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The disagreement of Danyluk and King’s (Chem. Phys. 25, 343 (1977)) rotational constants 
for levels lying near the dissociation limit of B-state I2 with the mechanical behavior predicted 
by near-dissociation theory is investigated. The discrepancies are shown to be much too large 
to be explained by either the neglect of centrifugal distortion effects in the original analysis or 
by rotational or spin-rotation coupling to a nearby repulsive 1, state. These differences are 
therefore attributed to experimental error, a conclusion which is confirmed by more recent 
experimental results. A reanalysis of the best available data for levels near the dissociation limit 
of B-state I2 then yields improved values for the B-state dissociation limit Y3 = 20 043.16 (kO.02) 
cm-’ of the vibrational index at dissociation u 9) = 87.32 (kO.04) and of the long-range potential 
constant Cs = 2.88 (kO.03) X 10’ cm-’ A’. This in turn implies a slightly improved ground- 
state dissociation energy of Z7& = 12 440.18 (kO.02) cm-‘. 

I. INTRODUCTION 

Although it is one of the most thoroughly studied species in all of molecular 
spectroscopy, the B(311&J state of IZ is a continuing source of new puzzles. The present 
work addresses one of these, the discrepancies between reported experimental rota- 
tional constants for the highest observed vibrational levels of this state (1) and the 
predicted mechanical behavior of these constants for levels approaching dissociation 
(2-4). In the course of resolving this disagreement, the present paper also instructively 
illustrates the utility of some recently developed theoretical tools of molecular spec- 
troscopy. 

Using their technique of two-photon sequential absorption spectroscopy, Danyluk 
and King (I) observed transitions involving some of the most weakly bound vibra- 
tional levels of B-state 12. On applying limiting near-dissociation theory (5) to their 
vibrational energies for u = 77-82 and those of Barrow and Yee (6) for u = 70-77, 
they obtained estimates of the dissociation energy a, the vibrational index at dis- 
sociation 2)o,, and the long-range potential energy coefficient C,. With this infor- 
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E-STATE I2 NEAR DISSOCIATION 83 

mation, the limiting near-dissociation expressions for the vibrational energy derivative 
w,” and the rotational constant B,” are (2, 5) 

WV ai = 0.0071 l(Ug, - U)7’3 (1) 

B& = 0.000274(~~ - v))~‘~. (2) 

The points in Fig. 1 compare the predictions of Eqs. (1) and (2) with the experi- 
mental results of Luc (7), Barrow and Yee (6) and Danyluk and Ring (I), while the 
curves indicate the predicted mechanical behavior of these quantities for levels ap- 
proaching dissociation. In this context, a level is said to exhibit “mechanical behavior” 
if its eigenvalue and other properties are determined by a solution of the radial 
Schrodinger equation for some given potential energy curve. It is therefore clear that 
the curves in Fig. 1 must approach unity as D - on. The curves shown are based 
on near-dissociation expansion fits (4, 8) to Luc’s (7) experimental data for 
v = l-62; they are clearly in excellent agreement with the Barrow and Yee (6) results 
for v = 63-77 and with the vibrational energy derivatives of Danyluk and Ring (I), 
at least up to u = 78. However, the Danyluk and Ring rotational constants deviate 
markedly from these predictions for u > 78. Since the near-dissociation expansion 
predictions are in very good agreement with values calculated from an RKR potential 
for this state (see below), it seems clear that Danyluk and King’s (1) B, constants for 
their highest observed levels are inconsistent with a mechanical description of this 
state. The second and third columns of Table I compare the predicted “mechanical” 
constants B,(mech) with experiment B,(obs); the differences between these quantities, 
listed in the fourth column of Table I, are the discrepancies with which the present 
paper is concerned. 

FIG. 1. Comparison of experimental vibrational energy derivative w, and rotational constant B, with 

their predicted limiting near-dissociation behavior. Points represent experimental data, while the solid curves 

represent “mechanical” values generated from near-dissociation expansion fits to the data for levels 

u = 1-62. 
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When these differences were first noticed, they were attributed to neglect of cen- 
trifugal distortion constants in the experimentalists’ rotational analysis (3). However, 
plots of rotational term values vs d(d + 1) show no obvious curvature, and fits to 
the Danyluk-King term values while holding the centrifugal distortion constants fixed 
at values predicted by the near-dissociation expansion expressions of Ref. (4) yielded 
G(v) and B, values which differed only slightly from those originally reported. Thus, 
the discrepancies in question are not due to neglect of centrifugal distortion effects. 

A promising alternate explanation of this problem was provided by Cummings’ 
prediction that a heterogeneous rotational perturbation by one of the two nonbonding 
1, states with the same dissociation limit as the B(Oi) state will cause the effective 
B, values to be smaller than the mechanical values implied by the B-state potential 
energy curve (9). He also pointed out that this effect would only be noticeable for 
levels near dissociation whose outer turning points lie at long range where the potential 
curves are close to one another. 

The rotational perturbation mechanism and the effect of spin-rotation coupling 
are discussed in the next two sections. However, it is shown there that these pertur- 
bations are much too small to explain the observed discrepancies. As a result, it 
appears that these discrepancies must be attributed to errors in the experimental 
results. For 2) = 78-80 this conclusion is confirmed by recent experimental work of 
Gerstenkorn and Luc (10). These new data are presented in Section IV, together with 
a reexamination of the nature of the two-photon sequential absorption experiment. 
A reanalysis of the best available data for this species is then used to obtain improved 
values of the limiting near-dissociation theory constants for this system. 

II. CORIOLIS (OR ROTATIONAL) COUPLING HYPOTHESIS 

A. Theory 

For present purposes, the Hamiltonian for a freely rotating and vibrating diatomic 
molecule may be written as (II) 

H = Ho + HR + Hs 

TABLE I 

Comparison of Observed and “Mechanical“ Rotational Constants (in cm-‘) for B-State I*, with the 
Predicted Coriolis Coupling Perturbation Constant A&R*) 

” B&obs) B,(wch) [Bv(mechbBv(obs)l +dd R* = m R' = 11 R* = 7 

75 _______ 51.33x10-4 ___-__ 0.0021x10-4 0.110x10-4 0.122x10-4 0.12Ex10-4 

78 35.77(+1.00)x10-4 37.31x10-4 1.54(+1.00)x10-4 0.0032x10-4 0.150~10-~ 0.15&10-4 0.160~10-~ 

79 29.64(~1.25)x10-4 32.70x10-4 3.06(+1.25)x10-4 0.0037x10-4 0.170~10-4 0.170~10-4 0.174x10-4 

80 25.91(~1.43)x10-4 28.13~10-~ 2.22(~1.43)~10-4 0.0044x10-4 0.192~10-4 0.192~10-4 0.190~10-4 

81 17.84(r0.80)x10-4 23.63~10-~ 5.79(t0.80)x10‘4 0.0053x10-4 0.220~10-4 0.210~10-4 0.210x10-4 

82 10.64(r4.13)x10-4 19.20~10-4 8.56(r4.13)~10-~ 0.0066~10‘~ 0.258~10-~ 0.236~10‘~ 0.236~10-~ 
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where Ho is the Hamiltonian for a nonrotating molecule, Ha is the fine structure 
Hamiltonian (to be discussed in Section III), and HR is the nuclear rotation operator 

HR = ( h2/2~R2)B2 = ( ti2/2pR2)( r3 - J)* 

where W is the nuclear rotation angular momentum operator and d and J are the 
total and electronic angular momentum operators, respectively. Within the adiabatic 
approximation (12), each eigenfunction of Ho is a product of nuclear and electronic 
motion wave functions which have no nonzero off-diagonal matrix elements with 
the spin-orbit coupling operator. 

Cummings (9) showed that the matrix element of HR between the 0:(R311) state 
and one of the two 1, states with the same (*P3,? + 2P,,2) dissociation threshold will 
be nonzero. Since Mulliken (13) had shown that both of these 1, states are strongly 
repulsive, Cummings also concluded that the resulting heterogeneous rotational per- 
turbation would compress the rotational structure and cause the empirical B, values 
to be smaller than would be predicted by a simple mechanical model. Because of the 
energy denominator factor appearing in the normal expression for second-order per- 
turbation energies, he also noted that this effect should only be noticeable for vibra- 
tional levels lying very close to dissociation. 

In Cummings’ analysis (9) the eigenfunctions of Ho are written as 

*&, R) = %JQ(R; r)xdR) (3) 

where r denotes the electronic coordinates, asJn(R; r) is the electronic wave function 
for electronic state p, J the total electronic angular momentum quantum number, 
Q the quantum number associated with the projection of the total electronic angular 
momentum onto the internuclear axis, and x&R) the radial wave function for vi- 
brational level 2). In this basis, the matrix elements of HR are zero unless AJ = 0 
and AQ = 0, + 1. The resulting diagonal (in J and Q) electronic matrix elements have 
the form 

H&R) = (%_&R; r)IHal+‘B,&R; r)) 

= B(R)[d(cf + 1) + J(J + 1) - 2Q2] (4) 

where B(R) = h2/2~R2. If /3 = P’ this (scalar) radial operator yields the usual per- 
turbation theory expression for the rotational and centrifugal distortion constants 
(14,15). 

At the separated atom limit for B-state 12, J = 2 and tl = 0 (9) so Eq. (4) yields 
the rotational energy level expression 

E(v, J) = G(u) + B,[d(d + 1) + 61 + D,[d(d + 1) + 61’ + . . - 

= {G(u) + 6B, - 360, + - - *} + [d(d + l)]{& - 120, 

+ 108H, + . . .} - [&(a + l)]‘{DU - 18H, + - - *} + . - -1. (5) 

Thus, even in the absence of off-diagonal coupling terms, the effective rotational and 
centrifugal distortion constants, defined as the coefficients of powers of [ d( 8 + l)] 
determined from fits to Eq. (5) will differ from their mechanical values; in particular, 

B,(eff) = B,(mech) - 12D,(mech) + 108H,(mech) + - . -. (6) 
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As U- z)~, the values of B,(mech) - 0 while the corresponding centrifugal distortion 
constants approach + co (for D,) or -cc (for the others) (16, 17). Thus, the differences 
[B,(eff) - B,(mech)] can be significant for levels lying sufficiently close to dissociation. 
However, for levels v = 75-82 of B-state IZ, these corrections are more than an order 
of magnitude smaller than the differences seen in column 4 of Table I, so this diagonal 
rotational coupling cannot be the source of the observed discrepancies. 

As was mentioned above, except for one of the two 1, states, the’matrix elements 
of HR between the B state and all other states with the same dissociation limit are 
identically zero (9). For the remaining case, integration over the electronic coordinates 
yields the effective coupling functions 

H,,(R) = B(R)[J(J + 1)&d + 1)]“2 = B(R)[66(d + 1)]“2. (7) 

In second-order perturbation theory, this coupling term yields level shifts which are 
proportional to [ d( d + l)]; they will therefore manifest themselves as further de- 
viations from the simple mechanical B, values. Since the 1 U state potential lies above 
the B-state curve, these level energies will be displaced downwards, so this type of 
coupling will tend to make B,(obs) < B,(eff), as is observed. 

The second-order perturbation theory expression for this level shift is 

E$ = (x~~~,(R)IH~,~(R)Ix~P,‘(R)) (8) 

where &J(R) is the (zeroth-order) radial eigenfunction of the unperturbed B-state 
level and x:$(R) its first-order correction. In the present work the latter was deter- 
mined by the method of Hutson and Howard (18) as the solution of the linear 
inhomogeneous differential equation 

[(-h2/2p)d2/dR2 + U,,(R) - EIp,‘]xk&(R) = -H,&R)$!(R) (9) 

where Eri is the zeroth-order (unperturbed) energy and UO,(R) is the 1 U state potential 
energy curve. This method is computationally much less expensive and often much 
more accurate than the traditional approach of expanding x:$(R) in terms of the 
eigenfunctions of the perturbing potential U&R). 

B. Assumed Potential Energy Curves 

Determination of the wave functions appearing in Eq. (8) requires knowledge of 
the potential energy curves for both the B(OL) state and the 1, state to which it is 
coupled. The B-state potential is accurately determined by experiment (I, 6, 7). In 
the present work it was defined by interpolating over RKR turning points and adding 
a Morse extrapolation at short range. The RKR turning points were generated from 
near-dissociation expansions for the vibrational energies and B, values (4, 8, Z9), so 
they should be reliable even at long range. 

For the 1, state, the only information available is Mulliken’s (13) prediction that 
at the ground-state equilibrium distance 2.666 A its potential curve passes through 
a point ca. 25 600 cm-’ above its dissociation limit. It is therefore a repulsive curve 
with at most a weakly attractive Van der Waals well at long range. In the present 
work this potential was assumed to have the form 

U,(R) = A exp[-b(R - R,)] - D(R*; R)[C,/R’ + C,/R6 + C,/R8] (IO) 
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where the function 

D(R*; R) = exp[-4(R*/R - 1)3] for R < R* 

zzz 1 for R > R* (11) 

damps the inverse power terms and assures that the potential at small R is largely 
determined by the exponential term. The constants A = 25 600 cm-‘, b = 2.014 A-‘, 
and R0 = 2.666 A were chosen so that the curve would approximately agree with 
Mulliken’s (23) point at R0 = 2.666 A, while Cs is predicted by theory (20) to be 
(--2/3) times the CS constant for the B-state and Cs and Cs should be roughly equal 
to the corresponding B-state constants. Using Danyluk and King’s (I) values of the 
constants for the B state, this yields 1 .-state C,, constants of - 1.85 X 105, 17.8 X 105, 
and 243 X lo5 cm-’ A,,, for n = 5, 6, and 8, respectively. 

The remaining parameter in this 1, state potential function is the distance R* at 
which the damping function D(R*; R) is turned on. Figure 2 shows the range of 
potentials which can be generated by choosing different values for this quantity. 

C. Results and Discussion 

The effect of off-diagonal Coriolis coupling on the B, constants for B-state levels 
v = 75-82 was calculated in the manner described above using 1, state potential 
curves corresponding to R* values ranging from 5 A to co. The resulting AB,(R*) 
predictions are summarized in columns 6-8 of Table I. These predicted differences 
are largely independent of R* and are all much smaller than the observed discrep- 
ancies, even when one takes account of the relatively large uncertainties in some of 
the experimental values. 

One feature of the above procedure which could invite criticism is the fact that 
Cummings’ (9) value for the electronic part of the matrix element of HR was obtained 
assuming that the molecular electronic wave function could be approximated by a 
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FIG. 2. Behavior of the 1, state potentials of Eq. (10) (solid curves) for various choices of the damping 

function parameter R*. The heavy dashed curve is the B-state potential, while the horizontal lines denote 

the energies of some of its levels. 
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simple product of atomic wave functions. This basis should certainly be appropriate 
at large R where interatomic electron overlap is negligible, but at short range it is 
much less satisfactory. However, the fact that D, (and other centrifugal distortion 
constants) approach the limiting behavior predicted for levels near dissociation 
(4, 16) indicates that the dominant contributions to the second-order energy are 
associated with large R where this approximation is most appropriate. This affirms 
the validity of the approximation. As a result, we must conclude that Coriolis (or 
rotational) coupling does not explain the discrepancies [B,(mech) - B,(obs)] listed 
in Table I. 

III. SPIN-ROTATION COUPLING HYPOTHESIS 

Spin-rotation coupling is another type of interaction which gives rise to a 
d(d + 1)-dependent energy shift, and hence could in principle be responsible for 
the observed differences. The fine structure term in the Hamiltonian Hrs exists because 
an unpaired electron spin can interact with its environment in the molecule. Part of 
this operator represents the spin-rotation interaction which arises through coupling 
between the electron spin magnetic moment and the rotation of the charged nuclei; 
it may be written as (21) 

HsR = -( he/pR*c) 2 z,(d - J) - (r, X A,) (12) 

where the magnetic vector potential on nucleus (Y is 

A, = -(geh/2m,c) c Si X ri,/& (13) 

and z, is the nuclear charge, g (=2.00) is the gyromagnetic ratio for the electron, m, 
is the electron mass, ra is the nuclear position relative to the center of mass, and 

Tia = ri - ra where ri is the position of electron i. 
In attempting to estimate the effect of this term on the high vibrational levels of 

B-state I*, we begin by assuming, as above, that due to the large average internuclear 
separation the molecular wavefunction can be treated as a product of atomic func- 
tions. Since only one valence electron in each atom has unpaired spin, the sum over 
electrons in Eq. ( 13) can be truncated to include only one valence electron from each 
atom. We then make two further approximations: 

(i) r11 = r22=(r) . * “* = 2 53 A (9), the expectation value for the radius of an 
iodine atom valence electron, and 

(ii) r12 = r21 N R, and note that (r,I = R/2. 

Replacing each vector cross product by a simple product of magnitudes then yields 

HSR = (gzJz2e2/2pc2m,)( 1/Rr:, + 1/R3)(a - J). S 

= r(R)[& . S - J . S]. (14) 

The J * S term in Eq. (14) does not depend on the (total) rotational quantum number 
d, so it is dropped from consideration. This leaves a matrix element which is nonzero 
only for Aa = 0 and AQ = 1. To evaluate it, we assume that the size of the spin 
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contribution is roughly the same as it would be if S were a good quantum number, 
and that for our 0:-l, couplings S = 1; this yields 

H;; = y(R)[S(S + l)]“*[&+ + 1)]“2 = 2”‘y(R)[d( d + l)]“‘. (15) 

The size of the energy shift due to this perturbation operator can readily be calculated 
using the method described in Section II. However, it is immediately clear that spin- 
rotation coupling is much too small to account for the B, discrepancies of Table I, 
since the coupling function implied by Eqs. (14) and (15) (with energies in cm-’ and 
lengths in A), 

y(R) = 10m4( l/R + 6.4/R3] 

is much weaker than the Coriolis coupling function B(R) N 0.3/R* on the whole of 
the classically accessible interval for the states in question. Moreover, the approxi- 
mations invoked here were designed to yield an upper-bound estimate of the mag- 
nitude of this term. We therefore conclude that spin-rotation coupling makes an 
even smaller contribution to B,(obs) than does the Coriolis coupling, and hence 
conclude that it also cannot be responsible for the observed discrepancies, 

IV. SOLUTION OF THE PUZZLE 

The two preceding sections report our estimates of the effects of the d-dependent 
terms in the molecular Hamiltonian which can cause the observed values of B, to 
deviate from their predicted mechanical behavior. These coupling terms were shown 
to be more than an order of magnitude too weak to explain the observed deviations. 
In the absence of any other plausible explanation, we therefore conclude that the 
Danyluk-King experiment did not yield the correct experimental B, values for the 
vibrational levels in question. In the following, we quote some new data confirming 
this conclusion and examine the nature of Danyluk and King’s (1) two-photon 
sequential absorption spectroscopy experiment to attempt to identify the source of 
the error. 

In a recent laser induced fluorescence study of B-state I2 near dissociation, Ger- 
stenkorn and Luc (10) obtained improved estimates of the vibrational and rotational 
constants of the three lowest of the levels studied by Danyluk and King, v = 78, 79, 
and 80. In Table II these new B, values are compared with both the mechanical 
behavior predictions of Table I and the experimental values of Danyluk and King 
(I). The Gerstenkom-Luc constants clearly contradict the latter, and are in excellent 
agreement with the former. This agreement attests to the predictive ability of the 
near-dissociation expansion extrapolation and strengthens the above conclusion that 
the Danyluk-King results are in error. 

Two-photon sequential absorption spectroscopy (1, 22) is a technique which has 
the effect of greatly increasing the selectivity achievable in a given experiment. The 
method requires the use of two lasers, a narrow bandwidth “pump” laser to initially 
excite the molecules and a relatively broadband “probe” laser to further excite them 
into an electronic state which will fluoresce to advertise the occurrence of the ab- 
sorption. In the I2 experiment, the first (pump) laser, whose width was 0.07 cm-‘, 
pumped the molecules from rotational states of the zly = 0 vibrational level of the 
ground (X’Z,‘) electronic state into various high vibrational levels of the B state. The 
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TABLE II 

Comparison of the Present Near-Dissociation Expansion Extrapolated “Mechanical” Values of B, 
with the Experimental Values of Refs. (I) and (10) (Uncertainties in the Last Digits Shown Are Given 
in Parentheses) 

Bv/1O-3 cm-' 

source v=7B v=79 v=ao 

Near-dissociation expansion 3.731 3.270 2.813 

Gerstenkorn-Luc (1982) 3.738(10) 3.291(10) 2.837(50) 

Danyluk-King (1977) 3.577(49) 2.964(69) 2.591(68) 

probe laser, of width 1.5 cm-‘, then excited these B-state molecules to appropriate 
rotational components of a single vibrational level of the E state; the subsequent 
spontaneous E - B fluorescence then signals the successful completion of the two 
photon absorption sequence. A signal will be detected only if the lasers are set so 
that two successive transitions involving a common B-state level occur at frequences 
within the respective bandwidths. 

The above approach is a very clever procedure, since even for a very congested 
one-photon spectrum, rotational selection rules will tend to disperse the frequencies 
of the subsequent transitions allowed for the various B-state levels accessed by a given 
pump frequency. In the present case, the selection rule Ad = fl defines all of the 
allowed two-photon transitions originating in u x = 0, passing through high 2)’ levels 
of the B state, and terminating in the E state. Moreover, the rotational constants of 
the appropriate vibrational levels of the X and E states are known (I), while the near- 
dissociation expansions provide good estimates of the vibrational and rotational con- 
stants of the high V’ levels of the B state. These known (and extrapolated) constants 
may be used to predict the combinations of pump and probe frequencies, Y(pump) 
and u(probe), respectively, which can give rise to successful sequential two-photon 
absorption. Figure 3 plots such predictions (points) for all allowed transitions origi- 
nating in uX = 0, d = 0- 15, and passing through B-state vibrational levels V’ = 79- 
82. Also shown to scale in Fig. 3 is the size of the 1.5 X 0.07-cm-’ selectivity window 
associated with the lasers used in the Danyluk and King experiment (1). 

In Fig. 3, the dispersion along the v(probe) direction of the points associated with 
a single value of v(pump) illustrates the power of this technique for distinguishing 
among transitions which could not be resolved by that same pump laser in a single- 
photon (X - B) experiment. Indeed, even though the selectivity window shown 
appears to be too large to allow transitions involving 2)’ a 79 to be identified uniquely 
in the two-photon experiment, the sharpness of the individual lines and regularity 
of the progressions, coupled with the fact that the same B-state levels were observed 
using fluorescence from different upper states, provide convincing evidence of the 
correctness of the original assignments (1). The most likely source of error in the 
Danyluk-King measurements therefore appears to be method of frequency calibra- 
tion used in those early two-photon experiments. It involved the use of fairly long 
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FIG. 3. Plot of all allowed two-photon transitions which originate in u, = 0, d = 0- 15 and pass through 
B-state levels u’ = 79-82. An experimentally detected signal has contributions from all points lying within 
the appropriately placed “transmission window”; v,, is an arbitrarily chosen reference frequency. 

extrapolations to determine the frequencies of the new lines relative to those of 
transitions observed and assigned by Barrow and Yee (6). 

In any case, it is now clear that the rotational constants of Ref. (1) for B-state 
levels V’ 2 79 are in error. A simple illustration of this is provided by the laser-induced 
fluorescence traces seen in Fig. 4. According to the vibrational and rotational con- 
stants of Danyluk and Ring (I), the (v, J) = (0, 18) - (o’, J’) = (79, 17) line in the 

R,,,,(9) 
1 Pi3*0(121 

P,,,lW 

I 

R7,,0(15) 

i 

, 0.100 , 2OOhl.947 -3 v(cm 1 

FIG. 4. The agreement between the two independent traces of the one-photon laser induced fluorescence 
spectrum attests to their reliability. The feature denoted P$$( 18) is identified by the Gerstenkom-Luc (IO) 
constants as the (0, 18) - (79, 17) X - B transition, while the arrow labelled PPgr$( 18) indicates where 
the Danyluk-King (I) constants would locate this feature. 



92 TROMP ET AL. 

B - X spectrum should occur at the frequency labeled Pr$iO( 18), where the experi- 
mental traces are perfectly flat. In contrast, the position of the small peak labeled 
P$&( 18) is accurately predicted by the constants of Gerstenkom and Luc (IO). 

V. IMPROVED NEAR-DISSOCIATION THEORY CONSTANTS FOR B(‘II&) STATE I2 

Since the Danyluk and King (I) results for u’ 3 79 have now been shown to be 
unreliable, their values of the limiting near-dissociation theory constants for this 
system should be replaced. Near-dissociation theory shows that for a molecular state 
whose interaction potential asymptotically dies off as 

V(R) N a, - C,/R” (16) 

the pattern of vibrational energies for levels lying sufficiently close to the dissociation 
limit 2J is 

G(v) = a, - &(n)[v, - v]~“@-~) (17) 

where u4, is the effective (noninteger) vibrational index at dissociation and X,,(n) 
= X,(n)/[JP(C )2]“(fl-2) where P is the reduced mass and x&z) a (known) constant 
defined by thl value bf n (5, 3, 17). For B-state 12, both theory (5, 12, 20) and 
experiment (6) agree that the power n = 5, so that X0( 5) = 9 170.9 12/[$( C,)2]“3. 

A nonlinear least-squares fit of the n = 5 version of Eq. (16) to the Gerstenkom- 
Luc (IO) energies for levels u = 73-80 yields the present best estimates of the param- 
eters .YJ, Q,, and C, for this state. These constants are believed to be reasonably well 
converged, since repeating the fits while successively omitting the lowest levels in- 
creased the uncertainties but did not significantly affect their values. The results 
obtained are listed in (the last row of) Table III, where they are compared with 
previously reported results for this system. The distinctly lower accuracy of the oldest 
of these sets of results (24) is not surprising in view of the fact that they were based 
on very early (193 1 !) bandhead measurements (25) which were not supplanted until 
1972 (6). It is interesting to note, however, that within the mutual uncertainties, these 
first parameter values still agree with the present best estimates. Since they are based 
on the same data, the small differences between the present recommended parameter 
values and those of Gerstenkom and Luc (10) arise from the fact that, following 

TABLE III 

Values of the Near-Dissociation Theory Parameters for E-State ‘*‘~‘*‘I2 (The Dissociation Energy 2) Is 
Expressed Relative to the Zero Point Level of the Ground X(‘Zi) State) 

source ; year Y’ Range V/cm -1 
"V Q/lo5 cm-' i" 

Ref. (3) ; 1971 55-72 20 044.0(+1.2) 87.7(CO.4) 3.11(t0.2) 

Ref. (6) ; 1972 64-77 20 043.208(+0.033) 87.345(+0.007) 2.886(+0.006) 

Ref. (1) ; 1977 72-82 20 043.063(t0.020) 87.183(?0.012) 2.776(t0.018) 

Ref. (lCJ) ; 1982 73-80 20 043.176(tO.O08) 87.364(cO.O06) 2.850(t0.010) 

Recommended; 1983 73-80 20 043.159(+0.019) 87.324(t0.035) 2.884(+0.031) 
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Barrow and Yee (6), they obtained their constants from fits to approximate linearized 
versions of Eq. (17). This also explains why the parameter uncertainties reported by 
those two sets of authors are unrealistically small. 

VI. CONCLUSIONS 

The discrepancies between the experimental results of Danyluk and King (1) and 
the predicted mechanical behavior implied by near-dissociation theory (3) have been 
investigated. Both centrifugal distortion effects and rotational (or Coriolis) and spin- 
rotation coupling to a nearly repulsive 1, state have been shown to be much too 
weak to explain these discrepancies, and they are now attributed to callibration errors 
in the original experiment. This conclusion is confirmed by more recent experimental 
results (IO). 

A reanalysis of the Gerstenkorn-Luc (IO) data for B-state levels 2) = 73-80 has 
yielded new improved estimates of the dissociation energy ZB = 20043.16 (kO.02) 
cm-’ of the effective vibrational index at dissociation u2, = 87.32 (kO.04) and of the 
long-range potential constant C5 = 2.88 (& 0.03) X IO5 cm-’ A5. This in turn yields 
an improved ground-state dissociation energy of Do = 12440.18 (kO.02) cm-‘. Al- 
though very similar to values of these constants reported previously, the differences 
are virtually always larger than the uncertainties reported for the earlier values, and 
the uncertainties given here are believed to be much more realistic. Although these 
improvements seem small, the fact that this state is almost a touchstone for near- 
dissociation theory (3, 5) and for the development of new experimental spectroscopic 
techniques makes it important that its properties be understood as thoroughly as 
possible. Note too that the small changes from the Cs and Ok constants of Danyluk 
and King (1). which mean that the numerical factors in Eqs. (1) and (2) are ca. 2.6% 
too large, has no significant effect on the analysis of Sections I-IV. 

One interesting result of the present work is its illustration of the utility of near- 
dissociation theory and near-dissociation expansions for providing a best a priori 
estimate of “mechanical behavior,” deviation from which may signal either experi- 
mental error (as in the present case) or the presence of perturbations or changes in 
the nature of the intermolecular forces. It also provides another convincing example 
of the utility of Hutson’s (18) procedure for performing perturbation theory calcu- 
lations. 

ACKNOWLEDGMENTS 

We are indebted to Professor G. W. King for providing us with tables of the term values obtained in 
his work with Dr. Danyluk, and to Professors King and Cummings and Dr. J. M. Hutson for helpful 
discussions. R. J. Le Roy is also grateful to the Laboratoire Spectroscopic de Translation, Universiti de 
Paris-Sud, Orsay, for an appointment as Professeur Invite in April 1982. which greatly facilitated the 
collaborative aspects of this work. 

RECEIVED: January 26, 1983 

REFERENCES 

I. M. D. DANYLUK AND G. W. KING. Chem. Phys. 25, 343-35 I (1977). 
,7. R. J. LE ROY, Canad. J. Phys. 50, 953-959 (1972). 



94 TROMP ET AL. 

3. R. J. LE ROY, J. Chem. Phys. 73, 6003-6012 (1980). 
4. J. W. TROMP AND R. J. LE ROY, Canad. J. Phys. 60,26-34 (1982). 
5. (a) R. J. LE ROY AND R. B. BERNSTEIN, Chem. Phys. Letf. 5, 42-44 (1970). (b) R. J. LE ROY AND 

R. B. BERNSTEIN, J. Chem. Phys. 52, 3869-3879 (1970). 
6. R. F. BARROW AND K. K. YEE, J. Chetn. Sot. Faraday II 69, 684-700 (1973). 

7. P. Luc, J. Mol. Spectrosc. 80, 41-55 (1980). 
8. R. J. LE ROY AND W.-H. LAM, Chem. Phys. Lett. 71, 544-548 (1980). 

9. F. E. CUMMINGS, Ph.D. thesis, Harvard University (1972). 

10. S. GER~TENKORN AND P. LIJC, Laser Chemistry 1, 83-l 12 (1983). 
Il. R. N. ZARE, A. L. SCHMELTEKOPF, W. J. HARROP, AND D. L. ALBRITTON, J. Mol. Spectrosc. 46,37- 

66 (1973). 
12. J. 0. HIR~CHFELDER AND W. J. MEATH, Adv. Chem. Phys. 12, 3-106 (1967). 
13. R. S. MULLIKEN, J. Chem. Phys. 55, 288-309 (1971). 
14. D. L. ALBRITTON, W. J. HARROP, A. L. SCHMELTEKOPF, AND R. N. ZARE, J. Mol. Spectrosc. 46,25- 

36 (1973). 
15. J. M. HUTSON, J. Phys. B. 14, 851-857 (1981). 
16. (a) M. G. BARWELL, M. SC. thesis, University of Waterloo (1976). (b) M. G. BARWELL AND R. J. LE 

ROY, unpublished work. 
17. R. J. LE ROY, in “Semi-classical Methods in Molecular Scattering and Spectroscopy (M. S. Child, 

Ed.), pp. 109-126, D. Reidel, Dordrecht, The Netherlands, 1980. 

18. (a) J. M. HUTTON AND B. J. HOWARD, Mol. Phys. 41, 1113-1122 (1980). (b) J. M. HUTSON AND 
D. L. COOPER, J. Chem. Phys. 75,4502-4506 (1981). 

19. (a) A.-R. HASHEMI-ATTAR, C. L. BECKEL, W. N. KEEPIN, AND S. A. S~NNLEITNER, J. Chem. Phys. 
70, 3881-3883 (1979). (b) A.-R. HASHEMI-ATTAR, AND C. L. BECKEL, J. Chem. Phys. 71,4596- 
4600 (1979). 

20. T. Y. CHANG, Rev. Mod. Phys. 39, 9 1 l-942 (1967). 
21. A. CARRINGTON, D. H. LEVY, AND T. A. MILLER, Adv. Chem. Phys. 18, 149-248 (1970). 

22. M. D. DANYLUK AND G. W. KING, Chem. Phys. Lett. 43, l-3 (1976). 
23. G. W. KING, I. M. LITTLEWOOD, J. R. ROBINS, AND N. T. WIJERATNE, Chem. Phys. 50, 291-299 

( 1980). 

24. R. J. LE ROY AND R. B. BERNSTEIN, J. Mol. Spectrosc. 37, 109-130 (197 1). 
25. W. G. BROWN, Phys. Rev. 38, 709-711 (1931). 


