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Abstract
Rotational spectroscopy plays a major role in the field of observational astrochemistry, enabling the detection of more
than 200 species including a plethora of complex organic molecules in different space environments. Those line detections
allow correctly determining the sources and physical properties, as well as exploring their morphology, evolutionary
stage, and chemical evolution pathways. In this context, quantum chemistry is a powerful tool to the investigation of the
molecular inventory of astrophysical environments, guiding laboratory experiments and assisting in both line assignments
and extrapolation of the experimental data to unexplored frequency ranges. In the present work, we start by briefly reviewing
the rotational model Hamiltonian for asymmetric tops beyond the rigid-rotor approximation, including rotational-vibrational,
centrifugal, and anharmonic effects. Then, aiming at further contributing to the recording and analysis of laboratory
microwave spectroscopy by means of accessible, less demanding quantum chemical methods, we performed density
functional theory (DFT) calculations of the spectroscopic parameters of astrochemically relevant species, followed by
their rotational spectrum simulations. Furthermore, dispersion-correction effects combined with different functionals were
also investigated. Case studies are the asymmetric tops H2CO, H2CS, c-HCOOH, t-HCOOH, and HNCO. Spectroscopic
parameter predictions were overall very close to experiment, with mean percentage errors smaller than 1% for zeroth order
and ∼ 5% for first-order constants. We discuss the implications and impacts of those constants on spectrum simulations, and
compare line-frequency predictions at millimeter wavelengths. Moreover, theoretical spectroscopic parameters of c-HCOOH
and HNCO are introduced for the first time in this work.
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Introduction

A conspicuous attribute of rotational spectroscopy consists
in its capability to provide a myriad of information on the
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molecular species and its environment. Accurate gas-phase
structure determinations can be obtained through the anal-
ysis of rotationally resolved molecular spectra [1], which
provide insight on the species’ fine and hyperfine struc-
tures by the means of high-resolution techniques such as
chirped-pulse [2] and Lamb-dip spectroscopy [3, 4]. More-
over, pioneer laboratory detections of small molecules have
been consistently achieved through rotational spectroscopy
in the ranges of millimeter and sub-millimeter wavelengths
[5–9].

In the field of observational astrochemistry, rotational
spectroscopy is majorly employed to unveil the chemi-
cal composition and evolution of astrophysical environ-
ments. Specially, the interstellar medium (ISM) is known
for its chemical lavishness, with radiofrequency line detec-
tions of more than 200 species including small hydro-
carbons, molecular radicals, and a plethora of complex
organic molecules (COMs) to date [10–17]. The analysis
of rotational spectra also allows the investigation of the
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morphology and evolutionary stage of a particular envi-
ronment or body [18–20], as well as the determination
of its physical properties [21, 22]. Recent technological
advances on single dish and interferometry radio antennas
have resulted in facilities with remarkable sensitivity and
resolution (e.g., the Atacama Large Millimeter Array), con-
sequently increasing the demand for more precise rotational
spectroscopic data.

In this context, quantum chemistry is a powerful tool
for the investigation of molecular inventory in astrophysical
environments. Theoretical predictions of spectroscopic
parameters can guide laboratory experiments, assisting in
both line assignments and extrapolation of the experimental
data to unexplored frequency ranges [5, 9, 11, 23–
34]. Moreover, the correct determination of molecular
properties such as equilibrium structures from rotational
spectra relies greatly on anharmonic vibrational corrections
and vibrational-rotational coupling [35]. Quantum-chemical
calculations at different levels of theory are therefore of
great relevance to contemporary rotational spectroscopy,
resulting in a notable increase in published works on the
matter vis-à-vis the last century [24, 27, 31, 32, 36–39].

In this work, we focus on a theoretical approach to sim-
ulate rotational spectra of asymmetric tops (i.e., rotational
constants A �= B �= C) that correspond to the vast majority
of molecules. The reader is referred to specialized litera-
ture on other types of rotors (e.g., [40–42] and references
therein), which present much simpler energy level structures
and consequently much less costly simulations. Although
state-of-the-art methods which include complete basis set
extrapolations and perturbative quadruple excitation in the
coupled-cluster expansion (see Puzzarini et al. [43] and ref-
erences therein) typically result in very accurate parameters,
they are also substantially time-consuming. Consequently,
more accessible approaches are beneficial in many different
scenarios, Density Functional Theory (DFT) calculations
of spectroscopic parameters for four different systems fol-
lowed by rotational spectrum simulations were performed,
aiming at further contributing to accurate and effectively
guiding laboratory experiments and, consequently, facilitat-
ing the assignment and interpretation of radio spectra from
the ISM. For the case studies, the astrochemically relevant
species H2CO, H2CS, c-HCOOH, t-HCOOH, and HNCO
were chosen, most of which are well characterized exper-
imentally. Furthermore, as far as we are concerned, some
of the theoretical parameters of c-HCOOH and HNCO are
being reported for the first time in this work.

In order to simulate rotational spectra, it is necessary
at first to determine the spectroscopic parameters, which
are subsequently employed in a simulation of rotational
transitions by means of a model Hamiltonian matrix
diagonalization. In the section “Theoretical background,”
some of the theoretical background are discussed with a

particular emphasis on the spectroscopic parameters and
the necessary approximations to the complete Hamiltonian
which are required to simulate the rotational spectra. In the
section “Computational details,” the computational details
are presented. In the section “Results and discussion,”
results are reported and discussed in detail. Finally, an
overview and conclusions are presented in the section
“Conclusions.”

Theoretical background

The asymmetric rigid rotor

The rotational energy of a rigid rotor is classically expressed
as:

Trot = 1

2
(Iaω

2
a + Ibω

2
b + Icω

2
c ), (1)

where ωa , ωb, and ωc are the angular velocities of the
system with respect to the main molecule-fixed axes a,
b, and c. The rigid rotor Hamiltonian can therefore be
described as a kinetic energy operator expressed in terms of
the components of the angular momentum Ĵ with relation to
the main axes [42]:

Ĥrot = 1

2

Ĵ 2
a

Ia

+ 1

2

Ĵ 2
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Ib
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2

Ĵ 2
c

Ic

(2)

The energies of the rotational levels are the eigenvalues
of the Hamiltonian in expression Eq. 2. The unknown
asymmetric top eigenfunctions |ψi〉 can be expressed as a
linear expansion in terms of a known complete orthonormal
set {ϕi} (ϕi ≡ |J ′, M ′, K ′〉), which is conveniently chosen
as the symmetric top eigenfunctions:

|ψi〉 =
∑

J ′

∑

M ′

∑

K ′
c
(i)

J ′,M ′,K ′ |J ′, M ′, K ′〉 (3)

The sum can be simplified by considering only terms
in which the symmetric top quantum numbers J ′ and M ′
have the same values of the asymmetric top eigenfunctions
(|ψi〉), namely J and M [41]:

|ψi〉 =
J∑

K ′=−J

c
(i)

J,M,K ′ |J, M, K ′〉 (4)

The eigenvalues of Ĥrot (Eq. 2) are thus obtained by
solving the resulting secular equation, where the symmetric
top eigenfunctions ϕi were applied:

det[〈ϕm|Ĥrot |ϕn〉 − Eiδmn] = 0 (5)
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The quantum number K ′ gives the angular momentum
component along the molecule-fixed axis c for the
symmetric top:

Ĵc|J, M, K ′〉 = ±K ′|J, M, K ′〉 (6)

For asymmetric tops, the double degeneracy of the ±K ′
symmetric top quantum numbers is removed, resulting in a
splitting of the rotational energy levels and therefore much
more complex rotational spectrum profiles [40].

The rotational Hamiltonian beyond the rigid rotor
approximation

For simulation purposes in an astrochemical context, cor-
rections to the rotational Hamiltonian beyond the rigid-
rotor and harmonic-oscillator approximations ought to be
accounted for. The effective rotational Hamiltonian for a
given vibrational state is derived from the perturbative treat-
ment of the complete vibrational-rotational Hamiltonian as
described by Watson [44], resulting in a transformed Hamil-
tonian averaged over all vibrational coordinates [45]. This
procedure leads to a separation of the rotational and vibra-
tional motions [46], analogous to the splitting between the
electronic and vibrational terms of the energy expression in
the Born-Oppenheimer approximation.

Hence, the rotational Hamiltonian becomes a function
of only the rotational angular momentum operators and
vibrationally dependent rotational constants. This effective
Hamiltonian can be expressed as a power law whose
coefficients are the rotational and centrifugal distortion
constants at a particular vibrational state [47–49]:

Ĥrot

hc
=

∑

α

B(α)
v J 2

α + 1/4
∑

α,β

(τ
′
ααββ)vJ

2
αJ 2

β +
∑

α

ΦαααJ 6
α

+
∑

α �=β

Φααβ(J 4
αJ 2

β +J 2
βJ 4

α )+ ... (7)

where α and β denote the three main molecule-fixed axes,
namely a, b, and c. Ergo, Jα are the components of the total
angular momentum along the three main axes in units of �.
The operator hat notation is henceforth omitted for the sake
of simplicity. B

(α)
ν corresponds to the effective rotational

constants, (τ ′
ααββ)ν to the effective quartic centrifugal

distortion constants as defined by Kivelson and Wilson
[50] and Φα,β,γ to the effective sextic centrifugal distortion
constants as defined by Watson [48].

The effective Hamiltonian (Eq. 7) can be further
simplified by means of contact transformations, since the
eigenvalues of a Hamiltonian are unchanged by those
operations [51]. Hence, a reduced Hamiltonian [48, 51–53],
containing only the linear combinations of the coefficients
in Eq. 7, and indistinguishable from the latter in terms of
energy levels, is derived.

The reduced Hamiltonian for asymmetric tops as derived
by Watson is [51]:

H̃A
rot
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where B
(a)
ν ≡ Aν , B

(b)
ν ≡ Bν , and B

(c)
ν ≡ Cν .

This reduced Hamiltonian is commonly addressed as
Watson’s A-type Hamiltonian. For the special case where
the rotational constants are accidentally quasi-degenerate
and the system approaches a symmetric top, Watson’s A
Hamiltonian fails [51]. It is thus necessary to employ a
different form of the reduced Hamiltonian, namely Watson’s
S Hamiltonian [49]:

H̃ S
rot

hc
=

∑

α

B(α)
v J 2

α − DJ J 4 − DJKJ 2J 2
z − DKJ 4

z + d1J
2(J 2+ + J 2−)

+d2(J
4+ + J 4−) + HJ J 6 + HJKJ 4J 2

z + HKJ J 2J 4
z + HKJ 6

z

+h1J
4(J 2+ + J 2−) + h2J

2(J 4+ + J 4−) + h3(J
6+ + J 6−) + ... (9)

Vibration-rotation interaction constants

For simplicity, some equations in this section will be
expressed solely for the rotational constant B along the
b axis, albeit analogous for the other main axes. The
asymmetric top rotational constant Bν corrected for the
vibrational-rotational coupling of the molecule is expressed
as [45]:

Bν = Be −
∑

r

αB
r

(
νr + 1

2

)
+ ... (10)

where Be denotes the equilibrium rotational constant
along the b axis:

Be = �
2/2hcIb (11)

The sum in Eq. 10 includes all vibrational normal modes
of the system. The vibrational-rotational coupling constant
along the b axis αB

r is derived as [45]:

−αB
r = 2B2
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(12)
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where ωr is the rth harmonic vibrational frequency, corre-
sponding to the Qr normal mode. The inertial derivatives
a

(αβ)
r are defined as:

a(αβ)
r = (∂Iαβ/∂Qr)e (13)

where Iαβ denotes equilibrium moments and products of

inertia [54]. The Coriolis zeta constant ζ
(α)
r,s couples the

normal modes Qr and Qs through rotation about the α axis:

ζ (α)
r,s =

∑

i

(
L

(β)
ir L

(γ )

is − L
(γ )

ir L
(β)
is

)
(14)

where L corresponds to a matrix that transforms the normal
coordinates to mass-weighted Cartesian coordinates. The
φrst constants in the third sum of Eq. 12 denote the cubic
anharmonic force constants derived from a Taylor expansion
of the vibrational potential in terms of the dimensionless
normal coordinates qr , as described by Nielsen [55–57]:

V

hc
= 1

2

∑

r

ωrq
2
r + 1

6

∑

rst

φrst qrqsqt + ... (15)

Thus, the vibrational-rotational coupling can be split
between two different contributions, the a

(αβ)
r and ζ

(α)
r,s

constants, which are combined together in a resulting
vibrational-rotational parameter a

(α)
r (Eq. 12). For an

extensive number of molecules, many of the cubic force
constants related to stretching modes have negative values,
which dominate the expression of a

(α)
r for small systems.

For this reason, the left side of Eq. 12 is conveniently
defined as negative. We should also note that, when two
vibrational states are accidentally quasi-degenerate, the
Coriolis term in Eq. 12 breaks down, since its perturbative
treatment is no longer valid. This configures a special case
known as Coriolis resonance, which can be partially solved
by neglecting the first-order terms and instead replacing
them by [57–59]:

(ζ (b)
r,s )2 (3ω2
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s )

ω2
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s

→ −1

2
(ζ (b)

r,s )2 (ωr − ωs)
2
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(16)

Anharmonic vibration constants

The energy levels of a polyatomic molecule can be
empirically described by the sum of a vibrational term
independent of the rotational quantum numbers and a
rotational term parametrically dependent on the vibrational
quantum numbers [45]:

T (v, J ) = G(v) + Fv(J ) (17)

Similar to the procedure described in the section “The
rotational Hamiltonian beyond the rigid rotor approxima-
tion,” G(ν) can be derived by means of a perturbative
treatment of the expanded vibrational potential in Eq. (16):
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∑
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2
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where χrs are the anharmonic vibrational constants derived
by Nielsen [57]. Following the notation in [45], the diagonal
terms of the χrs matrix are:

χrr = 1

16
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And for r �= s:
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where:

Δrst = (ωr +ωs+ωt )(ωr −ωs−ωt )(ωr +ωs−ωt )(ωr −ωs+ωt ) (21)

Those constants can be employed to derive frequencies
with the best correspondence to the experimental values,
known as the fundamental frequencies νr . For an asymmet-
ric top, νr are given by the expression [58]:

vr = ωr + Δr = ωr + 2χrr + 1

2

∑

s �=r

χrs + ... (22)

Centrifugal distortion constants

Wilson and Howard [46] described the centrifugal distortion
effects as the following term in the rotational Hamiltonian
resulting from the perturbative treatment:

∑

αβγ δ

1

4
ταβγ δJαJβJγ Jδ (23)

where ταβγ δ corresponds to:

ταβγ δ = −1

2

∑

r

(
a

(αβ)
r a

(γ δ)
r

λrIαIβIγ Iδ

)
(24)
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Notably, the centrifugal distortion constants (Eq. 24) are,
to a good approximation, only functions of the quadratic
vibrational potential [52, 58]. The terms in Eq. 24 that have
a first-order contribution to the rotational Hamiltonian can
be expressed as the centrifugal distortion constant τ ′

ααββ [51,
60, 61]:

τ ′
ααββ = τααββ + 2ταβαβ(1 − δαβ) (25)

Watson demonstrated that only five linear combinations
of the six ταβγ δ constants are directly measurable from
experimental spectrum [51, 61]. Those linear combinations
are expressed in Watson’s A Hamiltonian (Eq. 8) as the five
independent quartic centrifugal distortion constants:

ΔJ = DJ − 2R6

ΔJK = DJK + 12R6

ΔK = DK − 10R6

δJ = δJ

δK = −2R5 − 4σR6 (26)

The parameters in Eq. 26 are derived by Kivelson
and Wilson [60], and are discussed in more detail in
Supplementary Information (SI).

In order to obtain the sextic centrifugal distortion correction,
it is necessary to perform a perturbative treatment to
the fourth order of the complete vibrational-rotational
Hamiltonian [44, 62–65]. The ten resulting centrifugal
distortion constants can be then rearranged into seven
observable independent linear combinations [48, 52, 66]:

HJ = Φ600 + 2Φ204 (27a)

HJK = Φ420 − 12Φ204 + 2Φ024 + 16σΦ006 − 16(R5 − 2σR6)s111

+8(2A′
0 − B ′

0 − C′
0)s

2
111 (27b)

HKJ = Φ240 + 10

3
Φ420 − 30Φ204 − 10

3
HJK (27c)

HK = Φ060 − 7

3
Φ420 + 28Φ204 + 7

3
HJK (27d)

hJ = Φ402 + Φ006 (27e)

hJK = Φ222 − 10Φ006 + 4σΦ204 + 2(DJK −2σδJ −4R6)s111

−4(B ′
0 − C′

0)s
2
111 (27f)

hK = Φ042 + 4

3
σΦ024 +

(
9 + 32

3
σ 2

)
Φ006

+4

[
DK − 2

3
σR5 + 2

(
1 + 8

3
σ 2

)
R6

]
s111

+
(

6 + 10

3
σ 2

) (
B ′

0 − C′
0

)
s2

111 (27g)

The experimental spectra can be adjusted to a particular
reduced Hamiltonian by means of the s111 parameter. In
Watson’s A Hamiltonian, s111 corresponds to:

s111 = − 4R6

(B ′
0 − C′

0)
(28)

A detailed description of the Φ2l,2m,2n parameters can
be found in tables IV and VII of the original work by

Aliev and Watson [52]. Unlike for quartic centrifugal
distortion constants, the sextic constants indeed depend on
the cubic vibrational potential. Moreover, the contribution
of centrifugal distortion to the effective rotational constants
is briefly discussed in the SI.

Transition intensities

Rotational transitions are induced by the interaction of
the species’ permanent electric dipole moment with the
radiation field. The intensities of those transitions are
proportional to the square of the dipole moment matrix
[67], precluding the observation of pure rotational lines
from molecules with no permanent dipole moment. For
asymmetric rotors, the dipole moment can be pointed to
any arbitrary direction with relation to the main inertial
axes. Consequently, the z components of the dipole moment
matrix elements can be described as [40]:

μz = μa〈ψi |cos(az)|ψj 〉 + μb〈ψi |cos(bz)|ψj 〉
+μc〈ψi |cos(cz)|ψj 〉 (29)

Where μa , μb, and μc are the components of the electric
dipole moment along the inertial axes, and cos(az), cos(bz),
and cos(cz) correspond to the cosines of the angles between
the main inertial axes and the space-fixed z axis. The wave
functions for asymmetric rotors are denoted as ψi .

Computational details

In order to explore the influence of different functionals on
rotational spectral simulations, geometry optimization and
spectroscopic parameter calculations were performed with
the Generalized Gradient Approximation (GGA) functional
B97D [68, 69] and the Double-Hybrids (DH) function-
als B2PLYP [70] and mPW2PLYP [71]. Grimme’s D2
dispersion correction [69] was included in all function-
als, and Dunning’s aug-cc-pVTZ augmented basis set [72]
was used throughout. Geometry optimizations were car-
ried out with Berny’s algorithm [73], with 1.5 × 10−5

Hartree/Bohr and 6.0×10−5 Angstrom convergence criteria
(Gaussian keyword “Opt=Tight”). For all systems, an ultra-
fine (99,590) integration grid was used (Gaussian keyword
“Int=UltraFine”). All calculations were performed with
Gaussian 2009 quantum-chemical package [74] and PGO-
PHER general purpose software [75] was employed on the
rotational spectral simulations. All simulated spectra were
obtained by considering rotational-vibrational coupling, at
VPT2 level, anharmonic and quartic centrifugal-distortion
corrections.

For comparison and validation purposes, experimental
spectra of H2CO, H2CS, c-HCOOH, t-HCOOH, and HNCO
were obtained from NASA’s Jet Propulsion Laboratory
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Table 1 Calculated and experimental spectral parameters of H2CO

B2PLYP B2PLYPD B97D mPW2PLYPD Experimental Martin and Lee (1993)

cc-pVTZ aug-cc-pVTZ aug-cc-pVTZ aug-cc-pVTZ

A0 (MHz) 283,736.102 282,432.661 277,275.761 283,300.659 281,970.370a 282,633.987

B0 38,766.147 38,714.414 38,526.953 38,912.345 38,835.426 38,465.171

C0 33,972.283 33,912.840 33,689.527 34,078.056 34,005.730 33,726.651

μ (D) 2.290 2.406 2.257 2.429 2.330b

ΔJ (MHz) 0.0731 0.0738 0.0746 0.0732 0.0755a 0.0727

ΔJK 1.2778 1.2947 1.3257 1.2927 1.2936 1.2652

ΔK 18.8583 18.6700 19.0349 18.6516 19.9782 18.6093

δJ 0.0097 0.0098 0.0101 0.0097 0.0104 0.00956

δK 0.9090 0.9179 0.9439 0.9162 1.0349 0.8963

HK × 10−3 (MHz) 3.810 3.828 4.149 3.793 3.789

HKJ × 10−5 1.112 1.440 0.7980 1.489 −5.810

HJK × 10−5 2.554 2.605 2.794 2.588 2.580

HJ × 10−8 8.624 8.592 9.752 8.911 8.994

hJ × 10−8 4.042 4.102 4.460 4.126 2.998

hJK × 10−5 1.368 1.395 1.492 1.388 1.370

hK × 10−3 1.194 1.208 1.275 1.199 1.156

Theoretical values at CCSD(T) level of theory are taken from Martin and Lee (1993)[81]
aExperimental effective rotational constants and quartic centrifugal distortion constants obtained from [82] and values therein
bExperimental electric dipole moment from [83]

(JPL) database1 and the Cologne Database for Molecular
Spectroscopy (CDMS)2.

Results and discussion

H2CO

Formaldehyde (H2CO) was one of the first molecules to
be detected with radiotelescopes [66], and has since been
widely observed toward interstellar and circumstellar envi-
ronments [76–79]. It is commonly used to study the physical
conditions of astrophysical sources, acting as a probe for
gas temperature and density [80]. In Table 1, calculated
and experimental spectroscopic parameters of H2CO are
presented. Theoretical rotational constants corrected for
vibrational-rotational effects (hereafter “effective rotational
constants,” see Eqs. 10 and 12) show excellent agreement
with experimental values, with mean discrepancies of 0.3%
for all hybrid functionals and ∼ 1% for B97D. Centrifu-
gal corrections to the rotational constants as described in
equation S4 result in relative changes up to 0.001% for
all case studies, and therefore were neglected in order

1Available in https://spec.jpl.nasa.gov/ftp/pub/catalog/catdir.html
2Available in https://cdms.astro.uni-koeln.de/cdms/portal/

to allow comparison with other theoretical works where
only vibrational-rotational corrections were reported. For
the quartic centrifugal distortion constants, mean errors of
∼ 4% were achieved. Moreover, both hybrid functionals
yielded spectroscopic constants generally closer to exper-
iment than CCSD(T) calculations from ref. [81]. Those
results demonstrate that the methods and models used here
describe very well the formaldehyde parameters and spec-
trum, with a slightly better performance of the B2PLYP
functional with dispersion corrections. Although an already
small mean error of ∼ 0.3% is achieved for the effective
rotational constants at the B2PLYP/cc-pVTZ level of theory,
with the addition of dispersion corrections and diffuse func-
tions, this error is further improved to ∼0.25%. Similarly to
B2PLYP, calculations with the mPW2PLYP functional with
dispersion corrections yielded errors of ∼ 0.29%, evinc-
ing the generally good performance of hybrid functionals at
spectroscopic parameter determinations. Overall, D2 disper-
sion corrections and augmented basis sets have shown better
accuracy with respect to the measured constants, suggesting
that those effects should be included in the theory even for
tightly bounded molecules such as H2CO [58]. Neverthe-
less, the B97D/aug-cc-pVTZ level yielded the largest errors
for the effective rotational constants, and centrifugal distor-
tion constants only slightly better than B2PLYP/cc-pVTZ,
despite accounting for dispersion effects.
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Although all centrifugal distortion constants are gen-
erally difficult to derive theoretically, the δK constant is
specially sensitive to the level of theory [58], leading to
systematically larger discrepancies in comparison with the
other quartic constants. Moreover, as discussed by Clabo
et al. [58], the experimental value for δK is not com-
pletely consistent with the other measured constants. From
the experimental values for ΔJ , ΔJK , ΔK , and δJ , and
by assuming planarity conditions [84], one can derive the
experimental τ constants that, subsequently, yield δK =
0.9277 MHz. This value is much closer to the predicted
δK for all levels of theory, with a mean relative error
smaller than 1%. Thus, the current theoretical formulation
for the δK constant indeed seems not to describe, to a good
extent, the phenomenological parameter δK obtained from
experiments.

In what concerns spectral simulations, even slight
differences in accuracy for the effective rotational constants
are of great relevance to accurately predict line frequencies,
since those constants have a zeroth-order contribution
to the rotational energy. The simulated spectrum of
formaldehyde at 300K with mPW2PLYPD/aug-cc-pVTZ
level of theory is shown in Fig. 1, in comparison with
the experimental spectrum from the JPL database. The
simulation was truncated at a maximum upper J value
of 57, and Watson’s A Hamiltonian was employed. Sextic
centrifugal distortion constants are difficult to determine
both theoretically and experimentally, and thus were not
included in the simulations. For transitions with lower J

values (< 800 GHz), discrepancies between experimental
and theoretical frequencies with mPW2PLYPD functional
were around ∼ 1.00 GHz (∼ 0.13% in relative

terms). It is worth emphasizing that this frequency range
corresponds to the relevant region for astronomical radio-
observations. Comparatively, B2PLYP/cc-pVTZ (Fig. S1)
and B2PLYPD/aug-cc-pVTZ (Fig. S2) yielded errors of
∼ 0.53 and ∼ 1.3 GHz, respectively. Although the
B2PLYP functional predicted the most accurate rotational
frequencies for this system, the overall best performing
functional for asymmetric tops was mPW2PLYP, as will
be discussed in Sections H2CS, HCOOH, and HNCO.
This apparently contradictory result can be understood
by analyzing each effective rotational constant separately.
For B2PLYPD/aug-cc-pVTZ, the A0 constant yielded a
relative error of ∼ 0.16%, which was considerably closer
to experiment than for B2PLYP/cc-pVTZ (∼ 0.62%)
and mPW2PLYPD/aug-cc-pVTZ (∼ 0.47%). However,
the B0 and C0 constants predicted by B2PLYP with
dispersion corrections were less accurate than both other
levels of theory. In fact, the B2PLYP/cc-pVTZ description
achieved the most accurate B0 and C0 constants, which
consequently leads to better frequency predictions. Indeed,
for formaldehyde, the A0 effective rotational constant
seems to be the least dominant regarding rotational spectrum
simulations. This result demonstrates that one must be
attentive of all rotational constants separately when
performing spectrum simulations. It should also be noted
that both B0 and C0 constants obtained from CCSD(T)
calculations by ref. [81] were on average ∼ 350 MHz
further from experiment in comparison with hybrid DFT
results.

This outcome is suited to guide laboratory experiments
of recording and analyzing microwave spectra which play a
key role in the fields of radioastronomy and astrochemistry.

Fig. 1 Rotational spectrum of
H2CO at 300 K simulated with
mPW2PLYPD/aug-cc-pVTZ
level of theory (black). The
experimental spectrum is shown
in red. In the right panel, an
astronomical relevant region is
zoomed in
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The simulated spectrum at B97D/aug-cc-pVTZ level of
theory is shown in Fig. S3. The vibrational-rotational
coupling constants (see Eq. 12) at the mPW2PLYP/aug-cc-
pVTZ level of theory for all case studies are also listed in
the SI.

H2CS

Since the 1970s, sulfur-containing molecules have been
observed to be depleted in dense regions of the ISM
in comparison with cosmic abundances [85–88], while
in diffuse and highly ionized regions their abundances
are seemingly cosmic [89–93]. Inasmuch as the sulfur
chemical sink has yet to be identified, this phenomenon,
namely the sulfur depletion problem [94], has been
arousing much interest of the astrochemical community
toward sulfur-bearing molecules. As a relevant example,
thioformaldehyde (H2CS) is a slightly asymmetric rotor
that has been observed toward several interstellar sources
[22, 95–99]. However similar in structure to its oxygen
analogue H2CO, thioformaldehyde has much less optically
thick lines, therefore being a good alternative to determine
the physical properties of a particular source. Two main
formation routes have been suggested for this molecule,
resulting from either reactions involving atomic sulfur and

the methyl radical (CH3) in hot cores [100], or forming on
the surface of grain mantles within dense molecular clouds
[88].

Theoretical and experimental spectroscopic parameters
of H2CS are listed in Table 2. While all functionals derived
effective rotational constants close to experiment (with
relative mean errors less than 1%), B97D yielded slightly
less accurate results than the hybrid functionals. However,
its predictions of the quartic centrifugal distortion constants
were the closest to experiment, again evincing an apparent
advantage of the GGA functional in describing the quadratic
force field of asymmetric tops. Martin et al. [101] have
derived theoretical values for the spectroscopic constants
of H2CS with CCSD(T) calculations, which are listed in
Table 2. As for H2CO, the parameters obtained through
DFT calculations were comparable with the predictions
of the coupled-cluster approach, but with much less
demanding computational effort. The exceptions are the
HKJ , hJK , and hK sextic centrifugal distortion constants,
whose DFT predictions deviate more than one order of
magnitude from the CCSD(T) calculations, possibly due
to the higher difficulty associated with their derivation
[102, 103].

From the experimental ΔJ , ΔJK , ΔK , and δJ , we derive
a new δK = 0.3326 MHz. For this new value, the mean

Table 2 Calculated and experimental spectral parameters of H2CS

B2PLYP B2PLYPD B97D mPW2PLYPD Experimental Martin et al. (1994)

cc-pVTZ aug-cc-pVTZ aug-cc-pVTZ aug-cc-pVTZ

A0 (MHz) 293,888.436 293,079.382 289,947.613 294,311.184 291,613.519a 293,547.182

B0 17,593.668 17,574.772 17,476.466 17,656.413 17,699.7198 17,776.928

C0 16,563.637 16,544.104 16,446.043 16,620.665 16,651.7382 16,762.086

μ (D) 1.724 1.759 1.733 1.774 1.649b

ΔJ (MHz) 0.01867 0.01879 0.01917 0.01859 0.019358a 0.0187

ΔJK 0.51451 0.51821 0.52730 0.51557 0.52095 0.51145

ΔK 22.37431 22.34474 22.94792 22.30371 23.3260 22.0590

δJ 0.00110 0.00111 0.00114 0.00110 0.00120457 0.00109

δK 0.32309 0.32524 0.33313 0.32427 0.37195 0.31966

HK × 10−3 (MHz) 5.316 5.369 5.840 5.273 5.483 5.2311299

HKJ × 10−5 −0.2482 −0.1005 −0.2700 −0.09278 −3.900519

HJK × 10−6 3.744 3.783 4.036 3.756 3.56776

HJ × 10−10 11.05 9.543 8.529 15.52 2.5

hJ × 10−9 1.704 1.718 1.800 1.733 1.62

hJK × 10−6 2.114 2.136 2.265 2.119 657.68837

hK × 10−4 6.742 6.816 7.176 6.754 0.0201943

Theoretical values at CCSD(T) level of theory are taken from Martin et al. [101]
aExperimental effective rotational constants and quartic centrifugal distortion constants obtained from [104]
bExperimental electric dipole moment from [105]
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relative errors of the δK constants obtained with all three
functionals corrected for dispersion effects ranged from
0.16 to 2.5%. Those discrepancies were systematically
lessened by around 10% when compared with the measured
constant, once more supporting the hypothesis of a faulty
theoretical description of the δK constant.

The best performing functional for H2CS was
mPW2PLYP, which yielded mean errors of ∼ 0.45% for the
effective rotational constants and ∼ 6.20% for the quartic
centrifugal distortion constants. The simulated spectrum of
thioformaldehyde at 300K with this functional is shown in
Fig. 2, in comparison with the experimental spectrum from
the JPL database. Watson’s A Hamiltonian was employed
in the simulation, with Jmax = 27. Again, sextic centrifugal
distortion constants were neglected. The simulated spectra
at B2PLYPD/aug-cc-pVTZ and B97D/aug-cc-pVTZ levels
of theory are shown in the SI.

For J values up to 10, simulated transitions at the
mPW2PLYPD/aug-cc-pVTZ level of theory yielded errors
ranging from ∼ 200 to ∼ 675 MHz. Comparatively,
the mean discrepancies for the same low J interval at
B2PLYPD and B97D levels of theory were, respectively,
∼ 1500 MHz and ∼ 2700 MHz. Notably, accurate
predictions of the rotational constants are fundamental to
the spectrum simulations. In particular, the B0 and C0

constants have repeatedly proven to play a key role on
the frequency calculation of the rotational transitions of
molecules with C2v symmetry. Moreover, the B0 and C0

rotational constants obtained with CCSD(T) calculations

were considerably further from experiment than those
predicted by the mPW2PLYPD functional.

HCOOH

The first detections of formic acid (HCOOH) in the
interstellar medium were reported by Zuckerman et al.
(1971) [106] and Winnewisser and Churchwell (1975)
[107] toward the Giant Molecular Cloud (GMC) Sgr B2.
Thenceforth, both rotational isomers have been detected
toward a variety of sources such as high- and low-mass
star-forming regions and protoplanetary disks [108–110].
Its structural similarities to more complex, biologically
important species such as amino acids give formic acid a
distinctive role in the field of astrobiology. Indeed, chemical
routes to form glycine from HCOOH have been explored
since the 1970s (e.g., [111–113]). In the present work, we
have obtained the spectroscopic parameters and simulated
rotational spectra for the cis and trans rotamers of HCOOH.
Both isomers have Cs-symmetry, with an energy difference
of 16.3 kJ mol−1 between them [114]. It should be noted,
however, that since both rotamers are in equilibrium at
300K, their rotational spectrum measurements are virtually
inseparable. The determination of their respective rotational
frequencies and spectroscopic parameters from experiment
must then be performed by means of separate fittings of
the intensity-weighted lines within the conjoined spectrum.
Thus, caution is necessary when comparing experiment and
theory for these species.

Fig. 2 Rotational spectrum of H2CS at 300 K simulated with mPW2PLYPD/aug-cc-pVTZ level of theory (black). The experimental spectrum is
shown in red. In the right panel, an astronomical relevant region is zoomed in
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Table 3 presents the calculated and experimental
spectroscopic parameters of c-HCOOH. Considering the
main terms of the rotational energy expression, the best
performance was achieved by the mP2WPLYPD/aug-cc-
pVTZ level of theory, with a relative error of ∼ 0.29%
for the effective rotational constants and ∼ 2.9% for
the quartic centrifugal distortion constants. Comparatively,
the B2PLYP/cc-pVTZ and B2PLYPD/aug-cc-pVTZ levels
of theory yielded errors of, respectively, ∼ 0.54%
and ∼ 0.60% for the effective rotational constants.
While the incorporation of dispersion corrections and
diffuse functions to the B2PLYP functional resulted in a
difference of ∼ 460 MHz in the rotational constant A0

toward the experimental value, it also led to B0 and C0

values ∼ 10 MHz further from experiment. Conversely,
mPW2PLYPD/aug-cc-pVTZ obtained both B0 and C0

constants ∼ 45 MHz closer than B2PLYP/cc-pVTZ to
the measurements. Moreover, dispersion corrections have
considerably improved the quartic centrifugal distortion
constants with all functionals, as one would expect.
The B97D/aug-cc-pVTZ level of theory yielded quartic
centrifugal distortion constants closest to experiment, with
a mean error of ∼ 2.4%. However, its larger discrepancies
for the effective rotational constants (∼ 1.7%) make
this functional the least adequate to perform spectrum
simulations. Regardless of the choice of functional,
however, the sextic centrifugal distortion constants show

great variance on accuracy (with relative errors ranging
from ∼ 11 to ∼ 100% depending on the coefficient).
Nonetheless, considering the small absolute magnitude of
those constants and their high dependency on the theory
level against a relatively small contribution to the rotational
energy, higher errors are expected and rather tolerated.

Predicted and measured constants for the t-HCOOH are
listed in Table 4. In this work, the effective rotational
constants of the trans rotamer were also best predicted
by the mPW2PLYPD/aug-cc-pVTZ level of theory, again
with a mean relative error of ∼ 0.29%. Comparatively,
the effective rotational constants obtained by Demaison
et al. [115] with CCSD(T)/cc-pVTZ calculations yielded
relative errors of ∼ 0.7%. As for the cis rotamer, B0

and C0 rotational constants calculated with mPW2PLYPD
were displaced around 40 MHz toward the experimental
value in comparison with B2PLYPD. For this configuration,
the addition of diffuse functions and dispersion corrections
to the B2PLYP functional were much less impactful than
for the cis rotamer, only improving the A0 rotational
constant in the B2PLYPD/aug-cc-pVTZ level of theory
by ∼100 MHz. Nevertheless, distinctions between the
behaviors of each isomer could be largely influenced by
the difficulty in dissociating their experimental spectra. The
GGA functional yielded effective rotational constants with
a mean relative error of ∼ 1.8%, the worst performance
between all functionals. Regarding centrifugal effects, the

Table 3 Calculated and experimental spectral parameters of c-HCOOH

B2PLYP B2PLYPD B97D mPW2PLYPD Experimentala

cc-pVTZ aug-cc-pVTZ aug-cc-pVTZ aug-cc-pVTZ

A0 (MHz) 86,703.563 86,242.515 85,059.319 86,768.958 86,461.624

B0 11,604.990 11,596.418 11,472.794 11,654.416 11,689.185

C0 10,211.191 10,208.034 10,094.924 10,260.528 10,283.996

μ (D) 3.858 3.908 3.755 3.941 3.790

ΔJ (MHz) 0.00813 0.00824 0.00860 0.00816 0.00836

ΔJK −0.06967 −0.06979 −0.06742 −0.07026 −0.07144

ΔK 2.38676 2.38092 2.39963 2.38177 2.36167

δJ 0.00136 0.00138 0.00143 0.00137 0.00142

δK 0.03808 0.03841 0.04021 0.03813 0.04075

HK × 10−4 1.639 1.644 1.722 1.629 1.851

HKJ × 10−6 −4.348 −4.466 −4.764 −4.338 −9.673

HJK × 10−7 −3.751 −3.891 −4.485 −3.787 −2.974

HJ × 10−9 5.768 5.719 5.377 5.798 10.64

hJ × 10−9 5.071 5.180 5.525 5.129 2.317

hJK × 10−8 5.529 5.331 5.073 5.511 −73.00

hK × 10−5 1.431 1.440 1.499 1.428

a[116]
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Table 4 Calculated and experimental spectral parameters of t-HCOOH

B2PLYP B2PLYPD B97D mPW2PLYPD Experimental a CCSD(T) b

cc-pVTZ aug-cc-pVTZ aug-cc-pVTZ aug-cc-pVTZ cc-pVTZ

A0 (MHz) 77,194.408 77,021.950 76,693.034 77,300.596 77,512.235 77,377.000

B0 11,978.294 11,953.367 11,775.965 12,023.530 12,055.106 11,934.067

C0 10,345.289 10,323.635 10,184.043 10,381.245 10,416.115 10,322.786

μ (D) 1.465 1.511 1.506 1.528 1.420

ΔJ (MHz) 0.00836 0.00834 0.00838 0.00832 0.009996 0.00973

ΔJK 0.15283 0.15321 0.17484 0.15033 −0.086249 -0.08872

ΔK 1.2160 1.2321 1.3088 1.2212 1.702447 1.69560

δJ 0.00117 0.00116 0.00110 0.00117 0.001949 0.00189

δK 0.09748 0.09723 0.10243 0.09654 0.042732 0.03863

HK × 10−5 4.589 4.682 5.037 4.626 12.12 11.73

HKJ × 10−6 1.373 1.066 1.686 1.089 −10.57 −9.2

HJK × 10−6 1.212 1.241 1.367 1.217 0.102 0.013

HJ × 10−9 −2.394 −1.975 −2.838 −1.872 13.14 10.3

hJ × 10−9 1.166 1.349 1.247 1.360 5.763 7.3

hJK × 10−7 6.115 6.379 7.162 6.236 0.9750 1.3

hK × 10−5 2.567 2.575 2.841 2.531 1.482 1.3

a[116]
b[115]

B2PYLP/aug-cc-pVTZ level of theory predicted the most
accurate quartic centrifugal distortion constants, although
for the t-HCOOH rotamer the calculated values were much
farther from the experimental data than for c-HCOOH. In
particular, the ΔJK and δK constants predictions yielded
relative errors of more than 100%, whereas for the other
quartic constants the relative errors were around 25%.
Furthermore, Demaison et al. [115] obtained quartic and
sextic centrifugal distortion constants comparatively closer
to experiments.

As for H2CO, the inconsistency of the δK constant
was investigated. From the planarity conditions and the
experimental values for the other quartic centrifugal
distortion constants, one can obtain δK = 0.0378 MHz for
c-HCOOH and δK = 0.0400 MHz for t-HCOOH. For the
cis rotamer, the derived experimental value of δK was again
generally closer to the theoretical predictions, yielding mean
relative errors of ∼ 1%. The exception was the B97D/aug-
cc-pVTZ level of theory, which predicted a δK constant
that was closer to measurements. For the trans isomer,
however, the τ constants (Eq. 24) seem to be less accurately
described by the theory, and as a result the discrepancies
of the ΔJK and δK predictions were unusually large. Thus,
the “corrected” value for δK is still rather different from
the calculations, since the latter are directly affected by the
seemingly amiss τ constants.

The simulated spectra of c-HCOOH and t-HCOOH at
the mPW2PLYP/aug-cc-pVTZ level of theory are shown
in Figs. 3 and 4, while the spectra simulated at the
B2PLYPD/aug-cc-pVTZ and B97D/aug-cc-pVTZ levels of
theory are presented in the SI. For the c-HCOOH rotamer,
experimental transitions were obtained from the CDMS
catalog, while for t-HCOOH the experimental spectrum
was available at JPL. All simulations were performed with
Watson’s A-type Hamiltonian, truncating a J maximum of
100 for the cis and 20 for the trans rotamer.

For c-HCOOH at low J values (< J = 10),
predicted frequency errors were around 100 MHz for
the mPW2PLYP/aug-cc-pVTZ level of theory, ranging
from ∼13 to ∼195 MHz. The mean errors associated
with B2PLYP/cc-pVTZ and B2PLYPD/aug-cc-pVTZ were,
respectively, ∼ 348 and ∼ 971 MHz. These results suggest
that, similarly to H2CO and H2CS, the B0 and C0 effective
rotational constants are much more relevant to the rotational
energy levels of c-HCOOH than the A0 constant. Although
the B97D functional was the best for describing the
quartic centrifugal distortion constants, frequency errors
for this system even at low J values were approximately
3 GHz, much larger than for all the other levels of theory.
Ergo, the larger discrepancies in the effective rotational
constants predicted with B97D have much more influence
than centrifugal corrections to the energy levels. Again,
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Fig. 3 Rotational spectrum of
c-HCOOH at 300 K simulated
with mPW2PLYPD/aug-cc-
pVTZ level of theory (black). In
the right panel, an astronomical
relevant region is zoomed in.
The experimental spectrum is
shown in red

it becomes evident that accurate rotational constants are
fundamental to correctly predict rotational frequencies.

For t-HCOOH, the mPW2PLYP/aug-cc-pVTZ level of
theory predicted frequencies with a mean error of 614 MHz
at low J values, and B2PLYPD/aug-cc-pVTZ yielded errors
of ∼ 1.47 GHz. Notably, frequency discrepancies for t-
HCOOH were significantly higher than for the cis rotamer,
despite both configurations presenting effective rotational
constants similarly well described by theory. Thus, it is
likely that the substantial difference between frequency
prediction errors for each rotamer is due to the effectiveness
of the functionals to describe the system’s quadratic

force field, and consequently to determine its centrifugal
distortion effects. Nevertheless, the mPW2PLYP/aug-cc-
pVTZ has consistently achieved the best theoretical
frequencies for HCOOH, with sufficiently good predictions
to guide microwave spectroscopy measurements.

For both HCOOH isomers, but especially for the cis
rotamer, transition intensity predictions deviated consid-
erably from the measured spectra. This result is unex-
pected, since both yielded permanent dipole moments
fairly close to experiments with all functionals. Precisely,
while the experimental values for the two dipole moment
components of c-HCOOH are listed as μa = 2.65 D and

Fig. 4 Rotational spectrum of
t-HCOOH at 300 K simulated
with mPW2PLYPD/aug-cc-
pVTZ level of theory (black). In
the right panel, an astronomical
relevant region is zoomed in.
The experimental spectrum is
shown in red
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μb = 2.71 D [114], the mPW2PLYPD/aug-cc-pVTZ cal-
culations derived μa = 2.80 D and μb = 2.77 D, the
least accurate among all functionals. Indeed, semi-empirical
simulations of c-HCOOH rotational spectrum where the
experimental dipole moment components were employed
also result in the same spectral profile as derived with the
theoretical parameters.

HNCO

Isocyanic acid (HNCO), the smallest molecule containing
the four biogenic elements, was first detected in the
interstellar medium toward the GMC Sgr B2 [117–119].
Since then, it has been detected toward multiple different
environments, ranging from high- and low-mass protostars
to extragalactic sources [22, 120–124]. The main formation
pathway for this molecule in hot cores consists in gas-
phase neutral-neutral reactions: complex organic molecules
formed from HNCO evaporate from grain mantles to
the gas phase, where they suffer dissociation processes
leading to the production of HNCO [122, 125]. As a
consequence, numerous works have suggested that HNCO
could trace large-scale shocks, giving insight on the source’s
morphology [125–127].

In Table 5, calculated and experimental spectroscopic
constants of HNCO are listed. The mean relative errors of

the effective rotational constants yielded by the functionals
B2PLYPD, B97D and mPW2PLYPD were, respectively, ∼
4.2%, ∼ 6.1%, and ∼ 3.1%. Those unusually large errors
are predominantly associated with the A0 constant, which
was generally poorly predicted in comparison with the other
case studies. As for H2CS and HCOOH, the best predictions
were achieved by the mPW2PLYPD/aug-cc-pVTZ level of
theory, whereas the effective rotational constants calculated
with the GGA functional were the furthest from experiment.
Nonetheless, all three functionals yielded better predictions
than calculations at the CISD level of theory reported by
Ref. [128]. Centrifugal distortion is large for HNCO, and
as a consequence its constants were particularly difficult
to predict, with discrepancies as big as three orders of
magnitude compared with the measurements.

Isocyanic acid constitutes a quasi-symmetric rotor, given
that the B0 and C0 rotational constants are accidentally
quasi-degenerate. Thus, the S-reduction of Watson’s Hamil-
tonian [49] was employed in the simulation. Figure 5 shows
the predicted spectrum of HNCO at the mPW2PLYP/aug-
cc-pVTZ level of theory and the experimental spectrum
from the JPL database. The simulation was performed at
T= 300K , with Jmax = 47 and sextic centrifugal distor-
tion constants were not included. Intensity units were set to
arbitrary due to an overflow of the Boltzmann expression
at high J levels, which is a direct consequence of the large

Table 5 Calculated and experimental spectral parameters of HNCO

B2PLYP B2PLYPD B97D mPW2PLYPD Experimental CISD

cc-pVTZ aug-cc-pVTZ aug-cc-pVTZ aug-cc-pVTZ

A0 (MHz) 1,006,272.618 1,022,565.218 1,075,036.194 994,939.517 918,504.400a 818,424.000

B0 11,145.126 11,138.053 11,089.834 11,179.388 11,071.008 10,911.000

C0 10,861.358 10,851.251 10,785.718 10,904.344 10,910.576 10,768.000

μ (D) 2.109 2.079 2.034 2.090 2.070b

ΔJ (MHz) 0.00260 0.00259 0.00251 0.00265 0.003486a

ΔJK 15.9048 16.4925 18.3726 15.1341 0.931700

ΔK 5906.15 6428.21 8876.09 5034.28 6065.60

δJ 0.00027 0.00028 0.00034 0.00024 −0.000073

δK 0.00009 −0.00009 −0.00010 −0.00008 −0.000037

HK × 10+2 (MHz) 1.243 1.463 2.830 0.8876 2.876

HKJ × 10−1 4.209 4.718 7.331 3.370 0.3229

HJK × 10−4 1.647 1.754 2.153 1.500 0.02490

HJ × 10−9 −4.227 −4.295 −4.270 −4.181

hJ × 10−9 −2.631 −2.695 −2.857 −2.548

hJK × 10−11 −2.213 −3.404 −10.68 1.201

hK × 10−10 3.556 3.719 4.567 3.196

Theoretical values at CISD level of theory are taken from [128]
aExperimental effective rotational constants and quartic centrifugal distortion constants obtained from [129]
bExperimental electric dipole moment from [130]
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Fig. 5 Rotational spectrum of
HNCO at 300 K simulated with
mPW2PLYPD/aug-cc-pVTZ
level of theory (black). The
experimental spectrum is shown
in red

centrifugal distortion effects felt by this molecule. The sim-
ulated spectra at B2PLYPD/aug-cc-pVTZ and B97D/aug-
cc-pVTZ levels of theory are shown in the SI.

The simulated and experimental spectra follow the
same profile throughout all values of J . However, due
to the unusually large error associated with the predicted
A0 constant, calculated frequencies were significantly
displaced in comparison with measured transitions. Overall,
the mPW2PLYPD functional derived frequencies with
discrepancies two orders of magnitude smaller than the
ones obtained with B2PLYPD and B97D. More refined
dispersion correction schemes and larger basis sets are
likely to substantially improve those predictions.

Conclusions

In the present work, we briefly reviewed the most common
model Hamiltonians to calculate the rotational spectro-
scopic constants of asymmetric tops beyond the rigid-rotor
approximation. Those constants were used in the simula-
tion of rotational spectra of some astrochemically relevant
molecules. Spectroscopic constants calculated at DFT level
of theory are overall close to measurements, resulting in
rotational frequency predictions suitable for guiding labo-
ratory experiments. Among the three chosen functionals,
mPW2PLYP with dispersion corrections is the most suc-
cessful in deriving effective rotational constants similar to
measured values. In general, the GGA functional B97 with
dispersion corrections predicted the most accurate quartic
centrifugal distortion constants. However, its effective rota-
tional constants are the furthest from experiment, resulting
in the largest discrepancies in frequency predictions. Addi-
tionally, the B0 and C0 rotational constants have consistently
been noted to play a dominant role in the simulations, being

much more influential to the frequency predictions than the
A0 constant for both C2v and Cs symmetry species.

Moreover, the theoretical description of the δK centrifu-
gal distortion constant is likely to be neglecting important
higher order terms, since its measured values are inconsis-
tent with the other quadratic force field constants for H2CO,
H2CS, c-HCOOH, and t-HCOOH. In the case of HNCO,
the particularly strong centrifugal distortion is not described
accurately enough at all levels of theory, requiring more
refined theoretical treatments.

To the best of our knowledge, theoretical calculations
of the centrifugal distortion constants of HNCO and c-
HCOOH, as well as the effective rotational constants of
c-HCOOH presented in this work, are being reported for
the first time. The simulated spectra for the molecules
considered here show a general good agreement with the
experimental values, especially for transitions with J values
up to 10, although the intensities are not so well reproduced
in some cases.
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126(16):164305–164305
116. Winnewisser M, Winnewisser BP, Stein M, Birk M, Wagner G,

Winnewisser G, Yamada KMT, Belov SP, Baskakov OI (2002) J
Mol Spectrosc 216(2):259–265

117. Snyder LE, Buhl D (1972) Astrophys J 177:619
118. Churchwell E, Wood D, Myers PC, Myers RV (1986) Astrophys

J 305:405
119. Kuan YJ, Snyder LE (1996) Astrophys J 470:981
120. Bisschop SE, Jørgensen JK, Bourke TL, Bottinelli S, van

Dishoeck EF (2008) Astron Astrophys 488(3):959–968
121. Turner BE, Terzieva R, Herbst E (1999) Astrophys J 518(2):699–

732
122. Zinchenko I, Henkel C, Mao RQ (2000) Astron Astrophys

361:1079–1094
123. Martı́n S, Requena-Torres MA, Martı́n-Pintado J, Mauersberger

R (2008) Astrophys J 678(1):245–254
124. Martı́n S, Martı́n-Pintado J, Mauersberger R (2009) Astrophys J

694(1):610–617
125. Rodrı́guez-Fernández NJ, Tafalla M, Gueth F, Bachiller R (2010)

Astron Astrophys 516:A98
126. Meier DS, Turner JL (2005) Astrophys J 618(1):259–280
127. Minh YC, Irvine WM (2006) New Astron 11(8):594–599
128. Defrees DJ, Loew GH, McLean AD (1982) Astrophys J

254:405–411
129. Yamada K (1980) J Mol Spectrosc 79(2):323–344
130. Hocking WH, Gerry MCL, Winnewisser G (1975) Can J Phys

53(19):1869–1901

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

278   Page 16 of 16 J Mol Model (2020) 26: 278


	Rotational spectrum simulations of asymmetric tops in an astrochemical context
	Abstract
	Introduction
	Theoretical background
	The asymmetric rigid rotor
	The rotational Hamiltonian beyond the rigid rotor approximation
	Vibration-rotation interaction constants
	Anharmonic vibration constants
	Centrifugal distortion constants
	Transition intensities

	Computational details
	Results and discussion
	H2CO
	H2CS
	HCOOH
	HNCO

	Conclusions
	References


