Rotational Analysis of the Bal $C^{2}\Pi - X^{2}\Sigma^{+}$ (8,8) Band

CHRISTINE A. LEACH, JANET R. WALDECK,¹ CHIFURU NODA,² JOHN S. MCKILLOP,³ AND RICHARD N. ZARE

Department of Chemistry, Stanford University, Stanford, California 94305

The Bal $C^2\Pi - X^2\Sigma^+$ (8,8) band has been measured and rotationally assigned using techniques of population-labeling optical-optical double resonance (PLOODR) and selectively detected laserinduced fluorescence (SDLIF). A weighted nonlinear least-squares fit has been carried out to model the positions of 891 transitions with J" ranging from 13.5 to 271.5, to $a^2\Pi - 2\Sigma^+$ Hamiltonian which has 10 spectroscopic constants. Despite the fact that most of our data is from 6 out of the possible 12 rotational branches and is biased in favor of the $C^2\Pi_{1/2} - X^2\Sigma^+$ subband, we are able to assign J" quantum numbers unambiguously for all the observed transitions as well as derive the principal spectroscopic constants of the BaI $C^2\Pi$ and $X^2\Sigma^+$ states for the (8,8) band. © 1991 Academic Press, Inc.

1. INTRODUCTION

The $C^2\Pi - X^2\Sigma^+$ band system of the diatomic molecule BaI is centered at approximately 550 nm and is divided into two well-separated subbands by a large spin-orbit interaction (780 cm⁻¹) in the $C^2\Pi$ state. Although there have been a number of spectroscopic studies of this molecule (*1-12*), including a rotational analysis of the (0,0) vibrational band (1), a complete rovibrational analysis of this system is still to be carried out. In this paper we describe the rotational analysis of the (8,8) band. This particular vibrational transition was chosen because the $X^2\Sigma^+v'' = 8$ level has significant population both from a thermal oven source and from the Ba + HI reaction (*13*). The incentive to carry out this analysis was to provide a rotational assignment for the study of the dynamics of the reaction Ba + HI \rightarrow BaI (v'' = 8) + H (*13*).

The BaI molecule was first identified in 1927 in an absorption spectrum recorded by Walters and Barratt (2). They observed bands from the $C^2\Pi - X^2\Sigma^+$ transition and also noticed some absorption in the region of 380 nm. Later, Mesnage studied the bandheads⁴ of the two $C^2\Pi - X^2\Sigma^+$ subbands, the $C^2\Pi_{3/2} - X^2\Sigma^+$ at 538.3 nm and the $C^2\Pi_{1/2} - X^2\Sigma^+$ at 561.2 nm (3). Patel and Shah analyzed the bandheads in the $C^2\Pi - X^2\Sigma^+$ transition (4), and also recognized that the absorption in the region of 380 nm observed by Walters and Barratt (2) was caused by two other electronic band systems, the $E^2\Sigma^+ - X^2\Sigma^+$ transition at about 374 nm and the $D^2\Sigma^+ - X^2\Sigma^+$ transition at about

⁴ Work in this laboratory shows that the bandheads in BaI are not formed for J'' < 420.5 (14); these earlier studies actually observed closely spaced lines corresponding to points of inflection on a Fortrat diagram. However, we follow the earlier nomenclature and refer to them as bandheads.

¹ Present address: Chemistry Department, University of Pittsburgh, Pittsburgh, PA 15260.

² Present address: Department of Chemistry, University of New Hampshire, Durham, NH 03824.

³ Present address: American Laser Corporation, 1832 South 3850 West, Salt Lake City, UT 84104.

388 nm (4). Bradford *et al.* studied chemiluminescence of BaI formed by the reaction of Ba with I₂ (5). They observed emission in the infrared which they determined to be caused by two previously unobserved electronic transitions, the $A^2\Pi - X^2\Sigma^+$ and the $B^2\Sigma^+ - X^2\Sigma^+$ (5). Recently Fernando *et al.* observed the $A'^2\Delta$ state, which is the lowest known excited state, by using a high-resolution infrared Fourier transform spectrometer to resolve the laser-induced fluorescence from the $C^2\Pi$ state to the $A'^2\Delta$ state (6).

Improved vibrational constants for the $C^2\Pi$ and $X^2\Sigma^+$ states were obtained by Rao et al. (7) and a comprehensive study of the bandheads in the $C^2\Pi - X^2\Sigma^+$, $D^2\Sigma^+ - X^2\Sigma^+$, and $E^2\Sigma^+ - X^2\Sigma^+$ systems has been carried out by Patel (8). These studies of the vibrational structure of the $C^2\Pi - X^2\Sigma^+$ transition show that in both subbands the vibrational bandheads are separated by about 6 cm⁻¹ and that for low values of v'' the spectrum is dominated by the $\Delta v = 0$ sequence, which has Franck-Condon factors close to unity. Analysis of transitions involving higher vibrational levels has been carried out by Johnson et al. using BaI molecules produced by various gas-phase reactions (9). High vibrational levels in the $C^2\Pi$ state were shown to predissociate $(v' > 62 \text{ for } C^2\Pi_{3/2} \text{ and } v' > 78 \text{ for } C^2\Pi_{1/2})$.

The $C^2\Pi - X^2\Sigma^+$ spectrum has very closely spaced rotational lines (<0.1 cm⁻¹ separation) and overlapping vibrational bands which make a comprehensive measurement of a rotationally resolved spectrum very difficult. This is a consequence of two factors: first the reduced mass of the molecule means BaI has a small rotational constant (B'' $\approx 0.026 \text{ cm}^{-1}$) causing many levels to be populated under thermal conditions, and second the nature of the $C^2\Pi - X^2\Sigma^+$ transition. The electron that is excited in this transition moves between two nonbonding orbitals, both of which are situated mainly on the Ba atom (15). This results in almost identical potential energy curves for the $C^2\Pi$ and $X^2\Sigma^+$ electronic states, both in equilibrium bond length and in shape. The absence of $\Delta v = \pm 1$ transitions for low v''(v'' < 10) provides evidence that the shape close to the bottom of the two potential wells is nearly identical. A consequence of this is that the vibrational constants of the two electronic states are also very similar and vibrational bands are only separated by about 6 cm^{-1} . In addition each vibrational subband is divided into six rotational branches. Thus there is considerable overlap both between the different vibrational bands and between different rotational branches within one vibrational band. The rotational analysis of the $C^2\Pi - X^2\Sigma^+$ transition therefore requires the use of narrow-band lasers and special techniques to obtain sub-Doppler resolution.

To illustrate this problem, we estimate the number of lines in the region of the (8,8) band origin to be about 250 per cm⁻¹ for a thermal population of BaI at the temperature of the oven source (1300 K). This number does not take account of the hyperfine structure arising from the ¹²⁷I nucleus (I = 5/2) which would cause each rotational line to split into six hyperfine components. (The major isotope of Ba has no nuclear spin.) The hyperfine structure of the BaI $X^2\Sigma^+$ and $C^2\Pi$ states has been studied in detail by Ernst *et al.* (10) and its influence on the analysis of the (8,8) band is discussed below.

The $C^2\Pi$ state of BaI is an example of a Hund's case (a) coupling (16) since the spin-orbit constant, A', is greater than the rotational constant, B', by a factor of 3 $\times 10^4$. With the Λ doubling of the ² Π state and spin-rotation splitting of the ² Σ^+

ground state, each vibrational band in the electronic spectrum consists of two wellseparated subbands that have six rotational branches (16). The assignment of the branches would be very difficult by traditional combination relation techniques (16). To overcome this problem Johnson and Zare (11) used the technique of populationlabeling optical-optical double resonance (PLOODR) to assign the $C^2\Pi - X^2\Sigma^+(0,0)$ band. The same approach was used for the (8,8) band.

To measure the spectrum of one rotational branch without interference from others that overlap in the same wavelength region, the technique of selectively detected laserinduced fluorescence (SDLIF) was used. This method was first introduced in 1978 by Linton (17) to study the $A^2\Pi - X^2\Sigma^+$ system of yttrium oxide, YO. It was subsequently used by Dulick *et al.* (18). Once an assignment has been obtained using PLOODR, SDLIF can be used to measure the frequencies of up to several hundred lines in a branch. This approach was also employed in measuring the BaI $C^2\Pi - X^2\Sigma^+$ (0,0) band (1).

2. EXPERIMENTAL DETAILS

Details of the techniques and apparatus used in this study have been described elsewhere (1, 11). A summary of the two methods, population-labeling optical-optical double resonance and selectively detected laser-induced fluorescence, follows.

(a) Population-Labeling Optical–Optical Double Resonance (PLOODR)

The energy level diagram in Fig. 1 demonstrates the principles involved in PLOODR. The technique uses two dye lasers, both tuned to the rotational structure of the vibronic transition being analyzed. The frequency of one laser, the probe laser, is fixed at the frequency of a single rotational transition. By constantly monitoring the laser-induced fluorescence (LIF) excited by this laser, the population of the ground state rotational level, the "labeled" level, is recorded. The second laser, the pump laser, is scanned across the entire rotational spectrum of the vibronic transition being studied. This laser must be powerful enough to reduce the population of the ground state levels as it excites the transitions. The large separation between the two subbands allows one laser to excite each subband and the resulting LIF from each laser to be collected independently using broad-band spectral filters. When the pump laser induces a transition originating from the labeled level, a decrease in the population of this state is observed. On the other hand, when this laser excites molecules to an upper state that fluoresces to the labeled ground state, the population increases. This is observed as an increase in the fluorescence signal intensity. In a band of the $C^2\Pi - X^2\Sigma^+$ system there are a total of nine possible PLOODR signals for each labeled rotational level, of which six are positive and three are negative. This is illustrated in Fig. 1.

An assignment of the rotational numbering can be established and the parity of the ground state and the sign of the spin-rotation constant of the $X^2\Sigma^+$ can be determined by comparing the PLOODR patterns with simulations based on estimated constants and measuring the spacings between the signals (11).

(b) Selectively Detected Laser-Induced Fluorescence (SDLIF)

In SDLIF a single scanning laser is used to excite molecules and the resulting fluorescence is detected with a narrow-band filter whose transmission is fixed at a different

FIG. 1. Energy level diagram illustrating the principles of PLOODR as applied to the BaI $C^2\Pi - X^2\Sigma^+$ transition. As the pump laser is scanned, nine double resonance signals are expected, three as a decrease in fluorescence (broken lines labeled P₁, Q₁, R₁) and six as an increase (solid lines labeled Q₁₂, R₁, P₁₂, R₁₂, P₁, Q₁₂).

wavelength from the excitation laser. The detector wavelength "window" is chosen so that it collects fluorescence from transitions that have a common upper level with those being excited. Ideally the detector window should be set close to a bandhead so that many rotational lines can be scanned without changing the wavelength of the detector. However this is not essential and measurement of the Q-branch members was carried out by gradually altering the detector wavelength (between scans) along the appropriate P or R branch. An illustration of the SDLIF technique as applied to the measurement of the P_2 branch is given in the upper panel of Fig. 2. The detector window is set to collect the Q_{21} - and R_2 -branch members that have a J'' between about 50.5 and 300.5; the laser is scanned along the P_2 -branch transitions.

(c) Procedure

In all the experiments a molecular beam of BaI was produced by heating Ba and BaI_2 in a stainless steel crucible to approximately 1300 K. The beam was subsequently collimated to reduce the Doppler width to about 120 MHz when excited by a laser beam perpendicular to the molecular beam.

FIG. 2. Fortrat diagram (upper panel) of the Bal $C^2\Pi_{3/2} - X^2\Sigma^+$ (8,8) subband illustrating selective detection of the P_2 branch. The lower panel shows the same Fortrat diagram as the upper panel except that all vibrational bands from (6,6) to (10,10) are included to demonstrate how complicated the picture becomes when other vibrational bands are considered. The dotted lines show where two areas of contamination from other bands are expected as the P_2 -branch spectrum is scanned.

For the PLOODR experiment two single-mode continuous-wave lasers were used, a Coherent 599-21 linear dye laser and a Spectra-Physics 380D ring dye laser. Both were pumped by a Spectra-Physics 171-17 argon ion laser, which gave about 6 W at 514.5 nm. For the region of the spectrum where the BaI $C^2\Pi - X^2\Sigma^+$ band system is located, the dye rhodamine 560 was used. A power of about 50 mW was used in each subband for double resonance spectra. The fluorescence from the BaI beam was collected at f/3 and divided into two paths by a 50% beam splitter. Each fluorescence beam was then detected by a photomultiplier with the appropriate filter to isolate the fluorescence from one spin-orbit subband. The pump laser was chopped so that lockin detection could be used. The double resonance spectrum was obtained using a lockin amplifier to monitor the probe beam fluorescence at the modulation frequency of the pump beam. An iodine spectrum and the fringes of a 250 MHz etalon were recorded simultaneously with each PLOODR spectrum. Absolute frequency calibration was performed by interpolating between the frequencies of iodine reference lines (19) using the etalon fringes. For the SDLIF experiments only one dye laser was required. Data for the $C^{2}\Pi_{1/2}$ - $X^{2}\Sigma^{+}$ subband were collected using the Coherent 599-21 laser while data for the $C^{2}\Pi_{3/2}-X^{2}\Sigma^{+}$ were collected using a Coherent 699-29 ring dye laser because it gave more power in this region of the spectrum. Rhodamine 560 dye was used for both subbands but a few drops of a buffered base were added to the dye solution to shift the dye fluorescence profile to the shorter wavelengths required for $C^{2}\Pi_{3/2}-X^{2}\Sigma^{+}$. A 1-m monochromator (Interactive Technology CT103) was used to disperse the fluorescence. The entrance and exit slits could be varied between 0 and 3 mm. Usually 150- μ m slits were used, which gave a band-pass width of between 3 and 4 cm⁻¹. The dispersed fluorescence was measured by single-photon counting; the signal from the photomultiplier (Centronic Q4283 RA) was amplified (Ortec 9301/474) and converted to an analog signal by a discriminator/ratemeter combination (Ortec 436 and 449). With this arrangement count rates on resonance were on the order of 300 counts s⁻¹. For absolute frequency calibration an I₂ spectrum and the fringes of a 250 MHz etalon were recorded simultaneously for each SDLIF scan.

3. RESULTS AND ANALYSIS

The PLOODR procedure was repeated for a number of different rotational transitions in the $C^2\Pi_{1/2}-X^2\Sigma^+$ subband and for one transition in $C^2\Pi_{3/2}-X^2\Sigma^+$. A total of 25 PLOODR transitions were assigned. Figure 3 shows a PLOODR spectrum from the BaI $C^2\Pi_{3/2}-X^2\Sigma^+$ (8,8) subband and the I₂ spectrum with superimposed etalon fringes which was recorded simultaneously. By comparing the observed pattern with

FIG. 3. An example of a PLOODR spectrum for the Bal $C^2\Pi_{3/2}-X^2\Sigma^+$ (8,8) in which the probe laser was tuned to label the ground state J'' = 50.5 level while the pump laser was scanned across the rotational structure of the transition. The I₂ spectrum with superimposed etalon fringes is shown in the lower panel, which was recorded simultaneously for wavenumber calibration.

470

hypothetical calculated patterns (11) the parity of the ground state rotational level was determined to be f and the sign of the ground state spin-rotational constant, γ'' , to be positive. The J'' assignment was carried out using simplified energy level expressions for the two states (only B', B'', and γ'' were used). Estimates of the B constants were used to calculate the value of J'' from various combination relations of the measured lines. For the spectrum illustrated in Fig. 3 the J'' was found to be 50.5.

Figure 4 shows an example of a SDLIF spectrum for the P_2 branch. The monochromator was tuned to the (Q_{21}, R_2) branches to collect this data [see Fig. 2 (upper panel)]. The parentheses around (Q_{21}, R_2) are used to denote a pair of very closely spaced branches. The I₂ spectrum, which was used for absolute calibration, is also shown. The lower panel of Fig. 2 illustrates how the application of SDLIF to this level is not completely straightforward. When the monochromator is tuned to the (8,8) (Q_{21}, R_2) branches a portion of the (7,7) R_{21} -branch members can also be detected. This causes the excitation of the (7,7) (Q_2, P_{21}) transitions ($J'' \approx 120.5$) to be observed in one part of the (8,8) P_2 SDLIF spectrum ($J'' \approx 120.5$). The lower panel of Fig. 2 also shows where contamination of the P_2 branch will occur from the (6,6) vibrational band. The beginning of this overlap is visible in the spectrum in Fig. 4; at the low wavenumber end where the baseline rises, there are underlying (Q_2, P_{21})-branch members of the (6,6) band which are not resolved. Similar problems arise for the other branches; for example, R_{21} is contaminated by the (Q_{21}, R_2) branches of the (9,9) band in the region of $J'' \approx 120.5$.

FIG. 4. The upper panel shows a portion of the P_2 branch from the BaI $C^2 \Pi_{3/2} - X^2 \Sigma^+$ (8,8) subband between J'' = 202.5 and 170.5 (left to right) recorded using SDLIF (see Fig. 2). The lower panel shows the I_2 spectrum recorded simultaneously for calibration.

From the Fortrat diagram in Fig. 2 (upper panel) it can be seen that the (P_{21}, Q_2) branches lie almost on top of each other. This is the same for the pairs of branches $(Q_{21}, R_2), (P_1, Q_{12}), \text{ and } (Q_1, R_{12})$. Each of these pairs of branches involves the same upper level for a particular J"; thus they cannot be separated by selective detection.

In the lower $C^2 \Pi_{1/2} - X^2 \Sigma^+$ subband, the *P*- and *R*-branch members are broadened by hyperfine interactions to about 600 MHz compared to 150 MHz for the *Q*-branch transitions (10). This, combined with the dipole moment transition strength of the *Q*-branch members, which is approximately double that of the *P*- and *R*-branch members, means the peak intensity of the *Q*-branch lines is about five times that of the *P*and *R*-branch lines for the same value of J". This allowed the measurement of the Q_{12} and Q_1 branches but the weak underlying P_1 and R_{12} branches could not be observed.

In the $C^2\Pi_{3/2}-X^2\Sigma^+$ subband the hyperfine splitting for all branches is very similar (about 300 MHz width). The peak intensities of the (P_{21}, Q_2) and (Q_{21}, R_2) transitions are within a factor of 2 of each other. Thus, these branches cannot be easily distinguished. None of these four branches was measured.

A total of 881 different rotational lines were recorded by SDLIF in the P_{12} , Q_1 , Q_{12} , R_1 , P_{21} , and R_2 branches. (The other 10 lines in the data set were only recorded by PLOODR.) Where assignment of the rotational lines could not be carried out by counting directly up the branch from the PLOODR transitions, extrapolation was used. In most cases, even where a branch was contaminated by transitions in neighboring vibrational bands the overall structure of the branch of interest was dominant and the J'' assignment could still be carried out directly.

The best value of the wavenumber of each recorded rotational line was made by measuring the position of its center of mass. This intensity-weighted mean is chosen to account for hyperfine effects, which result in an asymmetric broadening of the rotational lines (1). In the spectra used for this analysis the effects of hyperfine interactions were only just observable in the P_{12} and R_1 branches of the lower subband. An analysis of the hyperfine interactions in BaI $X^2\Sigma^+$ and $C^2\Pi$ states has been carried out and measurement of the center of mass was shown to take account of the asymmetric broadening in the rotational transitions measured (1).

Absolute wavenumber calibration for both PLOODR and SDLIF was provided by fitting a polynomial to the peaks of the etalon fringes and then interpolating and extrapolating between the known positions of the iodine lines in each spectrum. In this way the wavenumbers of the transitions measured in the SDLIF spectra are accurate to ± 0.002 cm⁻¹ while those measured by PLOODR are accurate to ± 0.005 cm⁻¹. The accuracy of the PLOODR wavenumbers is lower than the SDLIF because the pump and probe laser linewidths were narrower than the BaI rotational linewidths, which are broadened by hyperfine interactions. This could result in a small wavenumber offset in the PLOODR spectra, which is taken into account by the greater uncertainty assigned to these measurements.

The experimental transition wavenumbers were given different weights for fitting because not all the lines measured were known to the same accuracy. As discussed above, the PLOODR data were only good to ± 0.005 cm⁻¹ while the best parts of the SDLIF spectra were accurate to ± 0.002 cm⁻¹. In addition a lower weight was used for the SDLIF where there was blending in the spectrum from another branch, when

472

the signal to noise was poor and where hyperfine effects made estimation of the line center more difficult. In addition, when the same transition had been measured more than once, the average wavenumber was used taking appropriate account of the weights, and the weight was adjusted accordingly.

A weighted nonlinear least-squares fit of the measured line positions to the usual $C^{2}\Pi - X^{2}\Sigma^{+}$ Hamiltonian was carried out (20). First a preliminary fit using nine parameters to the PLOODR wavenumbers and the lower J" SDLIF data was done. The nine parameters chosen for the fit were the band origin, ν_0 , the spin-orbit splitting of the ² Π state, A', the lower and upper rotational constants, B" and B', and their centrifugal distortion corrections, D'' and D', the spin-rotation constant of the ground state, γ'' , and the Λ -doubling constants of the upper state, p' and q'. Gradually more rotational lines were included as the assignment was extrapolated up the rotational branches. At each stage the "current best fit" parameters were used to check the new assignments. Particular care had to be taken when there was a gap in the experimental data. For example, only transitions with J'' values greater than 100 were measured for the $C^2 \prod_{3/2} - X^2 \Sigma^+$ subband so these R_2 - and P_{21} -branch members were included in the fit last. The J" assignments were checked carefully by examining what happened to the overall fit if one branch was reassigned by one unit in J''. In all cases tested, the residuals from the fit showed significant trends so incorrect assignments were easily spotted and discarded.

When all 891 lines had been included with a maximum J'' of 271.5, an investigation was carried out to determine whether all the nine parameters included were needed and whether further centrifugal distortion constants had to be added to reproduce the data within the experimental accuracy. First, the Λ -doubling constant, q', was found to be very poorly determined and a fit without it showed no significant difference

a weighted	Least-Squares Fit of the Data
vo	$1.82362071(5) \times 10^4 a$
Α'	7.571060(8) $\times 10^2$
A _D '	$-4.0(3) \times 10^{-7}$
в'	2.616285(269) x 10 ⁻²
D '	3.0565(178) × 10 ⁻⁹
р'	6.602(7) x 10 ⁻³
₽ _D '	$-2.7(2) \times 10^{-9}$
в"	$2.621843(270) \times 10^{-2}$
D "	3.3130(181) x 10 ⁻⁹
γ"	2.338(10) x 10 ⁻³

TABLE I

Spectroscopic Constants in cm⁻¹ for the Bal $C^2\Pi - X^2\Sigma^+$ (8,8) Band Determined from a Weighted Least-Squares Fit of the Data

^a Two standard deviation uncertainties derived from the fit are given in parentheses in units of the last significant figure. within the experimental error. This constant was therefore omitted from the final fit. Addition of the centrifugal distortion constants, $A'_{\rm D}$ and $p'_{\rm D}$ was found to improve the fit significantly whereas addition of the parameters $\gamma''_{\rm D}$, H', and H'' did not.

In total, therefore, 10 adjustable molecular "constants" were included in the leastsquares fit. The final values are given in Table I with two-standard-deviation uncertainties derived from the fit. The normalized residuals from the fit are shown in Fig. 5. The upper panel shows those from the $C^2\Pi_{1/2}-X^2\Sigma^+$ subband while the lower panel shows those from $C^2\Pi_{3/2}-X^2\Sigma^+$. For each transition the normalized residual is the difference between the experimental and calculated wavenumbers (in cm⁻¹) divided by the experimental standard deviation (in cm⁻¹).

The Appendix lists the experimental wavenumbers of the transitions included in the least-squares fit along with wavenumbers calculated using the parameters in Table I, the experimental standard deviations which are equal to the reciprocal of the weights used and the normalized residuals from the fit.

FIG. 5. Residuals from the least-squares fit of the Bal $C^2\Pi_{1/2}-X^2\Sigma^+$ (8,8) subband (upper panel; (\bigcirc) = Q_1 , (+) = Q_{12} , (\times) = R_1 , (\triangle) = P_{12} , and (#) = R_{12} and P_1) and the $C^2\Pi_{3/2}-X^2\Sigma^+$ subband (lower panel; (\bigcirc) = P_2 , (\triangle) = R_{21} , (\times) = P_{21} , R_2 , Q_2 , and Q_{21}). The normalized residuals are calculated from the difference between the experimental and calculated wavenumbers divided by the experimental standard deviations as given in the Appendix.

4. DISCUSSION

The (8,8) band of the BaI $C^2\Pi - X^2\Sigma^+$ transition has been rotationally analyzed by a weighted nonlinear least-squares fitting procedure. The final fit is good; the parameters are all well determined and no trends are observed in the residuals. The variance of the weighted least-squares fit is 0.582 so that the experimental wavenumbers are reproduced within their expected experimental errors. (If the weights used in the fit were, on average, the reciprocal of one experimental standard deviation, the variance would be 1.0). The molecular constants determined from the least-squares fit (see Table I) are a minimum set of parameters that reproduce the experimental transition wavenumbers. The number of figures quoted for the rotational constants, B' and B'', and the centrifugal distortion constants, D' and D'', is more than would be expected from their standard deviations because the differences between B' and B'', and D' and D'' is determined more precisely than their absolute values (21). The number of figures quoted is needed to reproduce the calculated wavenumbers given in the Appendix. Since the residuals from the least-squares fit show no systematic trends (see Fig. 5), we conclude that there are no major frequency perturbations affecting these transitions.

The choice of which molecular constants from the standard ${}^{2}\Pi - {}^{2}\Sigma^{+}$ Hamiltonian are included in the final least-squares fit was made with the intention of obtaining a good fit to the data within the accuracy of the experiment. In particular, we comment on the Λ -doubling constant, q', which has been omitted from the fit.

The Λ -doubling constant, q'_v , is defined for a general vibrational level, v, as

$$q'_{v} = 2 \sum_{n'v'} \frac{\langle nvJ | B(r)L_{+} | n'v'J \rangle^{2}}{E_{nvJ} - E_{n'v'J}}, \qquad (1)$$

where the sum is over all perturbing electronic states, n', and their vibrational levels, v'(20). Separating the vibrational and electronic matrix elements according to the Born-Oppenheimer approximation gives

$$\langle nvJ|B(r)L_{+}|n'v'J\rangle = \langle vJ|B(r)|v'J\rangle\langle n|L_{+}|n'\rangle.$$
⁽²⁾

By neglecting the centrifugal distortion, q'_v is taken to be independent of J. Hence,

$$\left\langle vJ|B(r)|v'J\right\rangle = \left\langle v|B(r)|v'\right\rangle \tag{3}$$

and

$$E_{nvJ} - E_{n'v'J} = E_{nv} - E_{n'v'}.$$
 (4)

This gives

$$q'_{v} = 2 \sum_{n'} \langle n | L_{+} | n' \rangle^{2} \sum_{v'} \frac{\langle v | B(r) | v' \rangle \langle v' | B(r) | v \rangle}{E_{nv} - E_{n'v'}}.$$
(5)

Further assumptions are necessary to enable us to estimate q'_v . First, we use the unique perturber approximation in which only one electronic Σ state is assumed to be perturbing the state. Second, we replace the energy denominator by an effective energy denominator that is independent of v'. The equation for q'_v then reduces to

$$q'_{v} = \frac{2\langle v | B^{2}(r) | v \rangle \langle n | L_{+} | n' \rangle^{2}}{E_{n} - E_{n'}} .$$
(6)

The nearest known Σ state to the $C^2\Pi$ state is the $D^2\Sigma^+$ state which has a band origin at 25 774 cm⁻¹; $E_n - E_{n'}$ is therefore close to 7600 cm⁻¹ (8). $\langle n|L_+|n'\rangle$ is taken to be l(l+1) where l is approximated by unity. We also make the approximation

$$\langle v | r^{-4} | v \rangle = \langle v | r^{-2} | v \rangle^2.$$
⁽⁷⁾

Then, for B'_8 equal to 0.026 cm⁻¹, we have the estimate q'_8 equals -3×10^{-7} cm⁻¹. However, the unique perturber approximation is not valid, since there are at least four ${}^{2}\Sigma^{+}$ states (X, B, D, and E) interacting with the $C^{2}\Pi$ state to cause the Λ doubling. This is therefore an order of magnitude estimate. The sign of q'_8 cannot be predicted since the perturbing states lie both above $(D^{2}\Sigma^{+} \text{ and } E^{2}\Sigma^{+})$ and below $(B^{2}\Sigma^{+} \text{ and } X^{2}\Sigma^{+})$ the $C^{2}\Pi$ state. A value of q'_8 of approximately $\pm 3 \times 10^{-7}$ cm⁻¹ has very little effect on the transition wavenumbers. Thus, we conclude that q'_8 is too small to be determined from the present line positions measured. Similarly, rough estimates of the H'', H', and γ''_D constants suggest that their effects on the transitions measured would be too small to be observed.

The molecular constants given in Table I reproduce the experimental transition wavenumbers very well. However, most of the data is limited to 6 of the 12 possible rotational branches and there is a strong bias in favor of the $C^2\Pi_{1/2} - X^2\Sigma^+$ subband. Despite these problems we have a definite J'' assignment for all transitions measured. This has permitted a spectroscopic study of the dynamics of the beam-gas reaction, Ba + HI \rightarrow BaI (v'' = 8) + H (13), and will allow additional studies under crossed-beam conditions.

APPENDIX

TABLE AI

Rotational and Branch Assignment, Experimental Wavenumbers, Calculated Wavenumbers, Standard Deviations, and Normalized Residuals for all Rotational Transitions used in the Least-Squares Fit.

Branch	J"	Experimental wavenumber (cm-1)	Calculated wavenumber (cm-1)	Experimental standard deviation(cm-1)	Normalized residual
P11	50.5	17855.9790	17855.9846	0.0050	-1.12
12	54.5 10.5	17859.8250	17850 0765	0.0050	~2.84
K1Z	49.0	17859 1860	17859.0705	0.0050	2 07
P12	190.5	17841.9378	17841.9394	0.0022	-0.71
	189.5	17842.0240	17842.0259	0.0022	-0.88
	188.5	17842.1094	17842.1125	0.0022	-1.41
	187.5	17842.1945	17842.1991	0.0022	-2.09
	186.5	17842.2804	17842.2857	0.0022	-2.41
	185.5	17842.3739	17842.3723	0.0019	0.82
	183 5	17842.4013	17842.4590	0.0019	3.06
	182.5	17842.6379	17842.6323	0.0019	2.92
	181.5	17842.7216	17842.7189	0.0019	1.38
	180.5	17842.8150	17842.8056	0.0030	3.13
	179.5	17842.8971	17842.8923	0.0019	2.49
	178.5	17842.9801	17842.9790	0.0019	0.58
	177.5	17843.0675	17843.0657	0.0019	0.95
	175 5	17843.1532	17843.1324	0.0019	0.43
	173 5	17843.4180	17843 4125	0.0018	3.07
	172.5	17843.5049	17843.4992	0.0018	3.18
	171.5	17843.5894	17843.5859	0.0018	1,96
	170.5	17843.6749	17843.6726	0.0018	1.30
	169.5	17843.7616	17843.7593	0.0018	1.30
	168.5	17843.8482	17843.8459	0.0018	1.25
	166 5	17844 0197	17844 0193	0.0018	-0.33
	165.5	17844.1053	17844.1059	0.0018	-0.35
	164.5	17844,1911	17844.1926	0.0018	-0.83
	163.5	17844.2804	17844.2792	0.0018	0.65
	162.5	17844.3656	17844.3659	0.0018	-0.14
	161.5	17844.4520	17844.4525	0.0018	-0.26
	160.5	17844.5388	17844.5391	0.0018	-0.15
	158 5	17844.0230	17844.0250	0.0018	-1.14
	157.5	17844 7960	17844 7988	0.0018	-1 53
	156.5	17844.8842	17844.8853	0.0018	-0.60
	155.5	17844.9693	17844.9718	0.0018	-1.38
	154.5	17845.0571	17845.0583	0.0018	-0.65
	153.5	17845.1420	17845.1447	0.0018	-1.52
	152.5	17845.2343	17845.2312	0.0018	1./4
	150 5	17845 4076	17845 4040	0.0018	2.01
	149.5	17845.4922	17845.4903	0.0018	1.04
	148.5	17845.5795	17845.5767	0.0018	1.58
	147.5	17845.6660	17845.6630	0.0018	1.69
	146.5	17845.7540	17845.7492	0.0018	2.64
	145.5	17945.8402	17845.8355	0.0025	1.89
	144.0	17846 0115	17846 0070	0.0025	1,84
	142.5	17846.0988	17846.0940	0.0025	1.91
	141.5	17846.1824	17846.1801	0.0035	0.65
	140.5	17846.2682	17846.2662	0.0035	0.57
	139.5	17846.3545	17846.3522	0.0035	0.64

			And Communica		
Branch	J"	Experimental wavenumber (cm-1)	Calculated wavenumber (cm-1)	Experimental standard deviation(cm-1)	Normalized residual
	138.5	17846, 4393	17846.438	32 0.0035	0.30
	137.5	17846.5259	17846.524	12 0.0035	0.48
	136.5	17846.6112	17846.610	0.0035	0.31
	135.5	17846.6969	17846.690	50 0.0035	0.25
	134.5	17846.7832	17846.78	L9 0.0035	0.38
	133.5	17846.8686	17846.86	0.0035	0.27
	132.5	17846.9530	17047 020	0.0035 0 0.0035	-0.12
	127 5	17847.0399	17847.035	5 0.0035	-0.22
	126.5	17847.4654	17847.467	0.0040	-0.39
	125.5	17847.5538	17847.552	0.0040	0.35
	124.5	17847.6424	17847.637	0.0040	1.16
	123.5	17847.7286	17847.723	0.0040	1.38
	122.5	17847.8115	17847.808	34 0.0040	0.78
	121.5	17047 0013	1784/.893	36 0.0040 27 0.0040	0.63
	119 5	17848 0648	17848 063	89 0.0040	0.04
	118.5	17848.1467	17848.148	0.0040	-0.55
	117.5	17848.2316	17848.233	0.0040	-0.57
	115.5	17848.4076	17848.403	0.0040	0.97
	114.5	17848.4950	17848.488	35 0.0040	1.62
	113.5	17848.5740	17848.573	33 0.0040	0.18
	112.5	17848.0500	17848.050		-0.35
	110.5	17848 8176	17848.827	0.0040	-2.40
	109.5	17848.9102	17848.911	7 0.0040	-0.38
	108.5	17848.9978	17848.996	52 0.0040	0.41
	107.5	17849.0826	17849.080	0.0040	0.51
	106.5	17849.1629	17849.164	19 0.0040	-0.49
	103.5	17849.2514	17949.245		0.57
	102.5	17849.4999	17849.501	5 0.0021	-0.75
	101.5	17849.5810	17849.585	5 0.0028	-1.58
	100.5	17849.6685	17849.669	0.0021	-0.41
	99.5	17849.7536	17849.753	32 0.0021	0.18
	98.5	17849.8360	17849.833	70 0.0021	-0.46
	97.5	17850 0044	17850 004	13 0.0021	0.53
	95.5	17850.0852	17850.081	78 0.0021	~1.25
	94.5	17850.1701	17850.171	0.0021	-0.57
	93.5	17850.2551	17850.254	17 0.0021	0.18
	92.5	17850.3372	17850.338	30 0.0015	-0.54
	91.5	17850.4233	17850.421	L3 0.0018	1.12
	90.5	17850 5887	17850.504	15 0.0018 75 0.0018	-0.03
	88.5	17850.6716	17850.670	0.0018	0.58
	87.5	17850.7553	17850.753	35 0.0018	1.00
	86.5	17850.8376	17850.836	63 0.0018	0.69
	85.5	17850.9203	17850.919	0.0018	0.65
	84.5	17851.0036	17851.00	14 0.0018	0.99
	82 5	17851 1660	17851.00	14 0.0015 70 0.0015	-0.64
	81.5	17851.2488	17851.249	0.0015	-0.42
	80.5	17851.3270	17851.33	18 0.0025	-1.91
	79.5	17851.4105	17851.414	40 0.0025	-1.42
	78.5	17851.4917	17851.49		-1.82
	11.5	17851.5/43 17851 6550	17851.5/8	5~± 0.00∠5 14 0.0025	-1.02
	75 5	17851.7367	17851.74	23 0.0025	-2.25
	74.5	17851.8183	17851.82	42 0.0025	-2.35
	73.5	17851.9007	17851.90	59 0.0025	-2.09
	72.5	17851.9867	17851.98	76 0.0013	-0.71

 TABLE AI—Continued

Branch	J"	Experimental wavenumber (cm-1)	Calculated wavenumber (cm-1)	Experimental standard deviation(cm-1	Normalized residual)
Q12	$\begin{array}{c} 71.5\\ 5.55\\ 6.66\\ 6.66\\ 6.66\\ 6.66\\ 6.66\\ 6.66\\ 6.66\\ 6.55\\ 5.55\\$	17852.0693 17852.1505 17852.2320 17852.3138 17852.3950 17852.4756 17852.6378 17852.7190 17852.7984 17852.7984 17852.7984 17853.0423 17853.0423 17853.2036 17853.2036 17853.2036 17853.3624 17853.4421 17853.4421 17853.4421 17853.6790 17853.7604 17853.6790 17853.7604 17854.0007 17854.007 17854.1579 17854.2368 17854.1579 17854.3175 17854.3175 17854.3175 17854.3175 17854.3175 17854.3175 17854.7048 17854.7048 17854.704 17854.3175 17854.704 17854.3953 17854.704 17854.7085 17854.704 17854.7085 17854.704 17854.7085 17854.704 17854.709 17854.704 17854.709 17854.3785 17854.6313 17854.7114 17850.7925 17850.8346 17850.8346 17850.8346 17850.8346 17850.9599 17851.0439 17851.0439 17851.2116 17851.2541 17851.2541 17851.2948 17851.2948 17851.4231 17851.4231 17851.4231 17851.4231 17851.5452 17851.5452 17851.5452 17851.5452 17851.5452 17851.5452 17851.5452 17851.5452 17851.5452 17851.6290 17851.6290 17851.7524	$\begin{array}{c} 17852.0692\\ 17852.1507\\ 17852.2321\\ 17852.3134\\ 17852.3946\\ 17852.5568\\ 17852.6378\\ 17852.6378\\ 17852.7186\\ 17852.7994\\ 17852.8800\\ 17852.9606\\ 17853.0411\\ 17853.1215\\ 17853.2018\\ 17853.2018\\ 17853.2200\\ 17853.3620\\ 17853.3620\\ 17853.3620\\ 17853.4420\\ 17853.6017\\ 17854.631\\ 17854.7611\\ 17854.7611\\ 17854.2366\\ 17854.3943\\ 17854.3943\\ 17854.3943\\ 17854.6300\\ 17854.5516\\ 17854.7867\\ 17854.8649\\ 17850.7511\\ 17850.9016\\ 17851.6016\\ 17851.2025\\ 17851.2025\\ 17851.2025\\ 17851.2025\\ 17851.2025\\ 17851.2025\\ 17851.2025\\ 17851.5046\\ $	0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0018 0.0018 0.0018 0.0018 0.0017 0.0018 0.0017 0.0018 0.0017 0.0018 0.0017 0.0018 0.0017 0.0018 0.0018 0.0017 0.0018 0.0018 0.0017 0.0018 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0025 0.0020 0.0025 0.0025 0.0020 0.0020 0.0025 0.0020 0.0020 0.0020 0.0025 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.00	$\begin{array}{c} 0.09\\ -0.13\\ -0.06\\ 0.30\\ 0.28\\ -0.12\\ -0.08\\ 0.04\\ 0.29\\ -0.72\\ -0.55\\ -0.40\\ 0.67\\ 0.46\\ 1.02\\ 0.36\\ 0.21\\ 0.03\\ -0.20\\ -0.69\\ -1.45\\ -0.36\\ -1.75\\ 0.80\\ 0.74\\ 0.18\\ 0.13\\ 1.13\\ 0.57\\ 1.02\\ 0.69\\ 0.70\\ 0.74\\ 0.69\\ 0.75\\ 0.25\\$

TABLE AI—Continued

Branch	"ד	Experimental wavenumber (cm-1)	Calculated wavenumber (cm-1)	Experimental standard deviation(cm-1	Normalized residual)
	160.5 159.5 158.5 157.5 155.5 154.5 152.5 154.5 149.5 149.5 144.5 144.5 144.5 144.5 144.5 144.5 144.5 144.5 144.5 144.5 132.5 134.5 132.5 128.5 128.5 128.5 122.5 128.5 122.5 122.5 122.5 125.5 122.5 125.5 122.5 125.5 122.5 125.5 122.5 125.5 122.5 125.5 122.5 125.5 122.5 125.5 122.5 125.5 122.5 125.5 125.5 125.5 122.5 125.5 122.5 125.5 122.5 125.5 125.5 122.5 125.5 125.5 122.5 125.5 105.5 105.5 105.5 105.5 105.5 104.5 102.5 101.5 100.5 1	17851.8354 17851.9187 17851.9605 17852.0033 17852.0432 17852.0432 17852.1255 17852.1682 17852.2085 17852.2085 17852.2915 17852.3335 17852.3737 17852.4149 17852.4563 17852.5396 17852.5396 17852.5396 17852.6209 17852.6209 17852.8674 17852.8674 17852.8674 17852.8674 17852.9074 17853.0291 17853.1495 17853.1495 17853.1495 17853.3512 17853.3512 17853.3512 17853.3506 17853.3506 17853.506 17853.506 17853.506 17853.506 17853.506 17853.506 17853.506 17853.7876 17853.8264 17853.8264 17853.9437 17854.1769 17854.1769 17854.2165 17854.2165 17854.2165 17854.2539	$\begin{array}{c} 17851.8381\\ 17851.8797\\ 17851.9213\\ 17851.9213\\ 17851.9628\\ 17852.0043\\ 17852.0043\\ 17852.0043\\ 17852.0043\\ 17852.1286\\ 17852.1700\\ 17852.2114\\ 17852.2114\\ 17852.2527\\ 17852.2940\\ 17852.3764\\ 17852.4176\\ 17852.4587\\ 17852.4587\\ 17852.4587\\ 17852.4587\\ 17852.5819\\ 17852.5819\\ 17852.5819\\ 17852.6228\\ 17852.6638\\ 17852.8270\\ 17852.8270\\ 17852.8677\\ 17852.8270\\ 17852.8677\\ 17852.8677\\ 17852.8677\\ 17852.8677\\ 17852.8677\\ 17852.8099\\ 17853.0704\\ 17853.0704\\ 17853.1107\\ 17853.1511\\ 17853.2315\\ 17853.2315\\ 17853.2315\\ 17853.2315\\ 17853.3518\\ 17853.3518\\ 17853.3518\\ 17853.3518\\ 17853.3518\\ 17853.5511\\ 17853.5511\\ 17853.5511\\ 17853.5511\\ 17853.5511\\ 17853.5511\\ 17853.5908\\ 17853.6304\\ 17853.9058\\ 17853.9499\\ 17854.0228\\ 17854.1004\\ 17854.1777\\ 17854.2163\\ 17854.2163\\ 17854.2548\end{array}$	$\begin{array}{c} 0.0020\\ 0.0020\\ 0.0020\\ 0.0020\\ 0.0020\\ 0.0020\\ 0.0020\\ 0.0020\\ 0.0020\\ 0.0020\\ 0.0020\\ 0.0020\\ 0.0020\\ 0.0020\\ 0.0025\\$	$\begin{array}{c} -1.36\\ -1.10\\ -1.28\\ -1.15\\ -0.50\\ -1.29\\ -1.32\\ -1.57\\ -0.92\\ -1.44\\ -0.80\\ -1.24\\ -0.80\\ -1.24\\ -0.80\\ -1.24\\ -0.80\\ -1.37\\ -0.59\\ -0.59\\ -0.59\\ -0.59\\ -0.59\\ -0.59\\ -0.59\\ -0.59\\ -0.59\\ -0.59\\ -0.64\\ -0.10\\ -0.61\\ -0.10\\ -0.63\\ -0.64\\ -0.10\\ -0.64\\ -0.10\\ -0.64\\ -0.26\\ -0.32\\ -0.32\\ -0.32\\ -0.36\\ -0.26\\ -0.32\\ -0.32\\ -0.36\\ -0.53\\ -0.53\\ -0.40\\ -0.53\\ -0.54\\ -0$
	98.5 97.5 96.5 95.5	17854.3303 17854.3691 17854.4066 17854.4458	17854.3315 17854.3698 17854.4079 17854.4460	0.0014 0.0014 0.0014 0.0014 0.0014	-0.85 -0.46 -0.93 -0.15

Branch	J"	Experimental wavenumber (cm-1)	Calculated wavenumber (cm-1)	Experimental standard deviation(cm-1)	Normalized residual
	94.5 93.5 92.5	17854.4837 17854.5223 17854.5598	17854.4840 17854.5219 17854 5598	0.0014 0.0014 0.0014	-0.23 0.25 0.00
	91.5	17854.5975	17854.5976	0.0014	-0.04
	90.5	17854.6361	17854.6352	0.0014	0.60
	89.5	17854.6721	17854.6728	0.0014	-0.53
	87.5	17854.7479	17854.7478	0.0014	0.05
	86.5	17854.7846	17854.7851	0.0020	-0.27
	85.5	17854.8217	17854.8224	0.0020	-0.36
	84.5	17854.8589	17854.8596	0.0020	-0.54
	82.5	17854.9335	17854.9337	0.0020	-0.09
	81.5	17854.9705	17854.9706	0.0020	-0.05
	80.5	17855.0073	17855.0074	0.0016	-0.08
	78.5	17855.0800	17855.0808	0.0010	-0.33
	77.5	17855.1174	17855.1174	0.0025	0.01
	76.5	17855.1534	17855.1539	0.0025	-0.18
	74 5	17855 2269	17855.2265	0.0025	-0.29
	73.5	17855.2634	17855.2627	0.0025	0.27
	72.5	17855.2991	17855.2988	0.0025	0.11
	71.5	17855.3347	17855.3348	0.0025	-0.05
	69.5	17855.4061	17855.4066	0.0017	-0.29
	68.5	17855.4413	17855.4423	0.0017	-0.61
	67.5	17855.4775	17855.4779	0.0017	-0.27
	65.5	17855.5489	17855.5489	0.0017	-0.01
	64.5	17855.5834	17855.5843	0.0017	-0.53
	63.5	17855.6186	17855.6195	0.0017	-0.56
	62.5 61 5	17855.6534	17855.6547	0.0017	-0.77
	60.5	17855.7244	17855.7247	0.0017	-0.18
	59.5	17855.7595	17855.7595	0.0017	-0.03
	58.5	17855.7950	17855.7943	0.0017	0.42
	57.5	17855.8285	17855.8290	0.0013	-0.35
	55.5	17855,8970	17855.8980	0.0013	-0.77
	54.5	17855.9325	17855.9324	0.0013	0.11
	53.5	17856 0018	17855.9666	0.0015	-0.14
	51.5	17856.0343	17856.0348	0.0015	-0.35
	50.5	17856.0690	17856.0688	0.0016	0.13
	49.5	17856.1026	17856.1026	0.0015	-0.03
	48.5	17856.1703	17856.1304	0.0016	0.38
	46.5	17856.2044	17856.2036	0.0016	0.51
	45.5	17856.2373	17856.2370	0.0016	0.17
	44.5	17856.2700	17856.2704	0.0016	-0.23
	42.5	17856.3360	17856.3367	0.0016	-0.46
	41.5	17856.3704	17856.3697	0.0023	0.28
	40.5	17856.4029	17856.4027	0.0023	0.10
	38.5	17856.4686	17856.4682	0.0023	0.18
	37.5	17856.5013	17856.5008	0.0023	0.22
	36.5	17856.5343 17856 5656	17856.5333	0.0023	0.45
	JJ.J	1,000.0000	1,000.0001	0.0025	0.05

TAB	LE	AI	-Continı	юd
			00111111	

Branch	J"	Experimental wavenumber (cm-1)	Calculated wavenumber (cm-1)	Experimental standard deviation(cm-1	Normalized residual)
	34.5	17856.5978	17856.5979	0.0023	-0.06
	33.5	17856.6300	17856.6301	0.0023	-0.05
	31.5	17856.6956	17856.6941	0.0023	0.64
	30.5	17856.7266	17856.7260	0.0023	0.27
011	29.5	17856.7582	17856.7577	0.0023	0.21
QII	13.5	17858.0427	17858.0444	0.0035	-0.49
	15.5	17858.0990	17858.0977	0.0035	0.36
	16.5	17858.1241	17858.1242	0.0035	-0.03
	17.5	17858.1596	17858.1506	0.0035	2.58
	18.5	17858 2030	17858 2030	0.0035	0.07
	20.5	17858.2313	17858.2290	0.0018	1.28
	21.5	17858.2553	17858.2550	0.0018	0.19
	22.5	17858.2820	17858.2808	0.0013	0.97
	23.5	17858.3328	17858.3321	0.0013	0.58
	25.5	17858.3592	17858.3575	0.0013	1.31
	26.5	17858.3839	17858.3829	0.0013	0.79
	27.5	17858.4090	17858.4081	0.0013	0.67
	29.5	17858.4593	17858.4583	0.0013	0.55
	30.5	17858.4840	17858.4832	0.0018	0.43
	31.5	17858.5091	17858.5080	0.0018	0.59
	32.5	17858 5581	17858.5327	0.0013	-0.34
	34.5	17858.5815	17858.5818	0.0013	-0.22
	35.5	17858.6064	17858.6061	0.0013	0.20
	36.5	17858.6306	17858.6304	0.0013	0.16
	38.5	17858.6784	17858,6786	0.0013	-0.13
	39.5	17858.7026	17858.7025	0.0013	0.09
	40.5	17858.7261	17858.7263	0.0013	-0.16
	41.5	17858.7504	17858.7500	0.0013	-0.31
	43.5	17858.7963	17858.7971	0.0018	-0.43
	44.5	17858.8193	17858.8205	0.0013	-0.90
	45.5	17858.8428	17858.8437	0.0013	-0.72
	40.5	17858.8892	17858.8899	0.0013	-0.57
	48.5	17858.9117	17858.9129	0.0013	-0.91
	49.5	17858.9341	17858.9357	0.0013	-1.25
	50.5	17858.9560	17858.9584 17858 9810	0.0012	-1.96
	52.5	17859.0023	17859.0035	0.0013	-0.98
	53.5	17859.0258	17859.0260	0.0013	-0.12
	54.5	17859.0477	17859.0482	0.0012	-0.45
	55.5	17859.0914	17859.0925	0.0013	-0.89
	57.5	17859.1140	17859.1145	0.0013	-0.40
	58.5	17859.1356	17859.1364	0.0013	-0.62
	59.5 60 5	17859.15/3 17859 1794	17859.1582	0.0013	-0.6/
	61.5	17859.2015	17859.2014	0.0013	0.09
	62.5	17859.2229	17859.2228	0.0013	0.05
	63 5 64 5	17859.2444	17859.2442	0.0013	0.16
	65.5	17859.2860	17859.2866	0.0013	-0.46
	66.5	17859.3077	17859.3076	0.0013	0.05

Branch	J"	Experimental wavenumber (cm-1)	Calculated wavenumber (cm-1)	Experimental standard deviation(cm-1)	Normalized residual
	67.5 5.55.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	<pre>wavenumber (cm-1) 17859.3289 17859.3495 17859.3698 17859.3914 17859.4312 17859.4519 17859.4519 17859.4721 17859.5123 17859.5322 17859.5322 17859.5322 17859.5321 17859.5921 17859.6119 17859.6119 17859.6119 17859.6119 17859.6316 17859.603 17859.6603 17859.6603 17859.7079 17859.7270 17859.7270 17859.7270 17859.7446 17859.7817 17859.8020 17859.8180 17859.8180 17859.8180 17859.8180 17859.8177 17859.8180 17859.8735 17859.8735 17859.8922 17859.910 17859.9460 17859.9647 17859.9647 17859.9647 17859.9647 17859.9647 17859.9647 17859.9647 17859.9647 17859.9647 17860.002 17860.002 17860.0375 17860.0360 17860.0375 17860.1206 17860.1206 17860.1206 17860.1380 17860.1544</pre>	<pre>wavenumber (cm-1) 17859.3286 17859.3494 17859.3702 17859.3908 17859.4318 17859.4318 17859.4521 17859.4521 17859.59.5125 17859.5523 17859.5523 17859.5523 17859.5523 17859.5523 17859.6307 17859.6601 17859.6604 17859.6604 17859.7455 17859.7455 17859.7455 17859.7453 17859.7453 17859.8016 17859.8016 17859.8016 17859.8011 17859.8016 17859.8016 17859.8016 17859.8016 17859.8016 17859.8016 17859.8016 17859.8011 17859.8016 17859.8013 17859.8016 17859.8013 17859.9114 17859.9294 17859.9294 17859.9294 17859.9294 17860.0005 17860.0052 17860.0181 17860.1046 17860.1216 17860.1386 17860.1386</pre>	standard deviation (cm-1) 0.0013 0.0014 0.0015 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019	residual 0.25 0.06 -0.28 0.47 -0.19 -0.45 -0.17 -0.14 -0.94 -0.18 -0.22 0.30 0.03 0.30 0.49 0.68 0.16 0.74 0.28 0.20 0.28 -0.28 -1.03 -0.28 -0.28 -1.03 -0.28 -0.23 -0.25 -0.23 -0.23 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.33 -0.84 -0.25 -0.25 -0.32 -0.33 -0.85 -0.85 -0.83 -0.83 -0.85 -0.85 -0.85 -0.83 -0.85 -0.85 -0.85 -0.85 -0.83 -0.85
	111.5 112.5 113.5 114.5 115.5 116.5 117.5 118.5 119.5 120.5 121.5 122.5 123.5 124.5 125.5	17860.1544 17860.1715 17860.2043 17860.2213 17860.2282 17860.2547 17860.2706 17860.3035 17860.3035 17860.3362 17860.3362 17860.3670 17860.3831 17860.206	17860.1555 17860.123 17860.2058 17860.2238 17860.2238 17860.2553 17860.2553 17860.2879 17860.3041 17860.3203 17860.3363 17860.3523 17860.3682 17860.3841 17860.2000	$\begin{array}{c} 0.0014\\ 0.0014\\ 0.0015\\ 0.0014\\ 0.0014\\ 0.0015\\ 0.0016\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0018\\ 0.0016\\ 0.00016\\ 0.00016\\ 0.00016\\ 0.0000\\ 0.00$	$\begin{array}{c} -0.83 \\ -0.62 \\ -1.33 \\ -1.07 \\ -0.77 \\ -0.44 \\ -0.36 \\ -0.71 \\ 1.26 \\ -0.43 \\ -0.18 \\ -0.18 \\ -0.77 \\ 0.49 \\ -0.77 \\ -0.65 \end{array}$

TABLE AI—Continued

TARI	FΔ	I	Cont	inupa	ł
TUDE	L /	<u></u>	$\cup onu$	mueu	

Branch	J"	Experimental wavenumber (cm-1)	Calculated wavenumber (cm-1)	Experimental standard deviation(cm-1	Normalized residual
			(cm 1)		,
	127.5	17860.4167	17860.4156	0.0020	0.58
	128.5	17860.4297	17860.4312	0.0015	-0.98
	129.5	17860.4458	17860.4468	0.0015	-0.64
	130.5	17860.4617	17860.4623	0.0015	-0.38
	131.5	17860.4775	17860.4777	0.0015	-0.15
	132.5	17860.4925	17860 4931	0.0015	-0.39
	134 5	17860 5230	17860 5237	0.0018	-0.39
	135.5	17860.5389	17860 5388	0.0015	0.37
	136.5	17860.5521	17860.5540	0.0015	-1.21
	137.5	17860.5686	17860.5690	0.0016	-0.26
	138.5	17860.5852	17860.5840	0.0016	0.73
	139.5	17860.5983	17860.5990	0.0016	-0.41
	140.5	17860.6122	17860.6138	0.0016	-1.02
	141.5	17860 6428	17860.0287	0.0019	-0.57
	143 5	17860 6577	17860 6581	0.0019	-0.33
	144.5	17860.6717	17860.6728	0.0019	-0.57
	145.5	17860.6864	17860.6874	0.0019	-0.51
	146.5	17860.7009	17860.7019	0.0019	-0.54
	147.5	17860.7175	17860,7164	0.0019	0.56
	148.5	17860.7305	17860.7309	0.0019	-0.19
	149.5	17860.7448	17860.7452	0.0019	-0.23
	150.5	17860.7590	17860.7390	0.0019	-0.30
	152 5	17860 7881	17860 7881	0.0019	0.12
	153.5	17860.8024	17860.8023	0.0019	0.06
	154.5	17860.8165	17860.8164	0.0015	0.05
	155.5	17860.8325	17860.8305	0.0030	0.66
	156.5	17860.8458	17860.8446	0.0030	0.41
	157.5	17860.8585	17860.8586	0.0015	-0.05
	158.5	17860.8731	17960 9965	0.0015	0.37
	160 5	17860 9002	17860 9003	0.0015	-0.09
	161.5	17860.9134	17860.9142	0.0015	-0.51
	162.5	17860.9287	17860.9280	0.0015	0.47
	163.5	17860.9430	17860,9417	0.0015	0.83
	164.5	17860.9553	17860.9555	0.0015	-0.11
	165.5	17860.9683	17860.9691	0.0015	-0.56
	166.5	17860.9819	17860.9828	0.0015	-0.59
	168 5	17861 0138	17861 0100	0.0015	0.20
	169.5	17861.0266	17861.0235	0.0040	0.77
	170.5	17861.0356	17861.0371	0.0019	-0.78
	171.5	17861.0499	17861.0505	0.0016	-0.40
	172.5	17861.0653	17861.0640	0.0023	0.56
	173.5	17861.0812	17861.0774	0.0040	0.94
	174.5	17861.0923	17861.0908	0.0040	0.37
	176 5	17861 1190	17861 1175	0.0021	0.52
	177.5	17861,1296	17861.1309	0.0040	-0.32
	179.5	17861.1554	17861.1574	0.0025	-0.82
	180.5	17861.1710	17861.1707	0.0031	0.10
	181.5	17861.1886	17861.1839	0.0050	0.93
	183.5	17861.2085	17861.2103	0.0025	-0.73
	184.5	17861 2355	17861 2367	0.0025	-0.09
	186.5	17861 2492	17861.2498	0.0022	-0.28
	187.5	17861.2599	17861.2630	0.0025	-1.22
	188.5	17861.2786	17861.2761	0.0025	1.01

Branch	J"	Experimental wavenumber (cm-1)	Calculated wavenumber (cm-1)	Experimental standard deviation(cm-	Normalized residual 1)
	189.5 190.5 191.5 192.5 194.5 195.5 197.5 201.5 201.5 201.5 210.5 211.5 235.5 237.5 238.5 238.5 240.5 242.5 242.5 242.5 242.5 252.5 552.5 252.5 552.5 252.5 5	wavenumber (cm-1) 17861.2880 17861.3018 17861.3142 17861.3272 17861.3548 17861.3548 17861.3548 17861.3934 17861.4302 17861.4431 17861.4431 17861.4832 17861.4551 17861.5749 17861.5651 17861.5749 17861.9281 17861.9281 17861.9414 17861.9547 17861.9547 17861.9547 17862.9547 17862.9547 17862.1258 17862.1578 17862.1578 17862.1578	wavenumber (cm-1) 17861.2892 17861.3023 17861.3154 17861.3285 17861.3285 17861.3415 17861.3546 17861.3677 17861.3807 17861.4329 17861.4460 17861.44983 17861.5245 17861.5245 17861.5638 17861.5245 17861.5638 17861.5002 17861.9002 17861.9002 17861.9141 17861.9281 17861.9281 17861.9703 17861.9703 17861.9845 17862.0131 17862.1298 17862.1298	standard deviation (cm-1 0.0022 0.0022 0.0025 0.0025 0.0025 0.0025 0.0040	residual -0.53 -0.22 -0.47 -0.50 -0.89 0.06 -0.97 -0.31 0.15 -0.69 -0.73 -0.50 -0.19 -0.49 0.32 -0.52 -0.75 -0.29 -0.28 0.00 -0.18 -0.30 -0.11 -0.46 -0.67 -0.47 -0.47 -0.45 0.07
R11	254.5 2556.5 257.5 258.5 261.5 262.5 263.5 262.5 262.5 262.5 262.5 262.5 262.5 262.5 262.5 262.5 262.5 268.5 268.5 268.5 268.5 268.5 267.5 55.5	17862.1730 17862.1885 17862.2056 17862.2056 17862.2210 17862.2521 17862.2642 17862.3022 17862.3151 17862.3434 17862.3425 17862.4404 17862.4404 17861.1067 17861.1067 17861.3143 17861.3143 17861.3143 17861.3143 17861.5159 17861.5842 17861.6527 17861.6527 17861.6527 17861.6527 17861.6527 17861.6527 17861.6527 17861.6527 17861.6527 17861.6527 17861.6527 17861.6527 17861.9891 17862.0567 17862.1235	17862.1746 17862.1898 17862.2049 17862.2202 17862.22510 17862.2510 17862.2821 17862.2821 17862.3136 17862.3454 17862.3454 17862.4401 17862.4431 17861.1064 17861.3118 17861.3118 17861.3801 17861.5163 17861.5842 17861.5163 17861.7197 17861.7273 17861.7873 17861.9895 17862.0567 17862.1238	0.0030 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0050 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0018 0.00	$\begin{array}{c} 0.07\\ -0.32\\ 0.16\\ 0.20\\ -0.13\\ 0.28\\ -0.58\\ 0.15\\ 1.10\\ 0.31\\ -0.49\\ -2.26\\ -0.35\\ -0.64\\ -0.67\\ 0.19\\ 0.81\\ 0.32\\ 1.47\\ 0.52\\ 0.27\\ -0.20\\ 0.00\\ 0.38\\ -0.19\\ 0.09\\ -0.36\\ 0.04\\ -0.23\\ 0.01\\ -0.07\\ \end{array}$

Branch	J"	Experimental wavenumber (cm-1)	Calculated wavenumber (cm-1)	Experimental standard deviation(cm-1	Normalized residual 1)
	63.5	17862.1903	17862.1907	0.0035	-0.12
	64.5	17862.2575	17862.2576	0.0035	-0.02
	65.5	17862.3243	17862.3243	0.0035	0,00
	66.5	17862.3909	17862.3909	0.0035	-0.01
	67.5	17862.4574	17862.4575	0.0035	-0.02
	68.5	17862.5236	17862.5239	0.0035	-0.09
	69.5 70 F	17862.5899	17862.5902	0.0035	-0.09
	70.5	17862 7215	17862.0004	0.0035	-0.41
	72 5	17862 7896	17862.7886	0.0000	0.50
	73.5	17862.8553	17862.8545	0.0016	0.52
	74.5	17862.9203	17862.9203	0.0016	0.02
	75.5	17862.9870	17862.9860	0.0016	0.64
	76.5	17863.0526	17863.0516	0.0018	0.58
	77.5	17863.1188	17863.1171	0.0018	0.97
	78.5	17863.1840	17863.1824	0.0018	0.87
	79.5	17863.2492	17863.24//	0.0018	0.82
	81 5	17863 3795	17863 3780	0.0018	0.83
	82.5	17863.4440	17863.4430	0.0018	0.57
	83.5	17863.5084	17863.5079	0.0018	0.30
	84.5	17863.5732	17863.5726	0.0018	0.31
	85.5	17863.6380	17863.6373	0.0018	0.37
	86.5	17863.7031	17863.7019	0.0018	0.66
	87.5	17863.7675	17863.7664	0.0018	0.61
	88.5	17863.8319	17863.8308	0.0018	0.62
	89.5	17863.8955	17863.8931	0.0018	0.23
	91.5	17864 0249	17864.0234	0.0018	0.85
	92.5	17864.0886	17864.0874	0.0018	0.68
	93.5	17864.1519	17864.1513	0.0018	0.35
	94.5	17864.2155	17864.2151	0.0018	0.23
	95.5	17864.2789	17864.2788	0.0018	0.06
	96.5	17864.3427	17864.3424	0.0018	0.16
	97.5	17864.4055	17864.4059	0.0018	-0.25
	98.5	17864.4095	17064.4094	0.0018	-0.56
	99.5	17864 5954	17864 5960	0.0013	-0.30
	101 5	17864 6584	17864.6591	0.0018	-0.40
	102.5	17864.7215	17864.7222	0.0018	-0.37
	103.5	17864.7846	17864.7851	0.0025	-0.22
	104.5	17864.8485	17864.8480	0.0025	0.19
	105.5	17864.9098	17864.9108	0.0025	-0.41
	106.5	17864.9714	17864.9735	0.0025	-0.85
	110.5	17865.2274	17065.2234	0.0050	0.79
	112 5	17865 3460	17865 3479	0.0050	-0.38
	113 5	17865 4106	17865 4100	0.0050	0.12
	114.5	17865.4744	17865.4720	0.0050	0.48
	115.5	17865.5325	17865.5339	0.0050	-0.28
	116.5	17865.6003	17865.5958	0.0050	0.91
	117.5	17865.6564	17865.6575	0.0050	-0.22
	118.5	17865.7226	17865.7192	0.0050	0.68
	120 5	17865 9/39	17865 8423	0.0050	-0.44
	120.5	17865 9063	17865 9037	0.0026	1 00
	122.5	17865.9652	17865.9651	0.0022	0.06
	123.5	17866.0264	17866.0263	0.0022	0.02
	124.5	17866.0876	17866.0875	0.0022	0.02
	125.5	17866.1505	17866.1487	0.0022	0.82

TABLE AI—Continued

Branch	J"	Experimental wavenumber (cm-1)	Calculated wavenumber (cm-1)	Experimental standard deviation(cm-1)	Normalized residual
	126.5	17866.2108	17866.2097	0.0025	0.44
	127.5	17866.2709	17866.2707	0.0013	0.18
	128.5	17866.3311	17866.3316	0.0013	-0.36
	129.5	17866.3920	17866.3924	0.0013	-0.29
	130.5	17866.4535	17866.4531	0.0013	0.31
	131.5	17866.5138	17866.5138	0.0013	0.02
	133 5	17866 6254	17066 6240	0.0013	0.50
	134 5	17866 6956	17866 6953	0.0013	0.41
	135.5	17866.7564	17866 7557	0.0013	0.21
	136.5	17866.8168	17866 8160	0.0010	0.35
	137.5	17866.8761	17866.8763	0.0013	-0.12
	138.5	17866.9370	17866.9364	0.0010	0.56
	139.5	17866.9967	17866.9965	0.0010	0.17
	140.5	17867.0570	17867.0566	0.0010	0.43
	141.5	17867.1169	17867.1165	0.0010	0.36
	142.5	17867.1775	17867.1764	0.0013	0.84
	143.5	17867.2371	17867.2363	0.0013	0.66
	144.5	17867 3565	17867 3557	0.0013	0.44
	146 5	17867 4161	17867 4154	0.0013	0.59
	147.5	17867.4758	17867.4750	0.0013	0.55
	148.5	17867.5357	17867.5345	0.0013	0.94
	149.5	17867.5951	17867.5940	0.0013	0.89
	150.5	17867.6540	17867.6534	0.0013	0.49
	151.5	17867.7137	17867.7127	0.0013	0.76
	152.5	17867.7712	17867.7720	0.0018	-0.45
	153.5	17867.8304	17867.8313	0.0018	-0.47
	157.5	17868.0076	17060 1066	0.0025	-0.01
	159.5	17868,1860	17868 1855	0.0018	0.17
	160.5	17868.2449	17868.2444	0.0018	0.29
	161.5	17868.3041	17868.3032	0.0018	0.51
	162.5	17868.3621	17868.3619	0.0018	0.09
	163.5	17868.4214	17868.4207	0.0018	0.41
	164.5	17868.4802	17868.4793	0.0018	0.49
	165.5	17868.5378	17868.5379	0.0018	-0.08
	100.5	17868.5973	17868.5965	0.0018	0.43
	168 5	17868-0562	17060 7175	0.0018	0.64
	169 5	17868 7722	17868 7720	0.0018	0.70
	170.5	17868.8308	17868 8304	0.0018	0.12
	171.5	17868.8896	17868.8888	0.0018	0.47
	172.5	17868.9480	17868.9471	0.0018	0.51
	173.5	17869.0069	17869.0054	0.0018	0.86
	174.5	17869.0615	17869.0636	0.0018	-1.17
	175.5	17869.1209	17869.1218	0.0018	-0.51
	177 5	17869,1785	17869.1800	0.0018	-0.83
	178 5	17869 2951	17869.2301	0.0018	-0.68
	179.5	17869.3531	17869 3543	0.0018	-0.03
	180.5	17869.4128	17869.4124	0.0018	0.25
	181.5	17869.4698	17869.4704	0.0018	-0.31
	182.5	17869.5291	17869.5283	0.0018	0.42
	183.5	17869.5845	17869.5863	0.0018	-1.00
	185 5	17869.0419	17869.0442	0.0018	-1.29
	186 5	17869 7589	17869 7600	0.0018	-0.50
	187.5	17869.8161	17869_8178	0.0018	-0.96
	188.5	17869.8738	17869.8757	0.0018	-1.03

 TABLE AI—Continued

TABLE AI--Continued

Branch	J"	Experimental wavenumber (cm-1)	Calculated wavenumber (cm-1)	Experimental standard deviation(cm-1	Normalized residual)
R21	189.5 190.5 191.5 192.5 194.5 194.5 195.5 200.5 202.5 202.5 202.5 202.5 202.5 202.5 202.5 202.5 202.5 202.5 202.5 202.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 123.5 122.5 123.5 123.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 142.5 143.5 144.5 145.5 1	wavenumber (cm-1) 17869.9304 17869.9889 17870.0493 17870.1068 17870.1662 17870.2215 17870.2800 17870.3378 17870.3942 17870.5100 17870.5682 17870.6620 17870.6640 17870.6840 17870.6840 17870.8015 17870.8015 17870.8057 17870.9693 18618.4750 18623.1220 18623.1220 18623.1220 18623.1870 18623.3183 18623.3183 18623.3183 18623.7056 18623.7056 18623.7688 18623.7688 18623.7688 18623.7688 18623.9011 18623.9011 18623.9656 18624.0301 18624.0301 18624.0301 18624.0301 18624.0301 18624.0301 18624.0301 18624.0301 18624.0301 18624.0301 18624.0301 18624.0301 18624.0301 18624.0301 18624.0301 18624.0301 18624.0301 18624.043 18624.7688 18624.7688 18624.7688 18624.7688 18624.7688 18624.7688 18624.7688 18624.7688 18624.7688 18624.7688 18624.7688 18624.7688 18624.7688 18624.7688 18624.7688 18624.7688 18624.7688 18624.7688 18624.7688 18624.771 18624.4792 18624.4792 18624.4792 18624.4792 18624.4792 18624.5428 18625.1104 18625.1737 18625.2364 1	wavenumber (cm-1) 17869.9335 17869.9912 17870.0490 17870.1067 17870.1067 17870.2222 17870.2279 17870.3375 17870.3375 17870.3952 17870.4528 17870.4528 17870.6833 17870.7409 17870.7409 17870.7409 17870.7409 17870.7409 17870.9137 17870.9137 17870.9137 17870.9137 17870.9137 17870.9137 18618.4663 18623.1217 18623.1217 18623.3824 18623.3174 18623.3824 18623.5123 18623.6419 18623.6419 18623.9003 18623.9047 18624.0932 18624.0932 18624.2856 18624.2856 18624.2855 18624.4135 18624.4135 18624.4135 18624.6048 18624.6048 18624.7320 18624.9857 18624.9857 18625.0490 18625.2385 18625.1754	standard deviation (cm-1 0.0018 0.0026 0.0027 0.0023 0.0018 0.001	residual -1.70 -1.30 0.17 0.03 0.97 -0.37 0.08 0.15 -0.55 -0.63 -0.26 0.06 0.16 0.38 1.32 1.66 0.33 0.67 -1.09 1.74 0.12 0.00 0.11 0.36 -0.01 -0.40 -0.44 -0.03 -0.44 -0.55 0.62 0.74 0.09 0.07 -0.51 -0.31 0.00 0.00 0.00 -0.24 -1.51 -1.02 -0.94 -1.16 -0.35 0.65 0.65 0.65 0.62 0.65 0.62
	153.5 154.5 155.5 156.5	18625.4256 18625.4873 18625.5525 18625.6153	18625.4275 18625.4903 18625.5532 18625.6159	0.0018 0.0018 0.0012 0.0012	-1.03 -1.69 -0.56 -0.54

Branch	J"	Experimental wavenumber (cm-1)	Calculated wavenumber (cm-1)	Experimental standard deviation(cm-1	Normalized residual)
	157.5 158.5 159.5 160.5 161.5 162.5 164.5 164.5 165.5 167.5 170.5 171.5 172.5 174.5 177.5 178.5 177.5 182.5 182.5 183.5 185.5 185.5 185.5 185.5 185.5 185.5 186.5 185.5 185.5 185.5 185.5 185.5 185.5 185.5 185.5 185.5 185.5 185.5 185.5 185.5 185.5 185.5 185.5 191.5 192.5 194.5 195.5 194.5 195.5 197.5 198.5 197.5 198.5 197.5 198.5 197.5 198.5 197.5 198.5 202.5 203.5 203.5 500.5 197.5 198.5 202.5 203.5 500.5 197.5 198.5 202.5 203.5 500.5 188.5 185.5 187.5 197.5 202.5 203.5 500.5 197.5 1	(cm-1) 18625.6781 18625.7418 18625.8051 18625.9282 18625.9282 18625.9282 18626.0542 18626.1162 18626.1763 18626.2395 18626.3023 18626.3023 18626.3648 18626.4271 18626.6165 18626.6165 18626.7369 18626.7997 18626.8609 18626.9832 18627.0449 18627.0449 18627.041 18627.2326 18627.2341 18627.4194 18627.5398 18627.7258 18627.7861 18627.7861 18627.9703 18628.0321 18628.0321 18628.0321 18628.167 18628.2167 18628.2467	(cm-1) 18625.6787 18625.7413 18625.8040 18625.8040 18625.9291 18625.9915 18626.0540 18626.1164 18626.1164 18626.1164 18626.2410 18626.3655 18626.4276 18626.4276 18626.6139 18626.6139 18626.6139 18626.7379 18626.6759 18626.7379 18626.8618 18626.9237 18626.8618 18627.2326 18627.0473 18627.0473 18627.1709 18627.0473 18627.2326 18627.2326 18627.2473 18627.5409 18627.5409 18627.6024 18627.6024 18627.7870 18627.7870 18627.8485 18627.9100 18627.9715 18628.0330 18628.0944 18628.1558 18628.2172	deviation (cm-1 0.0012 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0013 0.0013 0.0013 0.0013 0.0013 0.0015 0.0024 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0015 0.0018 0.0015 0.0015 0.0015 0.0018 0.0018 0.0015 0.0015 0.0015 0.0018 0.0015 0.0015 0.0015 0.0018 0.0018 0.0015 0.0015 0.0015 0.0018 0.0018 0.0015 0.0015 0.0015 0.0015 0.0018 0.0018 0.0015 0.0015 0.0015 0.0015 0.0015 0.0018 0.0018 0.0015 0.0015 0.0015 0.0015 0.0015 0.0018 0.0018 0.0015 0.0015 0.0015 0.0015 0.0015 0.0018 0.0018 0.0015 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0015 0.0015 0.0015 0.0015 0.0015 0.0018 0.0018 0.0018 0.0018 0.0018 0.0015 0.0015 0.0015 0.0015 0.0015 0.0018 0.001	$\begin{array}{c} -0.47\\ 0.29\\ 0.72\\ -0.46\\ -0.54\\ -0.54\\ -0.10\\ -1.51\\ -0.94\\ -0.72\\ -0.51\\ -0.94\\ -0.72\\ -0.51\\ -0.41\\ -0.05\\ 0.22\\ 1.07\\ -0.39\\ -0.43\\ -0.07\\ -0.37\\ -0.36\\ -0.96\\ -1.01\\ -0.71\\ -0.19\\ 0.00\\ -0.14\\ -0.58\\ -0.66\\ 0.15\\ -0.53\\ -1.03\\ -1.38\\ -0.78\\ -0.55\\ -0.55\\ -0.32\\ 0.19\\ -0.18\\ -0.06\\ 0.40\\ \end{array}$
	204.5 205.5 206.5 207.5 208.5 209.5 210.5 211.5 212.5 213.5 214.5 215.5 216.5 217.5 218.5 219.5	18628.5857 18628.6474 18628.7099 18628.7677 18628.8314 18628.8938 18628.9565 18629.0167 18629.0172 18629.2015 18629.2627 18629.3247 18629.3876 18629.4472 18629.5095	18628.5855 18628.6469 18628.7083 18628.7096 18628.8924 18628.9537 18629.0151 18629.0765 18629.1379 18629.2606 18629.3220 18629.3220 18629.4449 18629.5063	0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0015 0.0015 0.0015 0.0015 0.0015 0.0030 0.0030	$\begin{array}{c} 0.08\\ 0.27\\ 0.90\\ -1.08\\ 0.22\\ 0.80\\ 1.54\\ 0.89\\ 0.40\\ 0.80\\ 1.25\\ 1.34\\ 1.72\\ 2.69\\ 0.77\\ 1.06 \end{array}$

TABLE AI—Continued

Branch	J"	Experimental wavenumber (cm-1)	Calculated wavenumber (cm-1)	Experimental standard deviation(cm-1	Normalized residual .)
P22	J" 220.5 221.5 222.5 223.5 224.5 50.5 120.5 120.5 121.5 122.5 124.5 125.5 125.5 125.5 125.5 126.5 127.5 128.5 130.5 132.5 133.5 134.5 133.5 134.5 139.5 141.5 144.5 145.5	Experimental wavenumber (cm-1) 18629.5665 18629.6297 18629.6902 18629.7525 18629.8164 18610.4930 18604.7460 18604.5714 18604.5714 18604.3045 18604.3045 18604.3045 18604.3045 18604.3045 18604.3045 18604.3045 18603.8671 18603.8671 18603.6872 18603.6035 18603.611 18603.5146 18603.4236 18603.1552 18603.0661 18602.9765 18602.8881 18602.7107 18602.7107 18602.5366 18602.4473	Calculated wavenumber (cm-1) 18629.5678 18629.6292 18629.6907 18629.7522 18629.8138 18610.6507 18610.4851 18604.7470 18604.4851 18604.4829 18604.3047 18604.3048 18604.3048 18604.3047 18604.3047 18604.3047 18603.8652 18603.8652 18603.7767 18603.8652 18603.6883 18603.5997 18603.5112 18603.1566 18603.0679 18602.9791 18602.8903 18602.8014 18602.6236 18602.5347 18602.5347	Experimental standard deviation(cm-1 0.0030 0.0030 0.0030 0.0030 0.0030 0.0050 0.0050 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0022 0.0022 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0029 0.0029	Normalized residual) -0.42 0.15 -0.18 0.09 0.88 1.26 1.57 -0.48 1.20 0.21 0.29 0.84 -1.08 0.88 2.20 0.60 -0.14 1.07 -0.15 -0.25 0.89 0.81 0.24 -0.43 -0.55 -0.68 -0.68 -0.68 -0.68 -0.52
	143.5 147.5 147.5 149.5 149.5 150.5 151.5 152.5 153.5 154.5 155.5 157.5 158.5 163.5 163.5 163.5 164.5 167.5 168.5 169.5 169.5 169.5 169.5 169.5 167.5 168.5 169.5 171.5 172.5 173.5	18602.3473 18602.2686 18602.2686 18602.0907 18602.0017 18601.9128 18601.8280 18601.8280 18601.6483 18601.5598 18601.4707 18601.2924 18601.2024 18601.2024 18601.2024 18601.2024 18601.2024 18601.0238 18600.9340 18600.9340 18600.5758 18600.5758 18600.3961 18600.3109 18600.2163 18600.1263 18600.0364 18599.9484	$18602.4438\\18602.3568\\18602.2678\\18602.0896\\18602.0006\\18601.9114\\18601.8223\\18601.6440\\18601.5548\\18601.4656\\18601.3764\\18601.2871\\18601.2871\\18601.1086\\18601.0193\\18600.9301\\18600.8408\\18600.7514\\18600.6621\\18600.5728\\18600.3942\\18600.3048\\18600.2155\\18600.3048\\18600.2155\\18600.368\\18599.9475$	0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0075 0.0032 0.0032	0.32 0.38 0.29 0.71 0.36 0.39 0.46 0.76 0.55 0.57 0.67 0.68 0.50 0.70 0.60 0.52 0.59 0.53 0.55 0.59 0.43 0.40 0.31 0.26 0.81 0.25 0.04 -0.14 0.28

Branch	J"	Experimental wavenumber (cm-1)	Calculated wavenumber (cm-1)	Experimental standard deviation(cm-1	Normalized residual
P21 Q21	$\begin{array}{c} 174.5\\ 175.5\\ 176.5\\ 177.5\\ 178.5\\ 180.5\\ 182.5\\ 183.5\\ 184.5\\ 188.5\\ 187.5\\ 188.5\\ 187.5\\ 188.5\\ 189.5\\ 199.5\\ 199.5\\ 199.5\\ 199.5\\ 2001.5\\ 210.5\\ 210.5\\ 211.5\\ 211.5\\ 220.5\\ 221.5\\ 51.5\\ 221.5\\ 5$	18599.8586 18599.7684 18599.6789 18599.5904 18599.4991 18599.3199 18599.2328 18599.2328 18599.1429 18599.0535 18598.9627 18598.67853 18598.67853 18598.6078 18598.611 18598.6078 18598.1635 18598.1635 18598.1635 18597.9833 18597.9833 18597.8069 18597.7177 18597.6282 18597.6282 18597.4514 18597.3637 18597.1838 18597.1838 18597.0939 18597.0939 18596.5635 18596.4773 18596.4773 18596.2103 18596.2103 18596.2103 18596.2103 18595.8673 18595.8653 18595.7749 18595.6653 18595.7749 18595.6653 18595.7749 18595.6653 18595.6653 18595.7749 18595.5168 18613.1700 18615.8330 18615.8320	18599.8582 18599.7689 18599.6796 18599.5009 18599.5009 18599.3224 18599.3224 18599.2331 18599.1438 18599.0546 18598.7870 18598.7870 18598.7870 18598.7870 18598.7870 18598.7870 18598.3413 18598.3413 18598.3413 18598.3413 18598.3413 18598.797.185 18597.8963 18597.8963 18597.8074 18597.7185 18597.6297 18597.7185 18597.4521 18597.3633 18597.4521 18597.0088 18596.9203 18596.5667 18596.5667 18596.3902 18596.3021 18595.913 18595.9743 18595.9500 18595.9743 18595.9500 18595.9500 18595.9743 18595.9743 18595.9500 18595.9743 18595.9500 18595.8621 18595.9500 18595.9500 18595.8621 18595.9500 18595.8621 18595.9500 18595.8621 18595.9500 18595.8621 18595.9500 18595.8621 18595.9500 18595.8621 18595.9500 18595.8621 18595.9500 18595.8621 1859	$\begin{array}{c} 0.0032\\ 0.0032\\ 0.0032\\ 0.0035\\ 0.0045\\ 0.005\\ 0.$	$\begin{array}{c} 0.13\\ -0.15\\ -0.21\\ 0.04\\ -0.53\\ -0.56\\ -0.71\\ -0.09\\ -0.27\\ -0.32\\ -0.76\\ -0.32\\ -0.48\\ -0.48\\ -0.24\\ -0.24\\ -0.20\\ -0.34\\ -0.40\\ -0.16\\ -0.65\\ -0.17\\ -0.14\\ -0.61\\ -0.65\\ -0.28\\ 0.15\\ -0.61\\ -0.65\\ -0.28\\ 0.15\\ -0.61\\ -0.65\\ -0.28\\ 0.15\\ -0.61\\ -0.65\\ -0.28\\ -0.36\\ -0.83\\ -0.78\\ -0.01\\ -0.61\\ -0.65\\ -0.28\\ -0.36\\ -0.83\\ -0.78\\ -0.61\\ -0.65\\ -0.28\\ -0.61\\ -0.65\\ -0.28\\ -0.61\\ -0.63\\ -0.61\\ -0.63\\ -0.63\\ -0.10\\ 0.87\\ 1.15\\ -0.29\\ -0.29\\ 1.21\\ -0.25\\ 1.52\end{array}$
Q22 R22	50.5 48.5 50.5	18613.2890 18615.9430 18615.9890	18613.2916 18615.9411 18615.9848	0.0050 0.0050 0.0050	-0.53 0.39 0.83

ACKNOWLEDGMENTS

The authors thank A. A. Tsekouras, P. H. Vaccaro, and D. Zhao for useful discussions. CAL thanks the Lindemann Trust and NATO for a postdoctoral fellowship. This work is supported under NSF CHE 89-21198.

RECEIVED: November 29, 1990

REFERENCES

- 1. M. A. JOHNSON, C. NODA, J. S. MCKILLOP, AND R. N. ZARE, Canad. J. Phys. 62, 1467–1473 (1984).
- 2. O. H. WALTERS AND S. BARRATT, Proc. R. Soc. London A 118, 120-137 (1928).
- 3. P. MESNAGE, Ann. Phys. 12, 5-9 (1939).
- 4. M. M. PATEL AND N. R. SHAH, Ind. J. Pure Appl. Phys. 8, 681-682 (1970).
- 5. R. S. BRADFORD, JR., C. R. JONES, L. A. SOUTHALL, AND H. P. BROIDA, J. Chem. Phys. 62, 2060-2064 (1975).
- 6. W. M. L. FERNANDO, M. DOUAY, AND P. F. BERNATH, J. Mol. Spectrosc., 144, 344-351 (1990).
- 7. M. L. P. RAO, D. V. K. RAO, P. T. RAO, AND P. S. MURTY, Fizika 9, 25-29 (1977).
- 8. M. M. PATEL, private communication, 1975.
- 9. M. A. JOHNSON, J. ALLISON, AND R. N. ZARE, J. Chem. Phys. 85, 5723-5732 (1986).
- 10. W. E. ERNST, J. KANDLER, C. NODA, J. S. MCKILLOP, AND R. N. ZARE, J. Chem. Phys. 85, 3735-3743 (1986).
- M. A. JOHNSON AND R. N. ZARE, J. Chem. Phys. 82, 4449-4459 (1985); M. A. JOHNSON, C. W. WEBSTER, AND R. N. ZARE, J. Chem. Phys. 75, 5575-5577 (1981).
- 12. T. TÖRRING AND K. DÖBL, Chem. Phys. Lett. 115, 328-332 (1985).
- 13. C. NODA, J. S. MCKILLOP, M. A. JOHNSON, J. R. WALDECK, AND R. N. ZARE, J. Chem. Phys. 85, 856–864 (1986).
- 14. P. H. VACCARO, D. ZHAO, A. A. TSEKOURAS, C. A. LEACH, W. E. ERNST, AND R. N. ZARE, J. Chem. Phys., 93, 8544–8556 (1990).
- 15. P. J. DAGDIGIAN, H. W. CRUSE, AND R. N. ZARE, J. Chem. Phys. 60, 2330-2339 (1974).
- G. HERZBERG, "Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules," Van Nostrand-Reinhold, New York, 1950.
- 17. C. LINTON, J. Mol. Spectrosc. 69, 351-364 (1978).
- 18. M. DULICK, P. F. BERNATH, AND R. W. FIELD, Canad. J. Phys. 58, 703-712 (1980).
- S. GERSTENKORN AND P. LUC, "Atlas du spectre d'absorption de la molécule d'iode," Centre National de la Recherche Scientifique, Paris, 1978; S. GERSTENKORN AND P. LUC, *Rev. Phys. Appl.* 14, 791– 794 (1979).
- R. N. ZARE, A. L. SCHMELTEKOPF, W. J. HARROP, AND D. L. ALBRITTON, J. Mol. Spectrosc. 46, 37– 66 (1973).
- D. L. ALBRITTON, A. L. SCHMELTEKOPF, AND R. N. ZARE, *in* "Molecular Spectroscopy: Modern Research" (K. Narahari Rao, Ed.), Vol. II, p. 1, Academic Press, New York, 1976.

492