. 17 -17. 13 -19.33 -19, 17 

x22 -0.22 -0.20 -0.91 I. 28 I. 03 

x23 -ll. 82 -12. 12 -12. i0 "II.54 -II.59 

x33 -ii. 64 -ii,68 -ll. 65 -ii.71 -ll.71 

x -0.35 -0,41 -0. 17 -0.91 -0. 83 
~2 ~2 

a I ii. 53 12, 55 12. 38 12.41 12.32 

a 2 -6.40 -6, 99 -6. 98 -7.01 -6. 99 

a 3 29. 15 29, 32 29.42 29, 48 29.47 

kll I -43.53 -45.91 -45.47 -45.78 -45, 56 

kl2 Z 67.86 71, 96 71.85 72.60 72.36 

k133 -238.54 -239.55 -240.02 -242.05 -241.84 

kllll 1.92 2.22 2.31 1.92 1.87 

kllz2 -4.71 -5.43 -2.91 -I0.83 -9. 83 

kll33 18.37 20.75 20.67 18.96 18.97 

k2222 1. 13 1 .31  0 . 8 3  2.32 2. 14 

k2233 -25.31 -26.40 -26, 38 -26.02 -26.02 

k3333  5, 64 5 . 7 4  5 . 8 2  5 . 9 5  5 . 9 3  

isotopic invariance of both X's and 3 was assumed. This last restriction was re- 
moved  in Set (v ) ,  in which a combined set of 12 anharmonic force constants,  
six ;~'s and two ~'s was refined, and the results are given in Column (v ) .  Also 
included at the bot tom of Table II are the weighted sum of the squared devia- 

[ obs cul t \2  t ions:  S = A . , i  w i ( ~ i  - -  vi  ) c o m p u t e d  from the  corresponding sets  of force 
constants .  
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The calculated vibrational band centers (ui) and the differences of the effective 
rotational constants (B~ -- B0) f rom Sets ( i -v)  m a y  be obtained from the 
corresponding columns of Table I,  where, however, only the differences between 
the observed and calculated values are given to save space. 

In  Table I I I  are listed the harmonic frequencies (cos), anhal~lonic constants 
(x,~,), v ibra t ion-rota t ion coupling constants (as),  as well as the cubic and 
quartie force constants in dimensionless normM coordinates (/tick and /cake) 
calculated from the corresponding sets of force constants. A number  of calcula- 
tions have also been made by using other combinations of third-order parame-  
ters; the results are not tabulated here but  will be referred to in the following 
discussions. 

The force constants given in Column (i) of Table I I  correspond to those given 
in Column (vi) of Table I in Ref. (1).  I t  should be noted, however, tha t  the 
present set (i) is obtained without  any constraints on the values of force con- 
stants, while a few force constants were held fixed in Set (vi) of the previous 
paper. The reason tha t  we have succeeded in obtaining Set (i) without any  con- 
straints is not altogether clear, since the observed data we have used here are only 
slightly different from those used in Ref. (1) : the most  recent values of Gordon 
and McCubbin  for C~20~6 have replaced some of the previous data, and the rela~ 
rive weights of the vibrat ional  levels to the rotational constants were increased. 
The  lat ter  change m a y  have served to stabilize the nol~nal equations. 6 As m a y  
be seen from Tables I I  and I I I ,  the inclusion of X's as adjustable parameters  
does not alter the values of force constants nor the fit of the calculated values to 
the observed too significantly, unless X~'s are taken independently for C~20~ 6 and 
C~30~ 6. When six ~,~'s are refined as in Set (iii), the agreement between the 
calculated and observed frequencies is greatly improved, while that  for the ro- 
tat ional constants is not. As a result, the sum of the squared deviations, S, has 
decreased from 151 to 25. However,  the converged values for the six X's are not 
entirely satisfactory; the values of X's for C~O~ 6 are found to be far from those 
for C~30~ 6, which can hardly be reconciled with the theoretical considerations. 
Next,  the rotational third-order paramete r  is included, and is refined simultane- 
ously with the 12 anharInonie force constants and three X's to obtain Set ( iv) ,  
again assuming isotopic invariance for the third-order parameters.  As shown in 
Table  I I ,  the addition of a single pa ramete r  ~ to Set (ii) has a startling effect, the 
value of S decreasing from 112 for Set (ii) to 4.7 for Set ( iv).  The vibrat ional  
energy levels and effective rotational constants computed from Set (iv) agree 
very  well with the observed. The  deviations of the calculated frequencies f rom 
the observed are less than  1 cm -~ for all the levels considered, including the levels 

6 It  was rather unfortunate that the values of Kin3 and K~83 were fixed at --2.383 and 
.-5.924 md/~ 3, respectively, which are quite different from the values obtained in the 
present work. This may also have caused the difficulty in obtaining a converged set wkh- 
out constraints. 
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with relatively high quan tum numbers, and those for the effective rotational 
constants seldom exceed 1.0 X 10 -4 em -1. The agreement is even bet ter  for the 
fundamentals,  first overtones, and binary combination tones, for which the 
effects of higher order terms such as y**,,,, are expected to be smaller. The average 
deviations are about  0.2 em -1 for the vibrational levels, and 0.2-0.3 X 10 -4 em -1 
for the rotational constants. Finally, the third-order parameters  ~ and X are re- 

C12y'~16 13 16 C O~ (v) ,  thus third-order fined independently for ,,2 and in Set eight 
parameters  along with the 12 anharmonie force constants are adjusted. The  con- 
verged values are given in Table I I  and the corresponding computed frequencies 
and rotational constants may  be obtained from Column (v) of Table I. No sig- 
nificant improvement  is achieved in the fit (S  ~ 3.9) ; however, it must  be noted 
tha t  the converged values of the third-order parameters  are much more reason- 
able than  those in Set (iii). With the exception of X~'/X~, the ratios of X2'/X~, 
Xa'/X~, and 8'/8 are quite acceptable for C13-substitution. This indicates that  
simultaneous refinement of X's and ~ is necessary to obtain a reasonable set of 
these parameters  and the neglect of ~ causes the discrepancies in the values of 
the X's in Set (iii).7 However,  we feel tha t  we may  safely disregard the isotopic 
variances in the third-order parameters  in carbon dioxide, namely AX~ = X~ - X( 
and A~ = ~ -- 5' to the present approximation.  In  the following discussion we will 
use mainly Set ( iv).  

At tempts  were also made  to include the parameter  u in the refinement process. 
However,  it was found tha t  u neither affects the values of other parameters,  nor 
improves the data  fit too significantly. I t s  value is not  very well determined: 
u = 0.025 ~ 0.020 cm -~. Therefore, the significance of u is not discussed here. 

Values of Force Constants 

The present calculation confirms our previous conclusions with regard to the 
principal diagonal force constants: the diagonal stretching potential  follows 
closely the pat tern  of the 1Vforse function for a given bond, we have a~ = -Kin~ 
K~I = 2.377 and a2 -- Kml/Kll = 3.327, while the Morse function predicts 

* 7at2/12 3.296. The  bending potential is almost harmonic with a vanish- a2 = = 
ing cubic constant and a small quartie force constant. 

Only the value of K~22 is strongly affected by  the inclusion of the third-order 
parameters  X: the converged value of -- 0.69 for Set (i) is considerably different 
from those found in the range of - 0 . 5 9  to - 0 . 6 0  for Sets ( i i -v) .  The inclusion 
of ~ has a considerable effect upon the off-diagonal quartie force constants, 
Kma,  Km~,  and K l m ,  the values of these force constants being reduced to about  
one half to one sixth. 

As may  be seen from Table I I ,  the values of the quadratic and cubic force 
constants (Set (iv)) are well determined with very small dispersions. I t  is in- 

7 We have tried to adjust ~ alone with 12 force constants, ignoring the X's, the results are 
not satisfactory with the value of S = 36. 
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terest ing to note  t ha t  their values also agree remarkably  well with those published 
previously (1, 7, 15). The  values of the quart ic  force constants,  on the o ther  hand,  
differ considerably f rom those reported earlier, this was, however,  no t  surprising, 
since those values mus t  be considered to have ra ther  large dispersions (cf. Table  
I of Ref. (1)). The  s imultaneous refinement of the anharmonic  force constants  
and  the third-order  parameters  seems necessary to obta in  the values of quar t ic  
force constants  with reasonably small dispersions. 

We m a y  draw the  potent ia l  energy m a p  of the carbon dioxide molecule with 
the  aid of the  anharmonic  force constants  just  obtained.  I n  Fig. 1, we p lo t ted  
the  potent ial  energy surfaces of carbon dioxide a round  its equil ibrium posit ion 
when its l ineari ty is retMned: R2 = A0 = 0. The  abscissa and  ordinate  corre- 
spond, respectively, to  the  two s t re tching coordinates rl and r2. I n  Fig. 2 we 
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r2 1.4 

1.2 

1.0 

0.8 

re  

I I I I I I I 

0.8 1.0 1.2 1.4 1.6 1.8 2.0A 
I'1 

FIG. 1. Potential energy contour map of carbon dioxide around its equilibrium position. 
Displacement along ro_c is taken as abscissa and that along rc_o as ordinate, while the 
linearity of the molecule is retained. The contours are drawn at intervals of 2.0 X 10 -12 erg. 
The equilibrium bond distances are indicated by r~. The lines Aa and Bb represent two 
symmetry coordinates, i.e., the symmetric stretching ($1) and the antisymmetric stretch- 
ing (S~) coordinates, respectively. 
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B 

r2 1.4 

I I I ~ I I I 
0.8 1.0 1.2 1.4 1.6 1.8 2.0 ~ 

r l  

FIG. 2. Potent ia l  energy contour map  of carbon dioxide, when the molecule is assumed 
to have a bent  configuration;  R2 = At~ = 45 °. Disp lacement  along ro_e is taken  as abscissa,  
and t h a t  along rc_o as ordinate.  The  contours  are drawn at  in te rva ls  of 2.0 X 10 -1~ erg. The 
dark  circle indicates  the potent ia l  min imum.  

plotted the potential contour map when the molecule is assumed to have a bent 
form: R2 = A0 = 45% The lines Aa and Bb in the figures represent two sym, 
metry coordinates; the symmetric stretching ($1) and the antisymmetric stretch- 
ing ($3) coordinates. The general patterns of the potential energy contours are 
alike in both cases, except that  the potential along the $1 coordinate is slightly 
steeper in the deformed configuration. I t  is also noted tha t  the potential minimum 
is no longer at the origin when the molecule is in the bent configuration, but it 
shifts slightly toward longer bond distances (but still on the line Aa),  as indi- 
cated by the dark circle in Fig. 2. This would indicate that  the two C-O bonds 
tend to stretch when the bending vibration is highly excited. This is further 
illustrated in Fig. 3, in which position of the potential minimum is plotted as a 
function of deviation of the valence angle from linearity: R2 = A0. 

The dissociation energy of a C-O bond may also be evaluated from the stretch= 
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ing force constants,  Kll  and K m , if we assume a Morse type  potential .  T h e  
dissociation energy De is related to  K1, and K m  by  

Kll  = Deal 2, (12a) 

K m =  -- Deal ~. (12b) 

F r o m  the  values of 8.0112 m d / A  and -- 18.9894 m d / A  2, respectively, for K~  and  
K m ,  we obtain  D~ = 1.42 X 10 -11 erg = 8.85 eV. This corresponds to the  disso- 
ciat ion of CO2 in its g round  electrmfie s ta te  to CO (1~) + O (~D) bu t  no t  to 
their  ground states CO ( ~ )  + 0 (3p) (16).  In  order  to calculate the dissociation 
energy of CO2 to  0 @ C @ O, it is more  convenient  to use the s y m m e t r y  eoordi~ 
na te  $1 = (R1 ~ R3)/'X/'2. The  force constants  associated wi th  the symmet r i c  
s t retching coordinate are given as 

F~ = K~ + K~/2, (13a) 

Fm = (Kin + Km)/V '2 ,  (13b) 

Fml  = (2Km~ + 2Knla + Kin3)~4. (13e) 

Their  values are, respectively, 8.642 m d / A ,  - 14.809 md/ /k  ~, and  15.719 md/Aao 

0.03 

0.02 

d 

0.01 

P I 

10~ 20 ° 30 ° 40 ° 50 ° 60 ° 

R2 -A 0 

FIG. 3. The potential energy minimum as a function of the angle bending coordinate 
R~ = A0. The displacement of the potential minimum from its equilibrium ( r m i n  - -  r e )  i8 
drawn for a given bending coordinate A0. 
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It is readily seen that the potential energy along the symmetry coordinate S~ also 
follows closely the ~iorse function. We find bl = -Fro~FIt = 1.714 and b2 = 
Fml/F11 -- 1.819, while the ~[orse type potential predicts the value of b2* = 
7b12/12 = 1.713. The estimated value of D~ in this case is around 18 eV, which 
is not far from the value of 16.54 eV (381.54 kcal/mol) determined thermo- 
dynamically (17).8 

Unperturbed Energy Levels 

The unperturbed vibrational energy levels and rotational constants are com- 
puted from Set (iv). The  values for a few typical polyads are given in Table IV. 
The computed value for El~0 is actually lower than tha t  of E0°00 in accordance 
with the latest vibrational analysis (5, 6). I t  is also worth mentioning that  the 
unperturbed levels of C130~ 6 in some polyads are also very  close, the last te trad 
in Table IV being an example. This may  be the reason that  3 and 3' in Set (v) 
are determined with almost equal uncertainties. 

Application to 01S-Substituted Carbon Dioxide 

As pointed out earlier, the anharmonic force constants are invariant to iso- 
topic substitutions. We are now able to compute the vibrational and rotational 
constants for any isotopic species of carbon dioxide, once the force constants have 
been determined with reasonable accuracy. This has been done for C12016018 and 
C130~60 ~a, and the computed constants are given in Table V. Several vibrational 
levels and their rotation constants were reported for these species (8, 9, 18), and 
the calculated values are compared with the observed in Table VI. The agree- 
ment  is generally very  good. This shows that  the vibrational levels and rotation 
constants of C~20~80 ~8 and C~30~60 ~8 can be explained satisfactorily from the sets 
of constants, ~ , x~, , We, and a, from the levels of C120~ 6 and C130~ 6. In  Table 
VII,  we summarize the values of Fermi coupling constants for five isotopic 
species of carbon dioxide. 

Berney and Eggers (18) considered the possibility of Fermi resonance between 
(2,1) ° and ,0 for O~Csubstituted molecules. Both  levels belong to the same 
symmetry species, because of the lower symmetry of the molecule (C~)  and 
/cm is no longer zero. However, the computed value of k113 is - 4 . 4 6  cm -~ for 
C'20~60 is, very different from the estimated value given by these authors (11.45 
cm-~). The vibrational band centers do not seem to be affected by this kind of 
resonance more than 0.02 cm -~. 

8 This value obtained from the following relations: 
COffg) = CO(g) + 1/2Offg) 
1/2Offg) = O 
CO(g) = C + O 

66.77 kcal/mol 
58.58 kcal/mol 

256.19 kcal/mol 

Total 381.94 kcal/mol 



T A B L E  IV 

THE CALCULATED UNPERTURBED AND PERTURBED LEVELS (IN CM -1) AND I~OTATIONAL 
CONSTANTS (IN 10 -5 CM -~) FROM SET (IV) FOR SOME POLYADS 

Level (E,) ° E ,  Eob~ (B,) ° B ,  Bob~ 

(a) C:~O~ 3 

r l  0 o~  1333.94 1388.01 1388.19 38897 39019 39020 
~ 0  20 o J  1339.67 1285.60 1285.41 39169 39047 39048 

20 l l j  4969.11 4977.82 4977.81 38739 38650 38654 
40 4990.15 4853.58 4853.63 39011 38816 38818 

I 
~ o  ~ ,  ~ o ~  ~o~o~ ~ , ~  ~ o ,  ~ . ~  

40 1 /  6285.83 6228.15 ~22788 38887 38665 38668 
60 1~  6326.98 6075.69 6075.93 39159 38887 38868 

(b) C:30~ ~ 

r~ o o7 1 ~  l~rO:~ : ~ . o ~  
ko 20 0 J  1301.65 1265.75 1265.81 

[ - 2 0  l q  4907.65 4991.47 4991.31 38480 38667 38667 

[lo 20 l lJ  4868.16 4887.35 4887.35 38744 38681 38681 
40 4850.92 4747.91 4748.01 39009 38886 38881 

/2 2 o 1 |  6168.38 6242.40 6241.93 38620 38592 38583 
| 1  40 1 |  6148.07 6119.85 6119.56 38884 38754 38756 

t_o 60 1~ 6150.00 5951.41 5951.53 39149 38964 38963 

T A B L E  V 

THE COMPUTED VIBRATIONAL AND I~OTATIONAL CONSTANTS, THE CUBIC AND QUARTIC 
I~ORCE CONSTANTS IN DIMENSIONLESS I~ORMAL COORDINATES FOR C12016018 

AND C13016018 (IN CM -1) 

C12016018 ,C13016018 C12016018 C13016018 

wl 1315.21 1315.13 k u l  - -43 .85  - 4 3 . 8 6  
w 2 667.72 648.42 k : 22 73.01 70.88 
w3 2378.53 2309.85 k 133 - 243.33 - 236.24 
x : l  - 2 . 7 6  - 2 . 7 6  k:13 - -4 .46  - - 4 . 7 8  
xl~ - -4 .45  - - 4 . 3 0  /c2% - 6 . 5 0  - -6 .67  
x 13 -- 19.04 -- 18.55 k3t3 7.87 8.21 
x2~ 1.34 1.26 k l l l l  1.81 1.81 
x23 -- 12.18 -- 11.41 kn22 - 10.73 -- 10.42 
x~3 -- 12.34 -- 11.59 k 1133 18.77 18.22 
xz2z~ - -0 .95  - - 0 . 9 0  k2222 2.42 2 .28  
~: X 104 11.38 11.38 k223~ --25.64 --25.65 
a~ X 104 - -7 .03  - -6 .67  lc3333 6.22 5.87 
a.~ X 104 28.79 27.70 

Three quartic force constants, i.e., kI~33, k:::~, 
but they do not contribute to E~/hc. 

498 

and k1223 are  n o t  zero in  t h e s e  m o l e c u l e s ,  
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T A B L E  VI 

TIIE OBSERVED AND CALCULATED VIBRATIONAL LEVELS (CM - I )  AND THEIR 
ROTATIONAL CONSTANTS (10 -4 CM -1) FOR CI2016018 AND C13016018 
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( ,[t~ ) C12016018 

[ - 2 0 0 " ]  2757.14 2755.79 9.0 9.2 
L~ ~ J 2  o 2614.20 2614.60 - -4 .3  - 4 . 4  

40 2500.73 2501.69 2.5 3.2 

[ - 2 0 1 - ]  5042.54 5041.61 - -20.7  --20.3 

Llo 1 1 J 2  o 4904.85 4904.88 -- 33.55 -- 33.55 
40 4791.26 4791.82 -- 24.5 -- 24:. 4 

r, ,, ol 
h 0 3 t o_J 1901.90 1902.46 

[-1 0 1 7 3675.13 3674.74 --26.09 --25.99 
h 0 20 1~ 3571.14 3571.41 - 2 8 . 7 8  - 2 8 . 8 4  

0 0 1 2332.16 2332.15 - 28.70 - 28.76 
0 0 2 4639.48 4639.61 - 5 7 . 8 0  - 5 7 . 5 2  

(b) C13016018 

[ !  0 i l  4924.99 4924.38 - -27 .0  --27.2 
20 4814.53 4814.58 --  33.3 -- 33.6 
4 0 4692.12 4692.12 -- 16.3 -- 16.4 

,] 
20 3490.35 3490.57 -- 22.7 -- 22.7 

0 0 1 2265.98 2266. O0 -- 28.3 -- 27.7 

T A B L E  V I I  

FERMI COUPLING CONSTANTS We 

Wo = -k~2~ / x / 2  cm-1 

C120~ ° - 52.84 
CnO~ 6 - 51.34 
C~20 I°O18 - 51.63 
C1301°O 18 - 5 0 . 1 2  
C120~s - 50.52 

C O N C L U S I O N  

I t  has been shown that a reasonable set of constants in the general quartic 
force field of carbon dioxide can be obtained by the least squares method, pro- 
vided that the third-order parameters, Xl, X2, Xs, and ~ in the Fermi coupling 
off-diagonal elements are refined simultaneously with the force constants. Vibra- 
tionM band centers and effective rotational constants have been computed from 
the converged set, Set (iv) i of force constants and third-order parameters. Excel- 
lent agreement between the calculated values and the corresponding experimental 
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values is found for both C1~O~ 6 and ClaO~ 6, the average deviations being 0.2 cm -1 
for the vibrational levels and 0.3 X 10 .4 em -1 for the rotational constants. I t  has 
also been shown that the vibrational levels and rotational constants of C12OI60 is 
and CIaO16018 are accounted for by Set (iv), although the fit is slightly inferior 
to that  for C120~6 and CI30~6; this was expected since the observational data for 
C1201~O 18 and C13016018 w e r e  not included in the refinement process. This would 
indicate that a fm'ther improvement in the values of the anharmonic force con- 
stants can be expected, if highly precise measurements of appropriate vibrat ion-  
rotation bands are made for C~20~8018 and C~30~60 TM. 

The anharmonic force constants also serve to give a quantitative picture of 
potential energy surfaces, especially around the equilibrium position of the car. 
bon dioxide molecule; the stretching diagonal force constants are shown to be 
represented well by the Morse function. An estimate of the dissociation energy 
from the values of quadratic and cubic force constants by assuming the Morse 
function has been made with fair success. 

I t  is believed that the present results confirm the validity and usefulness of 
our method, since a large number of spectroscopic data of various isotopic species 
of carbon dioxide are interpreted satisfactorily in terms of 16 basic parameters of 
the molecule, namely 12 anharmonic force constants and four third-order param-- 
eters. 
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