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A new internally contracted direct multiconfiguration-reference configuration interaction 
(MRCI) method is described which allows the use of much larger reference spaces than any 
previous MRCI method. The configurations with two electrons in the external orbital space 
are generated by applying pair excitation operators to the reference wave function as a whole, 
while the singly external and internal configurations are standard un contracted spin 
eigenfunctions. A new efficient and simple method for the calculation of the coupling 
coefficients is used, which is well suited for vector machines, and allows the recalculation of all 
coupling coefficients each time they are needed. The vector H·c is computed partly in a 
nonorthogonal configuration basis. In order to test the accuracy of the internally contracted 
wave functions, benchmark calculations have been performed for F-, H 20, NH z, CH2, CH3, 

OH, NO, N 2, and 0z at various geometries. The deviations of the energies obtained with 
internally contracted and un contracted MRCI wave functions are mostly smaller than 1 mH 
and typically 3-5 times smaller than the deviations between the uncontracted MRCI and the 
full CI. Dipole moments, electric dipole polarizabilities, and electronic dipole transition 
moments calculated with un contracted and contracted MRCI wave functions also are found to 
be in close agreement. The efficiency of the method is demonstrated in large scale calculations 
for the CN, NH3, CO2 , and Cr2 molecules. In these calculations up to 3088 reference 
configurations and up to 154 orbitals were employed. The biggest calculation is equivalent to 
an uncontracted MRCI with more than 78 million configurations. 

I. INTRODUCTION 

Multiconfiguration-reference configuration interaction 
methods (MRCI) are most powerful tools for calculating 
accurate potential energy functions (PEFs) and molecular 
properties. In comparison to many other methods used in 
quantum chemistry, which are based on single configuration 
reference states, MRCI wave functions yield a more bal
anced global description of PEFs. In recent full CI (FC!) 
benchmark calculations,I-lo it has been demonstrated for a 
number of small molecules that MRCI wave functions, 
which include all single and double excitations relative to 
complete active space self-consistent field (CASSCF) refer
ence functions, yield PEFs which closely parallel the FCI 
results. Many previous applications of the MRCI method 
have shown that highly accurate results are obtained when 
large atomic basis sets are used. Another advantage of the 
MRCI method is that wave functions for electronically ex
cited states can be calculated. There are also many cases 
known in which ground electronic state wave functions can
not be well represented by a single configuration, and in 
which a balanced description of electron correlation effects 
requires MRCI wave functions. 

The main bottleneck ofthe conventional MRCI method 
is the fact that the size of the configuration expansion and the 
computational effort rapidly increases with the number of 
reference configurations. This makes it necessary either to 
apply configuration selection schemes using perturbation 

theory, 11-14 or to select quite a small number of dominant 
reference configurations. However, it is often difficult to 
make a selection of a small number of configurations which 
is balanced for all parts of the PEFs or for various electronic 
states. Moreover, the effect of configuration selection on 
nonenergetic properties like dipole or transition moments is 
difficult to predict and sometimes large. It is, therefore, gen
erally desirable (i) to include all single and double excita
tions relative to the reference configurations into the wave 
functions, and (ii) to be able to use much larger reference 
spaces than has been possible so far. 

The inclusion of all single and double excitations rela
tive to a small number of reference configurations has been 
made possible by the development of direct CI proce
dures. 15

-
32 In these methods the required eigenvectors are 

calculated iteratively without explicitly constructing and 
storing the Hamiltonian matrix. In each iteration the prod
uct H·c, where c is a trial vector, is calculated directly from 
the molecular integrals and the coupling coefficients. The 
coupling coefficients, which depend only on the structure of 
the configurations, are usually stored on a formula file. Var
ious techniques for their evaluation have been described, 
most of which employ group theoretical meth
ods. 24.29.31.33-37 It is now well known that the nontrivial cou-
pling coefficients for a singles and doubles CI depend only on 
the reference space and hence involve the labels of just the 
internal orbitals. 17.24.30 

Despite all this progress, the applicability of the 
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MRCI(SD) method has been limited so far by the fact that 
the length of the configuration expansion and ofthe formula 
file quite rapidly increases with the number of reference con
figurations. In general, an MRCI (SD) wave function can be 
written in the form 

creases at least with np' N 4 + n"p' N 3, where Nis the number 
of external orbitals, n p the number of N - 2 electron states 
P, and I < x<2. It is obvious from Table I that such calcula
tions with large basis sets and more than about 100 reference 
configurations are very expensive. 

'I' = I cI'I') + I I c~'I'~ + I I C:b 'I'~, (1) 
I SaP ab 

where G,b denote external orbitals (not occupied in the refer
ence configurations) and Sand P denote internal N - I and 
N - 2 electron hole states. 'I' l' 'I'~, and 'I'~b are internal, sin
gly external, and doubly external configurations, respective
ly. Here and in the following, superscripts denote different 
matrices or vectors, and subscripts their elements. The refer
ence space is a subset of the internal configurations '1'1' Table 
I shows for several applications how the number of internal 
states I, S, and P depends on the number of reference config
urations. The effort for any MRCI(SD) calculation in-

In order to reduce the number of variational parameters 
in MRCI wave functions two different contraction schemes 
have been proposed and used. In the "externally" contracted 
CI ofSiegbahn,x.39 the singly and doubly external configura
tions are contracted as 

(2) 

'I' p = I a:b 'I'~b. (3) 
oh 

The contraction coefficients a are obtained by first order 
perturbation theory. The number of variational parameters 

TABLE I. Number of reference configurations and internal functions for the test calculations discussed in this 
paper. 

Nel. N-lel. N-2el. N- 2el. 
Molecule State Ref. Conf." I S P( uncontracted) Dp( contracted) 

NH2 'E, 49 49 364 414 35 
NH, 'A, 59 59 364 504 36 
H,O 'A, 55 142 736 694 49 
F~ 'Sh 276 276 2352 2368 64 
F- 'S' 492 492 2352 2688 64 
CH, 'A, 56 56 210 210 36 
CH, 'E, 51 51 294 295 35 
CH, 'A 2' 188 188 1078 1044 48 
N, 'A, b 32 32 210 210 36 
NO '11 ' 54 54 364 496 36 
OH d 2fI ' 252 1512 5444 2866 81 
OH d 2L."+ l' 258 1536 5467 2887 81 
0, '~g- h 14 14 294 510 36 
CN e ,~+ , 616 616 4116 6048 64 
CN' 2~+ c 987 6281 25014 14235 100 
NH, g IA"c 1308 1308 6048 5873 81 
CO, h 12 / b 41 2406 14785 5745 143 
CO, h 'Il" 

h 74 2700 21924 11236 144 
Cr, i '~/ b 3088 22144 182216 108192 144 

'The definition of the reference space for NH" H20, CH2, CH" N" F-, and NO is the same as in the MR
CI( BIG) calculations of Bauschlicher et al. (Refs. 1-10). The number of N electron functions corresponds to 
the number of internal configurations in the MR-CI wave functions and does not include functions of symme
tries other than the specified ones. 

bCalculated using D2h symmetry. 
'Calculated using C," symmetry. 
d Space (3221) of Ref. 7. 
e Active space: 30' - 60', 111' - 211', CASSCF reference. 
, Active space: 30' - 60', 111" - 211", 18; all configurations which in the CASSCF wave functions had coefficients 
larger than 0.002 at any of 10 distances between 1.6 and 4.0 bohr were included in the reference. 

g Active space: 2a, - 5ajo 1b, - 2b" Ib, - 2bjo CASSCF reference. 
h Active space: 30'", 40'", 50'g, 111"", l11'g' 211",,; all configurations which in the CASSCF wave functions have 
coefficients larger than 0.02 at any of the Dr h CO distances 2.0, 2.2, 2.4 bohr were included in the reference 
wave functions. The orbitals 20'", 30'g' and 40'g are doubly occupied in all reference configurations but corre
lated at the CI level. For further details see Ref. 55. 

i All orbitals resulting from 4s and 3d atomic orbitals correlated. The reference configurations were generated 
from the CASSCF by applying the following restrictions: four electrons allowed in the four orbitals resulting 
from 4s, 3d,., two electrons allowed in the two orbitals resulting from 3d" _ y" two electrons allowed in the 
two orbitals resulting from 3d", two electrons allowed in the two orbitals resulting from 3d", two electrons 
allowed in the two orbitals resulting from 3d". 
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is then equal to the number of internal states shown in Table 
I. The effort for an externally contracted CI should be some
what smaller than the effort for one iteration with the uncon
tracted wave function. Therefore, the scaling of the compu
tational expense with the number of reference configurations 
is the same as in an un contracted CI. Most importantly, the 
leading term for large basis sets is still n p . N 4. A further 
disadvantage of this method is that some contraction coeffi
cients a~ may be zero due to Brillouin's theorem, which 
might lead to considerable errors for one-electron proper
ties. 

Another contraction scheme was first discussed by 
Meyer40 and Siegbahn41 and was first worked out in detail 
and implemented by Werner and Reinsch. 30 In this method 
the configurations are generated by applying pair excitation 
operators to the reference wave function as a whole. This 
effectively generates linear combinations of the configura
tions 'I'~b with different internal states P and is therefore 
called "internally contracted CI." There are two major ad
vantages of this scheme: (i) the contracted configurations 
span exactly the first order interacting space of the reference 
function, and (ii) the number of contracted internal states is 
essentially independent of the number of reference configura
tions. It depends only on the number of correlated orbitals. 
For m correlated orbitals at most m3 contracted internal 
N - 1 electron states can be obtained by two annihilations 
and one creation, and m2 contracted N - 2 electron states by 
two annihilations. 30

,40-42 Hence, the main bottleneck of the 
MRCI method, namely the strong dependence of the num
ber of internal N - 2 electron states on the number of refer
ence configurations, is eliminated. It has been demonstrated 
by Werner and Reinsch42 that the error caused by the con
traction is negligible, both for the energy and for one-elec
tron properties. The method has been applied successfully to 
a large number of small molecules,43 and highly accurate 
results have been obtained. Further evidence for the accura
cy of internally contracted wave functions will be given in 
this paper. 

There are two problems, however, connected with the 
internal contraction. First, the contracted configurations 
are, in general, not orthogonal. The orthogonalization is not 
difficult for the small number of internal N - 2 electron 
functions, but can be a bottleneck for the large number of 
internal N - 1 electron or N electron states. Second, the 
structure for the contracted configurations is extremely 
complex. Each contracted configuration may be a linear 
combination of hundreds of uncontracted CSFs. Therefore, 
the calculation of the coupling coefficients is much more 
difficult than for an uncontracted wave function, and it has 
not been clear how group theoretical methods could be em
ployed. In the first implementation of Werner and 
Reinsch,30 Slater determinants were used to represent the 
contracted internal parts of the functions. This method was 
quite efficient for small reference spaces and scalar comput
ers. However, because of the lack ofvectorization, the evalu
ation of the coupling coefficients was often the rate deter
mining step on modern vector machines. Moreover, the size 
of the formula file rapidly increased with the number of ref
erence configurations. For these reasons the general ad van-

tage of the internal contraction was only partly exploited in 
this implementation. 

In the present paper a new internally contracted CI 
method is described which eliminates the above bottlenecks. 
In order to avoid the problem of orthogonalizing the internal 
and singly external configurations, standard uncontracted 
orthogonal spin eigenfunctions are used for these spaces. 
This also much facilitates the evaluation of the coupling co
efficients. The doubly external configurations, which obvi
ously represent the dominant part of the configuration ex
pansion, are internally contracted, and hence the main 
advantage of the contraction is preserved. In contrast to our 
previous method, 30 some parts ofthe vector H·c are calculat
ed in the basis of non orthogonal contracted functions, which 
also facilitates the computation of the coupling coefficients. 
Orthogonalization is performed only at an intermediate 
stage in order to update the CI vector in each iteration. A 
new method to compute the coupling coefficients has been 
developed,44 which employs group theoretical techniques 
and which is vectorizable. This method is efficient enough to 
recompute all coupling coefficients each time they are re
quired, thereby eliminating the large formula file. These new 
techniques have enabled us to perform MRCI calculations 
with more than 3000 reference configurations using very 
large basis sets. 

In Sec. II we define the configuration space used. In Sec. 
III the formulas for the residual vector g = (H - E S)·c are 
summarized. Section IV deals with the structure and the 
computation of the coupling coefficients. In Sec. V we briefly 
outline the organization of our program and the direct CI 
procedure. In Sec. VI the calculation of density matrices is 
discussed. Finally, in Sec. VII we present a number of calcu
lations in order to demonstrate the efficiency of the method 
and the accuracy of internally contracted wave functions. 

II. DEFINITION OF THE CONFIGURATION SPACE 

In the following we will distinguish three different orbi
tal subspaces: (i) Core orbitals, which are doubly occupied 
in all configurations and, hence, not correlated. (ii) Valence 
orbitals (labeled i,j,k,l, ... ). which are occupied in the refer
ence configurations and correlated in the CI wave function. 
(iii) External orbitals (labeled a,b,c,d, ... ), which are unoc
cupied in the reference wave function. The labels r,s,t,u, ... 
will be used to denote any orbital. We also use the term 
internal orbital to describe those orbitals which are occupied 
in the reference, i.e., (i) and (ii) above. The core orbitals can 
be removed from the whole formalism by replacing the one
electron Hamiltonian h by a core Fock matrix F 

core 

F = h + I (2J" - Krr) (4) 

and by adding the core energy 
core 

(5) 

to the total energy. In the remainder of this paper all summa
tions involving internal orbitals will run over valence orbi
tals only. 

For the following discussion it is useful to define sets of 
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standard spin adapted configuration state functions (CSFs) 
with zero, one and two electrons in the external orbital 
space. If necessary, we will distinguish orbital configura
tions, which are defined by the number of electrons in each 
orbital irrespective of the spin coupling, and the spin cou
pling. We will use genealogical spin eigenfunctions45

,46 with 
the external electrons coupled last. The spin couplings will 
be labeled fl, v, etc., and the internal parts of the orbital 
configurations with zero, one, and two electrons in the exter
nal orbital space by {J,J, ... }, {S,T, ... }, and {P,Q, ... }, respec
tively. Hence, the internal, singly external, and doubly exter
nal configuration spaces are spanned by the CSFs \{I III , \{I~Jl' 
and \{I~~" The reference orbital configurations will be de
noted by R. All spin couplings for a given orbital configura
tion are always included. The set of N - 2 electron states Pis 
obtained from all possible two electron annihilations (or 
some predefined subset) acting on each reference configura
tion. The N - 1 electron states S are generated from the 
N - 2 electron states Pby adding one electron to the valence 
space, and the internal configurations I from the N - 1 elec
tron states Sby adding another electron. For simplicity, the 
spin labels fl, v will be omitted whenever they are not expli
citly needed. In that case it is assumed that the indices I,S,P 
denote individual spin eigenfunctions. 

In order to define our internally contracted configura
tion space we will employ the usual one-electron creation 
and annihilation operators 1] r\ 1];, where p and (J denote the 
electron spin ( p,(J = {a, f3} ). These operators obey the usu
al anticommutation rules, and can be used to define n-parti
cle excitation operators 

E. = '\' 71 Pt nf' 
lj £..t"/ I "'./' 

P 

E;j.kl = L 1]ft Etj 1]f = EtjEkl - OjkEi/, 
p 

A A A A 

Eij.kl.mn = L if;;Etj.kl 1]~ = Eij.klEmn 
p 

A. A. 

- O'mEij.kn - OjmE;n.kl' 

(6) 

(7) 

(8) 

etc. The internally contracted doubly external configura
tions are defined as 

1 A. A 

\{IijZ = 2 (Eai.b) + pEbi.aj ) \{Io, (9) 

where p = 1 for external singlet pairs and p = - 1 for triplet 
pairs. \{Io is the reference wave function, which may be com
posed of many configurations \{I R 

\{In = L aRJl\{l RI" . (10) 
Ril 

It has been shown before4
(),47 that the configurations \{Iij; are 

spin eigenfunctions which span exactly the first order inter
acting space of \{1o, provided \{lois a spin eigenfunction. The 
contracted configurations \{Iij~ can be expanded in terms of 
the set of standard uncontracted doubly external CSFs \{I~~. 
according to 

\{Iij~ = L (\{Iij~ 1 \{I~~) \{I~~., (11) 
p,. 

where the contraction coefficients are given in terms of the 

reference coefficients aRlt by 

(12) 

This shows that these configurations are obtained by con
tracting different internal states. 

The internally contracted configurations \{IijZ defined in 
Eq. (9) are, in general, not orthonormal. The overlap matrix 
is given by 

(\{IijZI\{l~1q) = + Opq(OacObd +pOadObc)Sj}.~\, (13) 

where the matrix S &.~j is determined by the second order 
density matrix of the reference wave function 10 ) = \{In 

S Vi, = (OIEikJI + pEi/Jk 10). (14) 

The configurations can be orthogonalized by the symmetric 
orthogonalization 

.I,ab _ '\' T ( phl,ab 
'l'Dp - L D.ij "t" ijp' 

i>j 

T(p) = (S(p»-112, 

which implies the normalization 

( \{lab 1 \{lab) = (2 _ 0 ) .-- 1 
Dp Dp ab' 

(15 ) 

(16) 

(17) 

The different normalization of the diagonal configurations 
\{I~p and the off-diagonal configurations \{I'ii~ is essential for 
the matrix formulation of the residual vector and the remo
val of all coupling coefficients depending on external orbital 
labels. 17.30 

The great advantage of the internal contraction is that 
the number of configurations in the CI wave function is es
sentially independent of the number of reference configura
tions. The number of internal N - 2 electron states is at most 
m2

, where m is the number of correlated orbitals. It is possi
ble to define contracted singly external and internal configu
rations in a way similar to Eq. (9). However, as has been 
discussed in detail in Ref. 47, this is not as advantageous as 
for the doubly external configurations. One of the major 
problems is that rather large sets of non orthogonal configu
rations are generated, which are difficult to orthonormalize. 
Moreover, the evaluation of the Hamiltonian matrix ele
ments between contracted singly and doubly external config
urations becomes quite difficult and time consuming. There
fore, we propose not to contract the internal and singly 
external configurations but to use the standard CSFs \{I III 

and \{I~Jl as bases for these spaces. Note that this definition of 
the singly external configuration space is difficult to that of 
Ref. 47. 

U sing the configuration basis defined above, the total 
wave function may be written as 

\{I = L CI\{II + L L c~\{I~ + L L L C~;:\{I'ii~, 
I SaD p ab 

= L CI\{II + L L c~-\{I~ + L L L C~~\{IijZ, 
1 5 Q i>j p ab 

(18 ) 
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From Eqs. (15) and (18), we obtain the relation 

(19) 

This can be used to transform the coefficient matrices C Dp 
from the orthogonal to the non orthogonal basis after they 
have been updated in a direct CI iteration. The coefficients 
C ijp are then used to evaluate part of the residual vector in 
the non orthogonal basis (cf. Sec. III). This part can be 
transformed back to the orthogonal basis in a similar man
ner. 

III. THE FORM OF THE RESIDUAL VECTOR 

In the orthogonal configuration basis, the residual vec
tor can be expressed as 

('I'~IH-EI'I') = [+ [GDP+p(GDP)t] -ECDPL, 

(20) 

('I'~IH-EI'I') = [gS-EcS]a, 

('I'/IH-EI'I') =gl _Eel. 

(21) 

(22) 

For simplicity, in this section we will often omit the labels of 
the spin functions and assume that the indices I, S, and P 
denote particular internal states including the spin coupling. 
The index D denotes orthogonalized internally contracted 
N - 2 electron states [cf. Eq. (15)]. In order to obtain the 
above quantities in a compact form, we define integral matri
ces 

(Jmn)ab = (ab Imn), 

(Kmn)ab = (amlnb), 

and vectors 

(Fk)a = Fak , 

(Ikmn)a = (ak Imn). 

We further define "external" exchange matrices 

[K(C) Ls = L Ctu (rt Ius) 
tu 

with column vectors 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

These matrices can be evaluated directly from the two elec
tron integrals in the AO basis, and then transformed into the 
MO basis (cf. Ref. 30). As described below, in our imple
mentation two such operators are evaluated for each pair 
function in each iteration, and then all contributions of two 
electron integrals with three or four external orbitals are ac
counted for. Hence, a full integral transformation is not 
needed. In principle, one of these two exchange operators 
per pair can be eliminated as discussed in Ref. 30. This is 
useful for calculations with only few reference configura
tions, but becomes difficult iflarge reference spaces are used, 
since many coupling coefficients have to be modified. In this 
case, ideally one should perform an integral transformation 
for the integrals with up to three external orbitals, and then 
there is only one exchange operator per pair and iteration to 
be calculated. However, as will be demonstrated in Sec. VII, 

for such cases the evaluation of the exchange operators 
K(C) takes only a small fraction of the total computation 
time, and the disadvantage of calculating a larger number of 
operators is relatively small. We note that it is a particular 
feature of the internally contracted MRCI method that one 
can advantageously avoid a full integral transformation. For 
the uncontracted MRCI basis, there are many more pair 
functions, and in this case the cost of the calculation of the 
exchange operators is much more significant, and often 
might be more efficiently performed in the MO basis, as dis
cussed, e.g., in Ref. 32. 

Next we have to define the coupling coefficients, which 
depend on the structure of the configurations and the con
traction coefficients. Contributions of integrals which in
volve only internal orbitals are included into the coefficients 
y. Indices in parentheses denote the interaction, and sub
scripts indicate that these coefficients may be regarded as 
elements of vectors. We also use the abbreviation Isa) 
= I'I'~) and Ip ab ) = 1'I'~b) (a=f.b). The external dummy 

labels a,b are arbitrary and enter here only formally. They 
never occur in the actual implementation, since they always 
match with the external indices in the one and two particle 
excitation operators. Ordered according to the various inter
actions the coupling coefficients are given by 

pair-internal: 

a mn (ijp,I) = ~(OIEim,jn + pEin,jm II), (29) 

pair-pair: 

a mn (ijp,klq) = Dpq (OIEik.jl,mn + pEil,jk,mn 10), (30) 

f3 mn (ijp,klq) = (OIE'm.jl,nk + pEil.jm,nk + qEimJk,nl 

single-internal: 

+ pqEikJm.nIIO), 

mn 

I /'-
+ - L L(mnlop) (0 I Eik,jl.mn.op 

2 mn op 
/'-

+ pEil.jk.mn.op 10 ), 

ak(S,I) = (SaIEaklI), 

a kmn (S,I) = (saIEak,mn II), 

pair-single: 

a k (ijp,S) = ('I'ij~ IEbk Isa) 

1 .A .A ab 
= 2 ~ (OIEia,jb + pEib,ja IP ) 

X (pab IEbk Isa), 

I .A .A ab 
= 2 ~ (OIEia,jb + pEibJa IP ) 

X (pab IEbk,mn Isa), 

( 31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 
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single-single: 

amt/(S,T) = (saIEmnITa), 

f3mn(S,T) = (salEamEnb -omnoabI Tb ), 

y(S,T) = I Fmn (salEmn ITa) 

(38) 

(39) 

+ ~ I I (mnlop)(saIEmn,opITa). (40) 
2 mn op 

A method to evaluate all these coefficients very efficiently 
will be discussed in Sec. IV. It is noted that the first part of 
Eqs. (35) and (37) is a transformation from the contracted 
basis to the standard CSFs IF ob ), while Eq. (36) corre
sponds to a transformation from the nonorthogonal to the 
orthogonal basis. Note also that in Eqs. (35) and (37) the 
sum P extends only over the spin couplings of a single orbital 
configuration. In order to evaluate the coefficients a k (Dp,S) 
directly, the two transformation matrices may be multiplied 
before the product with (pob IEbk Isa) is formed (cf. Sec. 
IV). 

We are now ready to give the explicit formulas for the 
quantities GDp, gS, and i which represent the residual vector 
and which must be calculated in each iteration of the direct 
CI procedure. As mentioned before, it is advantageous to 
evaluate part of the matrices GDp in the nonorthogonal basis, 

because then the internal N 2 states are connected to indi
vidual orbital pairs (ij) and the coupling coefficients are sim
ple density matrix elements 

I>J 

where the matrices CDp are given by 

(CDP)ok =P(CDP)ka = I(cS)aak(Dp,S), 
S 

( 41) 

(CDP)ab = (CDP)ob' (42) 

The part calculated in the non orthogonal basis is 

Gijp = I K mn I a mn (ijp,/)c l + 2p I[I Fkak (ijp,S) 
mn I S k 

+ I Ikmna kmn (ijP,S)] . (cS
) t 

kmn 

+ I I{I[2Jmna mn (ijp,klq) 
k>/ q mn 

+ Kmnf3mn (ijp,klq) ] + lY(ljp,klq) }.CkIQ. (43) 

The residual for the singly external configurations is repre
sented by the vectors 

gS = I Fk Iak (S,I)c l + I Ikmn I a kmn (S,l)c l + I{OSTF + I [r"a mtl (S,T) 
k 1 kmn I T mit 

For the internal configurations one obtains 

i = ~ + +[ +(Fk)t.CSak (S,/) 

+ I (Ikmn)t·cSakmn (S,l)] 
kmn 

x I II tr{Cijpt·Kmn}amn (ijp,l). 
i>j p mn 

(45) 

In Eq. (45) ~ represents the contributions of all internal 
configurations to i. This term is evaluated in a similar way 
as in modern full CI4K

.4
9 and MCSCF50 methods 

(46) 

A new techn~ue44 to calculate the one-particle coupling co
efficients (I IEmn IJ) efficiently for arbitrary internal config
uration spaces will be outlined in Sec. IV. Using the quanti
ties GDp, gS, and i the energy expectation value can easily be 
obtained 

E = N -l[I tr[CDPt·GDp] + I CSt.gS + I eli], 
Dp S I 

(47) 

where the norm N is given by 

N = I tr[ CDPt·CDp] + I CSt·cs + I CICI. (48) 
Dp s 1 

IV. EVALUATION OF THE COUPLING COEFFICIENTS 

The bottleneck in our previous implementation of the inter
nally contracted MCSCF-CI method30 was the calculation 
and storage of the coupling coefficients given in Eqs. (29)
(40). In order to perform the direct CI efficiently, it is im
portant that these coefficients are obtained in a particular 
order. For instance, the coefficients a mtl (ijp,klq) and 
f3 mn (ijp,klq) necessary for the evaluation of Giip are needed 
for a given orbital pair (ij), and all values for different (mn) 
are needed for given (ij) and (kl). In the following we de
scribe a new simple method to obtain the coefficients in the 
desired order. This procedure is efficient enough to recalcu
late all coupling coefficients each time they are needed, even 
for calculations with a very large number of reference config
urations. This entirely eliminates the formula file. 

As has already been discussed in Ref. 47, the third and 
fourth order density matrices (OIE,k.JI.mn 10) and 
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(OIE k '1 10) can be factorized into lower order transi-
I ,J ,rnn,op 

tion density matrices47 

(OIEik.jl.mn 10) 

= I (OIEik,jIIK) (K IEmn 10) - Oml (OIEik,jn 10) 
K 

- Okm (OIEin,jlIO), (49) 

y(ijp,klp) = Hij,kl + pHij,/k' (50) 

Hij,kl = I(OIEik,j1I K )o!r + I(OIEim,jnIO)(kmlln) 
K mn 

- I[ (OIEik,jrn 10)F1m + (0IEim,j110)Fkm] 
m 

- I I [ (0 I Eik, jm IK )B1m,K 
m K 

(51) 

where o!f is given by Eq. (46) but evaluated with the refer
ence configurations and coefficients instead of the internal 
configurations, and 

Pmn = Fmn - I(mk Ikn), (52) 
k 

Bij,K = I (ijlkl) (OIEkIIK). (53) 
kl 

The above expressions can be evaluated as matri~ products if 
the second order transition density matrices (OIEik,jIIK) for 
a given (ij) and the first order transition density matrices 
(K IEmn 10) are kept in high speed memory. The crucial 
point is to obtain the second order transition density effi
ciently for a given orbital pair (I}). This can be achieved as 
follows: First, we realize that for ~e case ~hat the one and 
two particle excitation operators Eij and Eij,kl act only on 
states in which all external orbitals are unoccupied they can 
be factorized44 

A A A (54) Eij = EiaEaj , 
'" A. A. A. A.. 

EikJI = Eia EjbEblEak (a<b). (55) 

The external dummy labels a and b are arbitrary and fixed. 
Hence, we can obtain the one-particle and two-particle cou
pling coefficients as 

(II'IEuIJv) = I(II'IEiaIS;)(S;IEajIJv), (56) 
p 

where I, J, and S again denote orbital configurations and fl, 
v, p the spin couplings. The summation in Eq. (56) extends 
only over the spin couplings of one orbital configuration S, 
which is uniquely determined by annihilating from I one 
electron in the orbital i. Similarly, the orbital configuration J 
is obtained from S by putting one additional electron into 
orbitalj. Defining basic coupling coefficient matrices 

(57) 

the dimension of which is given by the number of possible 
spin couplings for the orbital configuration I and S, Eq. (56) 
can be written in matrix form as 

(I IEIJ ) = (Xli.S·XJj·st) . (58) 
J.t I} v fLV 

Similarly, the second order transition density matrix ele
ments are obtained as 

(OlE'" II) """"" RAX Ri.SX Sj.PX TI.PX 1k•T 
ik,jl a == LLLLL a ;"'}l ILl' pv up' 

R A Ji V P 

(59) 

Here R runs over the reference orbital configurations and 
aRA are the coefficients of the reference configurations. 
Equation (59) represents a sequence of matrix' vector mul
tiplications. As required, the transition matrix elements can 
easily be obtained for a fixed orbital pair (ij) provided the 
matrices X are available. Using symmetric group techniques 
it can be shown44 that most of the matrices X are identical. 
The small set of unique matrices can be kept in high speed 
memory. The addresses of these matrices depend on the 
number and the position of the singly occupied orbitals in the 
corresponding orbital configurations and can be stored in a 
table. For more details about this technique we refer to a 
separate publication.44 

The advantage of the above method is that all coupling 
coefficients can be efficiently obtained from a relatively 
small number of quantities which can be held in high speed 
memory. The lists of orbital configurations and the address 
lists are usually not exceedingly large, since the number of 
orbital configurations is much smaller than the number of 
CSFs. The amount oflogic needed during the actual calcula
tion of the transition densities is small, and the computation 
time is dominated by matrix multiplications. On vector com
puters, the evaluation of matrix elements between configura
tions with many spin couplings, which form a significant 
fraction of the computational effort, is therefore particularly 
efficient. 

The coupling coefficients involving the internal and sin
gly external configurations can be calculated by a similar 
technique. For instance, the coefficients a mn (S,n and 
f3 mn (S,n are given by 

(S T) = (xSm,P·xTn,Pt) (60) a mn 11' v IlV' 

f3 (s T) = (X1m,St·x1n,T - 0 1) , (61) 
mn J.l' v mn fLV 

The optimal order of the multiplications in the calculation of 
the vector gS depends on the number of spin couplings in
volved and is decided automatically by the program, This 
has been discussed in detail by Saunders and van Lenthe. 32 

The crucial part in the single-single interaction is the term 
involving the all-internal two-electron integrals, Explicitly, 
this takes the form 

I II(ijlkl) (SI' IEuEk/1 Tv)c TV, (62) 
Tv ij kl 

We found it advantageous to factorize this as 

L L (SI' lEu [Up) L(ijlkl) L (Up IEkl1 Tv)c Tv. (63) 
u p kl Tv 

The lower order term - Ojk Ei! can be absorbed into the one
electron part by modifying the one-electron integrals in the 
same way as in Eq. (46), 

The most time consuming part in a calculation with 
many reference configurations is usually the pair-single in
teraction involving the singly external integrals I ~mn [Eqs. 
( 43) and (44)], for which we adopt the following algo-
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rithm. First, we set up the transformation from contracted 
pair functions 'l'ij~ to the orthonormal basis of doubly exter
nal spin eigenfunctions P ab, of which the matrix elements 

1 A A 

2 ~(OIE'a,jb +pE'b,jal
pab

) 

are needed in Eq. (35). Ideally, this matrix is constructed 
and held in memory for all ijp ofa given symmetry, together 
with the coefficient and residual matrices Cijp, G'jp associated 
with each pair ijp, but ifthere is not enough memory, smaller 
batches of ijp may be treated separately with little loss of 
efficiency. Next, the list of singly external configurations 
Isa) is scanned. For each IS), 
(i) the coupling coefficients between CSFs (pab IEbk,mn Isa) 

are constructed using the factorization techniques de
scribed above; 

(ii) these are transformed to the contracted pair function 
basis according to Eq, (35); 

(iii) the coupling coefficients are contracted with the inte
grals as Lkmn akmn (ijp,s)nmn; 

(iv) the residual vectors and matrices are updated as 

g;; = 2 I I C~f, [I a kmn (ijp,s)n mn ], 
b ljp kmn 

(64) 

G ijP-2~ s[~ ( .. S)[kmn] 
ab - ~ ea ~ a kmn IJP, b ' 

S kmn 

(65) 

It is instructive to compare this procedure with the effort 
required in an uncontracted MRCI calculation. In an un
contracted calculation, stage (i) is performed in exactly the 
same way, but of course there is no transformation (ii) to be 
done. (iii) and (iv) are the same except that I 'l'ij~) is re
placed by I 'I'~b). Thus the effort for the uncontracted calcu
lation is less for the coupling coefficients (no transformation 
is needed), but is greater by a factor equal to the ratio of the 
numbers of un contracted and contracted pair functions, for 
stages (iii) and (iv). We find that for contracted calcula
tionsonaCRAY-XMP, (i), Oi) and (iii)-(iv) takeapprox
imately 40%,30%, and 30%, respectively, of the CPU time 
for a typical case, although these ratios do vary widely for 
different calculations; typically the number of uncontracted 
functions is greater than the number of contracted functions 
by a factor or 10-100 for a large MRCI problem (cf. Table 
I). The conclusion is that we expect the contracted calcula
tion to be considerably cheaper. The contracted case also has 
the great advantage that there are many fewer CijP,Gijp to be 
held in memory, Similar considerations for the pair-pair in
teractions show an even greater advantage for the internally 
contracted method. This has enabled us to perform contract
ed calculations for which the equivalent uncontracted calcu
lation would be impossible with current hardware. 

V. THE DIRECT CI PROCEDURE 

Given the Hamiltonian residual vectors as described in 
the previous section, the eigenvectors and eigenvalues of the 
Hamiltonian are calculated iteratively using a modified Da
vidson51 procedure. This consists of maeroiterations, in 
which new matrices GDp and gS are evaluated and the CDp 

and CS are updated, and microiterations, in which we simul-

taneously optimize the coefficients cl of the internal configu
rations and the coefficients an of sets of external expansion 
vectors (CDp)(n),(cS)(Il) for which residual vectors 
(GDp)(Il),(gSYn) are available from previous macroitera
tions. This approach allows for optimum convergence of the 
expensive macroiterations at the cost of some additional in
expensive microiterations and is particularly useful if there is 
a strong coupling of the internal and external configuration 
spaces. In each macroiteration, first the quantities 
(GDp)(n), (gS)(n\ and (gl)(n) without the contributions of 
the internal configurations [i.e., the first terms in Eqs. (43)
( 45) 1 are calculated. From these quantities the matrix ele
ments (\{I~~t IH 1'I';,t), (\{I/IH I \{I;" ), and (\{I;~t 1\{I~,t) are 
easily evaluated, where 

\{In = '\' '\' (cS)n\{lil. + '\' '\' (CDP)n \{Iu" (66) 
ext L L (J.5 L L uh Dp 

.')' (J Dp a/) 

are external expansion functions, and the superscript n de
notes different expansion vectors. The above matrix ele
ments are used to optimize variationally the expansion 

\{I = Iel\{ll + I an '1';". (67) 
I 

The corresponding eigenvalue problem is solved iteratively 
(microiterations). In order to facilitate convergence in cases 
with near degeneracies or for excited states, the Hamiltonian 
matrix is calculated explicitly for a predefined subset of the 
internal configurations. This subset can be selected, for in
stance, according to the magnitude of the diagonal matrix 
elements ('I'll H I \{II ). It is noted that both in the macroiter
ations and in the microiterations non orthogonal expansion 
functions are used. This not only eliminates I/O intensive 
Schmidt orthogonalization steps, but also makes it possible 
to limit the number of expansion vectors to a predefined 
number (typically 3-5). The first expansion vector is always 
the present optimized vector, and the other expansion vec
tors are the updates of the previous iterations. We note that 
in each macroiteration only the last row (or column) of the 
matrices (\{I~~t [H 1'1';,,), (\{I;':t 1'1';,,), and (\{I/IH 1\{I;,t) 
must be evaluated. The change of the first expansion vector 
is accounted for by simple transformations of the above ma
trices. 

The optimization of the wave function in Eq. (67) yields 
the optimized coefficients {c /} for the internal configura
tions, the coefficients all for the external expansion vectors, 
and the variational energy for the present iteration. The coef
ficients an are used to obtain improved external coefficients 
CDp, cS, and the corresponding parts of GDp,gs. Finally, the 
contributions of the internal configurations are added to 
GDp,gS using the new coefficients {e/}. A new expansion vec
tor is then obtained as 

Ll(CDp) = _ (\{ID"IH - E I\{I)/(\{IDPIH - E I \{lop) ab ab ab ab , 

(68) 

Ll(cs)a = - (\{I:IH - E I'I')/(\{I;IH - E I\{I;). (69) 

The energy denominators in Eq. (68) are approximated as in 
Refs. 17 and 30. 

This method is easily extended to a multistate treat
ment. The evaluation of excited state wave functions with 
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the internally contracted MRCI method will be discussed in 
a separate publication. 52 

VI. DENSITY AND TRANSITION DENSITY MATRICES 

For the evaluation of expectation values of one electron 
properties like dipole or quadrupole moments the first order 
density matrix is needed, and the calculation of electronic 
transition moments requires the first order transition density 
matrix. The second-order density matrix is necessary, e.g., 
for the calculation of energy gradients with respect to nu
clear displacements. We will briefly discuss the evaluation of 
the density matrix, since some advantage may be taken by 
factorizing the coupling coefficients and by performing sum
mations in a different order than in the direct CI. We will 
consider only the first order density matrices; the algorithm 
is straightforwardly extended to transition densities53 and 
second order density matrices. 54 

The first-order density matrix is given by 

D ~i) = [I CS·CSt + 2 I CDP.CDPt] , (70) 
S Dp ab 

D ~~) = [I CS I clan (S,l) 
S I 

+ 2t; ~ C'jpt. ~ CSan (ijp,S) L, (71) 

D ~~ = I clc
J (I IEmn IJ) + I CSt·c

T (S IEmn IT) 
IJ ST 

+ I I I tr{C'jpt·Cklp}amn (ijp,klp). (72) 
i>j k>1 p 

Defining 

A ~kl = tr{Cijpt·Cklp}, (73) 

we can write the last term of Eq. (72) as 

t; 6-1 A ~,kl [.f (0 I EikJI + pEilJk II) (I IEmn 10) 

- Dim (OIEik,jn 10) - Dkm (OIEin,jIIO) ]. (74) 

Hence, we can reverse the summations and first evaluate 

(75) 

Dmn = I I A ~.kl [Dim (OIEikjn 10) - Dkm (OIEin,jIIO) ] 
i>j k>1 

(74) 

and, finally, 

D ~~ = Dmn + I Vi (I IEmn 10). (75) 
I 

This saves the intermediate calculation of the third order 
density matrix. All other interactions are processed with 
similar algorithms to those applicable to the one electron 
parts of the Hamiltonian as described in Secs. III and IV. 

VII. APPLICATIONS 

In this section, we will first demonstrate that internally 
contracted MRCI wave functions yield results which are in 
close agreement with corresponding uncontracted calcula-

tions. Second, in order to demonstrate the efficiency of our 
method, we will present some large MRCI calculations, 
most of which were previously impossible. These applica
tions will be presented and discussed in detail in separate 
publications. 55-58 

In order to test the accuracy of the internally contracted 
wave functions, we have performed a number of benchmark 
calculations for which recently full CI (FC!) and uncon
tracted MRCI calculations have been published. 1-10 The cal
culated energies are presented in Table II. In most cases we 
have considered only the largest basis sets and reference 
spaces used by Bauschlicher et al. The SCF and CASSCF 
energies are also given, since in some cases slightly different 
results than in Refs. 1-10 were obtained. These discrepan
cies are probably due to differences in the basis set input 
data. 59 Table II demonstrates that for all molecules and geo
metries the deviations between uncontracted and internally 
contracted MRCI calculations are very small. The energy 
differences are typically between 0.5 and 1 mH and about 3-
4 times smaller than the differences between uncontracted 
MRCI and full CI. In particular, no significant change of the 
error with geometry is found, even though the importance of 
different reference configurations and the magnitude of the 
contraction coefficients varies strongly, Hence, there is vir
tually no loss of accuracy in calculated potential energy 
functions when the internal contraction is applied. In the 
majority of applications the differences between contracted 
and uncontracted calculations will be much smaller than 
errors introduced by the truncation of the basis set and the 
reference space. 

In Table III some calculated properties are compared 
for FCI, internally contracted, and uncontracted MRCI. 
Again it is found that the differences between contracted and 
uncontracted CI are very small, even in cases where the cor
relation contribution is large. For the OH molecule, a com
parison with the externally contracted MRCI method of 
Siegbahn38 has also been made.7,9 As expected, the internally 
contracted MRCI wave functions lead to more accurate re
sults, in particular for the dipole moment. It is noted that 
some of the CASSCF results in Tables II and III slightly 
differ from those given in Refs. 7 and 9, in particular for the 
OH calculations with the space (322) at r = 4.0 bohr and 
with space (3221) at 1.8 bohr. In these cases local minima 
have been found in the previous MCSCF calculations. 59 

Table IV shows a timing analysis for some rather large 
MRCI calculations. A calculation for the electronic ground 
state of the CN molecule with 616 reference configurations 
and a large basis set takes only 4.5 minutes CPU time on a 
CRA Y-XMP48. Accurate calculations of the CN A 2IT and 
B 2L + state radiative lifetimes are presented in a separate 
publication. 56 Even larger calculations have been performed 
for excited states of NH,58 and CO2, 55 and for the ground 
state of Crz.57 In the latter case 3088 reference configura
tions were employed, which for a basis set of 136 orbitals 
lead to more than 78 million uncontracted configurations. 
Obviously such calculations are not cheap even with the in
ternally contracted CI method. However, they can routinely 
be performed, while up to now a reasonable MRCI calcula
tion for Crz was believed to be impossible.oo It is noted that 
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TABLE II. Comparison total energies for internally contracted and uncontracted MRCI wave functions and full CI results using DZP basis sets. a 

Contracted t.E (contr. t.E (uncontr. 
Molecule State Geom. SCF CASSCF MRCI _ uncontr.) b - full CI)' 

NH, 2B, rf! - 55.573 009 - 55.620752 - 55.738 542 0.000 876 0.003202 

1.5f, - 55.387 411 - 55.498 124 - 55.602324 0.000 945 0.001940 

2.0f, - 55.188708 - 55.411 062 - 55.503 655 0.000 531 0.001 338 

N"'H, - 55.388 944 - 55.430552 - 55.541 081 0.000 555 0.002924 

NH, 'A, f, - 55.523 192 - 55.561 066 - 55.684428 0.001 106 0.003228 

1.5f, - 55.321 446 - 55.399 564 - 55.513 331 0.001447 0.002836 

2.0f, - 55.157035 - 55.312 772 - 55.412 366 0.000964 0.001 803 

N"'H2 - 55.370423 - 55.421460 - 55.532 757 0.000 539 0.002785 

H,O 'A, fe - 76.040 551 - 76.129 886 - 76.253 490 0.000 618 0.002516 

1.5" - 75.800 505 - 75.953 151 - 76.068 544 0.000 819 0.002042 

2.0" - 75.582 297 - 75.839 926 - 75.949 724 0.000 793 0.001 752 

F- 's - 99.444 462 - 99.582 645 - 99.658 453 0.000 131 0.000 909 

OH 2n , = 1.8 - 75.410 343 - 75.465 983d - 75.587 581 0.000 666 0.002535 
2II , = 1.8 - 75.410 343 - 75.470908' - 75.588 175 0.000 846 0.001761 
'n r = 1.8 - 75.410 343 - 75.479 334' - 75.588 544 0.000 473 0.001 765 

'l+ f = 1.8 - 75.250690 - 75.304 826d - 75.432 297 0.000 849 0.002796 
'l+ , = 1.8 - 75.250690 - 75.307 172' - 75.432 860 0.000 914 0.002168 
'l+ , = 1.8 - 75.250690 - 75.325 616' - 75.433 556 0.000498 0.001 888 

CH, 'A, f, - 39.886297 - 39.945 529 - 39.025 362 0.000 441 0.001 379 

'B, " - 39.927 947 - 39.965 954 - 39.044 360 0.000 511 0.001 388 

CH, 'A; f, - 39.566 509 - 39.624 789 - 39.718 436 0.000 688 0.002088 

1.5" - 39.283 945 -39.409115 - 39.480863 0.000 828 0.001 162 

2.0" - 39.013 010 - 39.238 005 - 39.301817 0.000 639 0.000 676 

N, 'lg" r= 2.1 - 108.955790 - 109.094744 - 109.149 884 0.000042 0.000 716 

f= 2.5 - 108.835280 - 109.030241 - 109.086495 0.000060 0.000 763 
f= 3.0 - 108.619497 - 109.900 408 - 109.956613 0.000 130 0.000 783 

NO 'n r= 2.2 - 129.265969 - 129.373576 - 129.476638 0.000 503 0.002184 
r= 3.3 - 129.032 385 - 129.226858 - 129.318463 0.000 667 0.002113 
r= 4.4 - 128.939885 -129.194791 - 129.270886 0.000 176 0.001 668 

0, 'Lg- r= 2.25 - 149.635316 - 149.731 897 - 149.869 925 0.001 149 0.004 073 
,= 2.30 - 149.631 270 - 149.733778 - 149.871 676 0.001 166 0.004105 
r = 2.35 - 149.625 115 - 149.733689 - 149.871 381 0.001181 0.004132 

aUncontracted MRCI and FC! results from Refs. 1-10. In all cases except forOH the largest basis sets and reference wave functions described in Refs. 1-10 
have been used. 

b Energy difference between internally contracted and uncontracted MRCI. 
e Energy difference between uncontracted MR-CI and full Cl. 
d Space (222) of Ref. 7; in the CASSCF calculations, the energy average of the 'n x' 'II y' and 'l" states was optimized with weights 0.25, 0.25, and 0.5, 

respectively. 
eSpace (322) of Ref. 9. The energy average of the 'I1x and 'fly states was optimized. The orbital5a, is a CTorbital. 
'Space (3221) of Ref. 7. In this case we were not able to reproduce the CASSCF results in Ref. 7. The orbitals 5a, and la, are the two /j orbital components. 

the binding energy of Cr 2 obtained from the variational 
MRCI energies at the experimental re and at infinity is still 
slightly negative ( - 0.03 eV). However, as will be discussed 
in more detail in Ref. 57, if unlinked clustered and relativis
tic effects are taken into account, a positive binding energy is 
obtained. The CO2 calculations performed for the lowest 
I ~t ' I ~u-' I Llu, and I IIu states55 made possible for the first 
time a definite assignment of the bands in the absorption 
spectrum. The timings shown in Table IV demonstrate that 
for very large internally contracted MRCI calculations most 
CPU time is spent in the single-pair interactions. Most of 
this time is needed for calculating the coupling coefficients. 
In the Cr2 calculation the number of these coefficients is of 
the order of lO9; it would therefore not be possible to store 
them on disk. Even if it were possible, reading the coeffi-

cients would take longer than their calculation, since about 
106 coupling coefficients are obtained per second! In these 
very large MRCI calculations we see that processing the in
tegrals with three and four external integrals, which domi
nates a single reference CI calculation, needs only a small 
fraction of the total CPU time. It is noted that all matrix 
operations are performed with a small set of optimized sub
routines. In particular, large dimension matrix multiplica
tions, which often dominate the whole calculation, can effi
ciently use the multitasking facilities now available on many 
computers. This is an important consideration for calcula
tions requiring large amounts of memory in order to effi
ciently use a mUltiprocessor machine. All calculations 
shown in Table IV ran with an average speed of 60-80 Mflop 
on a CRAY-XMP48. 
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TABLE III. Comparison calculated properties for internally contracted and uncontracted MRCI wave functions and fuIl CI results using DZP basis sets.' 

MRCI 

Molecule State CASSCF Intern. contr. Extern contr. Uncontracted FCI 

Dipole momentsb 

CH2 IAI 0.6915 0.7151 (0.7132) 0.715 (0.713) (0.716) 
IBI 0.2340 0.26\7 (0.2618) 0.263 (0.262) (0.264) 

OHX 2n r = 1.8c 0.6447 0.6561 0.6421 0.6558 (0.6561) 
r= 2.4 0.6664 0.6821 0.6774 0.6818 (0.6822) 
r=4.0 0.1927d 0.2329 0.2237 0.2343 (0.2391 ) 

Electronic transition moments for OH X2n-A 2I,-t-: 

OH r = 1.8e 0.1618 0.1237 0.1227 0.1230 0.1195 
r = 1.8f 0.1647 0.1198 0.1225 0.1195 
r = 1.8" 0.1356 0.1210 0.1199 0.1 198 0.1195 

Dipole polarizabilities:b 

F- IS 13.92 15.66 ( 15.97) 15.75 (16.03) (16.30) 

'Uncontracted MR-CI and Full CI values from Refs. 7, 9, and 10. The reference wave functions for CH2 and F- are the same as in the MRCI (CH2 ) and 
MRCIBIG(8) (F-) calculations in Ref. 10. 

b Values in parentheses calculated as energy derivatives with respect to a finite electric field of 0.005 a. u.; other values calculated as expectation values (dipole 
moments) or dipole moment derivatives (polarizabilities). 

cSpace (322) of Ref. 9. 
d This CASSCF dipole moment differs from the one in Ref. 9. 
eSpace (222) of Ref. 7. 
fSpace (322) of Ref. 7. 
'Space (3221) of Ref. 7. In this case our CASSCF energies and transition moment are not in agreement with those in Ref. 7. 

VIII. CONCLUSIONS 
A new efficient MRCI method has been developed 

which made possible to perform considerably larger calcula
tions than with any other MRCI method before. This has 
been achieved through three principle advances: (i) the di
rect CI procedure is performed in an internally contracted 

TABLE IV. Timing analysis for internally contracted MR-CI calculations." 

configuration basis; (ii) a non orthogonal basis is used where 
this leads to simplifications47

; (iii) a new efficient method to 
recalculate all coupling coefficients each time they are need
ed has been developed.44 It has been demonstrated that the 
internal contraction of the doubly external configurations 
does not lead to a significant loss of correlation energy nor 

Molecule CN (X2I,-t-) NH 3 (A 'A ") CO2(X lI,t) CO2 (1ln u ) Cr2(X lI,t) 

No. of orbitals 90 95 153 153 136 
No. of corr. orbitals 8 9 12 12 12 
No. of ref. config. 616 1308 41 74 3088 
No. of uncontr. CSFs 4925432 5422877 7745785 15337242 78874576 
No. of var. parameters 138808 209772 469207 596316 2467852 

Initializationb 12.6 30.9 4\.5 47.9 785.4 
Time per iterationC 37.0 76.8 157.0 237.6 2724 

Analysis oftimes per iteration (in percent): 

Single-single 14.4 13.0 28.3 29.8 24.6 
Single-pair 42.8 39.4 38.3 47.7 61.8 
Pair-pair 30.7 31.6 22.3 14.4 7.2 

I external integrals 41.2 38.9 39.9 48.6 63.4 
0,2 external integrals 43.4 47.7 49.6 43.7 34.7 
3,4 external integrals 12.2 10.2 10.4 7.4 1.9 

• AIl times are single processor CPU times for CRA Y -XMP48 in seconds. 
bThis includes partial integral transformation, calculation of basic coupling coefficients, (approximate) diag

onal Hamiltonian matrix elements, initial CI in reference space, transformation matrix for pair orthogonali
zation, starting approximation (by first order perturbation theory). 

c In order to converge the energy to 10.- 6 hartree, seven iterations for CN and CO2, eight iterations for NH" 
and eleven iterations for Cr2 were needed. 
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deteriorates the accuracy of calculated properties like dipole 
moments, polarizabilities, or electronic transition moments. 
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