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Dynamics of kinematically constrained bimolecular reactions having 
constant product recoil energy 

Chifuru Noda and Richard N. Zare 
Department of Chemistry, Stanford University, Stanford, California 94305 

(Received 6 October 1986; accepted 2 December 1986) 

A model is presented for kinematically constrained reactions in which the product recoil 
energy is assumed constant (CPR approximation). It is further assumed that the reaction 
probability is independent of both the impact parameter and the collision energy for all 
collisions that lead to products. This model predicts that (1) the product vibrational 
distribution is bell-shaped, peaking at the vibrational level with an energy equal to the reaction 
exoergicity minus the product recoil energy, (2) small values of the impact parameters 
produce high vibrational excitation while large values produced low vibrational excitation, the 
specific opacity function for the most populated vibrational level being sharply peaked at the 
impact parameter equal to the equilibrium internuclear distance of the product diatomic, (3) 
the product rotational distribution for each vibrational level differs but has the form of a sharp 
leading edge for some J value followed by a falloff whose shape depends on the form of the 
collision energy distribution, and (4) the product average rotational energy associated with 
each vibrational level decreases linearly with increasing v to a value of v corresponding to the 
maximum in the vibrational distribution followed by a more slowly changing behavior. 
Comparisons are made of these predictions with some experiments on kinematically 
constrained bimolecular reactions. Some further extensions of the CPR model are suggested. 

I. INTRODUCTION 

In a reactive encounter of a heavy atom A, and a heavy
light diatomic molecule BC to produce a heavy-heavy di
atomic molecule AB plus a light atom C, 

A + BC ..... AB + C , (1) 

conservation of total angular momentum constrains the 
oribtal angular momentum of the reagents ILl = p,bvrel> to 
appear as rotational angular momentum IJI of the AB prod
uct. 1 Herep, is the reduced mass of the A-BC pair, b is called 
the impact parameter, which is defined as the distance of 
closest approach for undeftected trajectories, and Vre1 is the 
relative velocity of the collision pair. This kinematic con
straint allows experimentalists in principle to determine the 
impact parameter distribution for the reaction channel lead
ing to a specific vibrational level, called the specific opacity 
function, from the product rotational distribution, provided 
that the relative velocity distribution of the collision partner 
leading to reaction is known. 

We have developed a model which can be used to calcu
late the product vibrational distributions, the specific opa
city functions, and the rotational distributions in each prod
uct vibrational level. The model is based on an assumption 
that the product recoil energy is a constant whose value does 
not depend on the collision energy and the impact param
eter. We refer to this as the constant product recoil (CPR) 
model. 

In general the product recoil energy is characterized by 
a distribution whose form varies with the product internal 
state distributions. However, for the kinematically con
strained A + BC ..... AB + C reaction, it may be argued that 
the light leaving atom C moves so rapidly compared to the 

heavy-heavy AB pair that under some circumstances the 
same critical configuration is reached for any impact param
eter and any (near thermal) collision energy. This suggests 
the CPR model might be an appealing first approximation. 
Further support for this model is provided for those kinema
tically constrained reactions which are described by an elec
tronjump mechanism. In such cases, the DIPR-DIP (direct 
interaction product repulsion-dissociation as in photodisso
ciation) model predicts a constant average recoil energy.2 
Siegel and Schultz carried out trajectory calculations on sev
eral model potential surfaces for kinematically constrained 
reactions.3 They found that the product recoil energy is in
deed a constant for the LEPS potential surfaces, although 
this is not a case for the HMF (hyperbolic map function) 
potential surfaces. These considerations have led us to inves
tigate the consequences of this simple model. 

II. THEORY 

Consider the energy balance for the kinematically con
strained reaction (1). We write for the energy of the reac
tants 

Ei=E(A) +E(BC) -D(Be) + Ti 

and the energy of the products 

(2a) 

Ef=E(AB) +E(C) -D(AB) + T', (2b) 

where i and/are the initial and final states, E refers to the 
internal energy, D the dissociation energy measured from 
the v = 0 vibrational level, and T the translational energy. 
For the AB product 
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E(AB) = EVib + E rot , 

where approximately 

and 

Ero! -;:::,BJ 2 

J2 
-;:::, 2p,'r; . 

(3) 

(4a) 

(4b) 

In Eq. (4b),,u' is the reduced mass and re is the equilibrium 
internuclear distance of the AB diatomic product. Due to 
the kinematic contraint, 

IJI = ILl = ,ubvrel • (5) 

When C is light compared to A and B, p: -;:::'j.l. Since 
T i = (1/2 )j.lV;el' the AB rotational energy can be expressed 
as 

Erot=(blre)2Ti. (6) 

By equating E to E' and by replacing E rot by Eq. (6), we 
obtain the following expression for the AB vibrational ener
gy: 

EVib = [1- (blr.)2] Ti + aE - Tf 

+ E(A) + E(BC) - E(C) , 

where 

IlE = D(AB) - D(BC) . 

(7) 

(8) 

By invoking the CPR approximation we replace 
IlE - T' + E(A) + E(BC) - E(C) by a constant which 
we denote by A. Note that for the reaction in which the rea
gent atom A is in the ground state and the reagent molecule 
BC is cooled in supersonic expansion, we obtain E(A) = 0 
and E(BC) = O. Also if the product atom C is in the ground 
state, E( C) = 0, and the expression for A reduces to 
A = aE - Tf, which is the difference between the exoergi
city and the product recoil energy. After the substitution, 
Eq. (7) becomes 

EVib = [1- (blr.)2]T 1 +A. (9) 

Hence, for kinematically contrained reactions, the product 
vibrational energy becomes a function of the impact param
eter and the relative initial kinetic energy. In other words, 
the (b IVrel ) pair maps uniquely onto the (v, J) state of the 
diatomic product. 4 For the case of constant product recoil 
energy, this relationship is remarkably simple. 

We find it convenient to work with dimensionless re
duced quantities, and take r. as the unit of distance and OJ. as 
the unit of energy. Then Eq. (9) may be expressed as 

V* = [1- b*2]E* +A *. (10) 

Here 

( 11a) 

is the product vibrational energy (as well as its vibrational 
quantum number), 

E*=TIIOJe (lIb) 

is the collision energy of the A-BC pair, 

A * =A IOJe , 

= [aE - T' + E(A) + E(BC) - E(C) J/OJ. 
(llc) 

is a constant expressing primarily the difference between the 
reaction exoergicity and the product recoil energy, and 

b * = b Ire (lId) 

is the reduced impact parameter. We also introduce a quan
tity R * to represent the product rotational energy: 

(12) 

The vibrational and rotational energies are treated different
ly as follows; if the vibrational energy is between v* - 1/2 
and v* + 1/2, the vibrational level v* is considered to be 
populated, and the width ofthe vibrational state is one ener
gy unit. The rotational state has a range of the rotational 
energy between R * - dR */2 and R * + dR */2 and a width 
given by the infinitesimal dR *. 

Figure 1 shows "phase space" of b * and E * for different 
product vibrational states with A * set to 10 as an example. 
Into which band the (b * ,E *) pair falls determines the prod
uct vibrational energy. Figure 2 depicts the rotational energy 
contour of the (b * ,E *) pair in phase space. Note that the 
phase space bands cannot be drawn for the rotational states 
as for the vibrational states. Figure 1 together with Fig. 2 
permits one to visualize the connection of the reagent 
(b *,E *) pair with the product (v*,R *) pair. This is schema
tically sketched in Fig. 3, and a phase space "cell" is seen to 
be bordered by four curves, v* - 1/2, v* + 1/2, R * - dR *1 
2, and R * + dR */2. 

We define several quantities in advance (see Fig. 3). 
The limiting impact parameters, which correspond to the 
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FIG. 1. Relation between (b ·,E·) pair to the product vibrational level V·. 
The value of A· is set to 10. The region to the right ofthe v· = 0 band is 
nonreactive due to insufficient energy. 
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FIG. 2. Relation between the (b • ,E '" ) pair to the product rotational energy 
R "'. WhenR· = 0, the line falls onto they and x axes. Note that most of the 
R • = 30 contour belongs to the nonreactive phase space (see Fig. I). 

v* -1/2 

E* 
R*+dR*12 

R*-dR*/2 
/' 

I 
(3*(E*) 

FIG. 3. Schematic diagram displaying the phase space cell (hatched area) 
which leads to the product (v"',R .) state. The width of the rotational state is 
exaggerated. Thelocationsofa*(E·),p·(E*), ET(b *),and Et(b·) are 
also shown. 

vibrational energies v* + 1/2 and v* - 1/2 at a given colli
sion energy E *, are represented by aCE *) and {3(E *), re
spectively. Expressions for a (E *) and {3(E *) are obtained 
fromEq. (to): 

a(E*) = [1 - (v* +! -A *)/E*]1I2, 

{3(E*)=[I-(v*-!-A*)/E*]1I2, (13) 

if the reaction is energetically permissible, and a value of 
zero is takenifa(E *) or/3(E *) becomes imaginary (i.e., the 
reaction is not allowed). The value of b * (E *) for v = 0 is 
specially denoted by /3v = 0 (E *), which is the largest energe
tically permissible impact parameter at the collision energy 
E *; if the impact parameteris greaterthan/3v=o (E *), then 
the reaction does not occur due to insufficient energy. In the 
same manner, we define the limiting collision energies, E r 
(b *) and Et(b *) [Et(b *) >ET(b *)], which lead to the 
vibrational level v* at a given impact parameter. The expres
sionsfor E reb *) andE t(b *) are derived from Eq. (to) and 
are summarized in Table I. 

With Eqs. (10) and (12), it is straightforward to calcu
late the probability to populate a single rovibronic state by 
finding the area of the cell corresponding to each (v*,R *) 
state weighted by the collision energy distribution,f (E *), 
and the reaction probability, P(b*,E*). We thus define 
P(v*,R * )dR * as the probability5 to populate a product in a 
vibrational level v* with the rotational energy between 
R * - dR */2 and R * + dR */2: 

P(v*,R *)dR * 

S Sn/(E*)P(b *,E*)b *db *dE* 
=--~~~~------------------

So sg"~o(E') /(E*)P(b * ,E*)b *db *dE* 
(14) 

The integration limits are represented by .a (see Fig. 3), and 
correspond to the cell which is associated with the (v*,R *) 

level. In many cases, a desired quantity can be calculated by the 
integration over the (b *,E *) phase space. However, the calcu
lation of the product (v*,R *) state distribution can be simpli
fied further by rewriting Eq. (14) as a double integral over v* 
and R * by a change of variables, i.e., 

TABLE I. Expressions for ET(b *) and Et(b "'). 

Condition 

v*<A*, b·>1 

v*<A*, b"',,1 

v'" =A *, b*< I 

v"'=A*, b*=l 

v*=A*, b*>1 

v*>A *, b* < 1 

v*>A *, b*>1 

Expression 

ET(b *) = (v* + 1/2 -A "')/(1- b ",2) 

Et(b *) = (v* - 1/2 - A *)/(1 - b "'2) 
ET(b *) and Et(b *) = 0 

ET(b*) =0 
Et(b *) = (v* + 1/2 -A *)/(1- b *2) 
Et(b*)=O 
Et(b"') = 00 

ET(b*)=O 
Et(b *) = (v* - 1/2 - A "')/(1 - b *2) 
ET(b *) = (v* - 1/2 - A *)/(1 - b *2) 
Et(b *) = (v* + 1/2 - A *)/(1 - b "'2) 

Et(b*) and Et(b"') =0 
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Sv: + 112 [SR: + dR:12 ~(E *)P(b * E *)b *IJ 1-ldR * ]dv* 
P(v*,R*)dR*= v -1/2 R -dR /21', , (15) 

S~ 112 [SO' f(E*)P(b *,E*)b *IJ 1-ldR *]dv* 

where 

av* aR* --
J= 

ab* ab* 

av* aR* (16) 
--
aE* aE* 

is the Jacobian of the transfonnation. By using Eqs. (10) and (12), it is readily shown that 

J= -2b*E*. (17) 

Therefore, Eq. (14) becomes 

Sv· + 112 [SR. + dR ·/2 ji(E *)P(b *,E *)E *-ld'R * ]d * 
P(v*,R*)dR*= v·-1I2 R·-dR·/2 V 

(18) 
S~ 112 [SO" f(E*)P(b *,E*)E*-ldR * ]dv* 

and the variables b * and E * are to be replaced by [R * / 
(v* + R * -A *)] 1/2 and v* + R * -A *, respectively [see 
Eqs. (10) and (12)]. 

In the following, the reaction probability P( b * ,E *) is as
sumed to have the fonn 

P(b *,E *) = p , 

when b *";;min[b!ax',8v=o (E*)], and 

P( b * ,E *) = 0, 

(19a) 

(l9b) 

whenb * >min[b :ax,,8v=o (E*)] and 0 <p..;; 1. The value of 
p does not explicitly change the results of the following calcula
tions, but is included to imply that the reaction probability need 
not be unity. The reaction probability P( b * ,E *) is nonzero for 
b * less than some critical impact parameter, which is deter
mined either by an energetic requirement [by,8v = 0 (E *)] or 
some dynamic property for the reaction system (by b!ax). 
This quantity b :ax is introduced to represent, for example, the 
crossing radius for ionic and covalent surfaces or the location of 
the centrifugal barrier in the entrance channel. In this model, 
b :ax is considered to be an adjustable parameter, and the value 
is assumed to be independent of the collision energy. 

The collision energy distribution is arbitrarily described by 

f(E*) = (E* -Et)exp[ - (E* -Et)/s*] 

for E*>Et, 

= 0 for E* <Et, (20) 

with two parameters, s* being the width of the distribution (i.e, 
temperature) and E t being the shift of the energy which, for 
example, pertains to a supersonic expansion. For this fonn of 
the collision energy distribution, the most probable collision 
energy is E * = s* + E t, while the average collision energy 
(E *) = 2s* + E t, where (E *) is defined as 

S"" E *'Ji(E * )dE * (E*) __ 0 ____ _ 

SO' f(E*)dE* 
(21) 

A translational energy barrier can also be included in the fonn 
of the collision energy distribution, but was not included in the 
following computations. Other forms of the collision energy 
distributions are discussed in the Appendix. 

III. CALCULATION OF EXPERIMENTAL OBSERVABLES 

A. Product vibrational distribution 

It is possible to compute the vibrational populations by 
carrying out the summation over all rotation energies which 
can be done using Eq. (14): 

P(v*) = L"" P(v*,R *)dR * 

SO' f(E*) [S~~~:~ P(b*,E*)b*db * ]dE* 
= , 

SO' f(E*) [fo"-o(E*) P(b*,E*)b*db* ]dE* 

(22) 

where a(E*) and,8(E*) are defined in Eq. (13) and 

"" L P(v*) = 1. (23) 
v*=o 

Since there are two intrinsic parameters, b!ax and A *, 
and two experimental parameters, E t and s*, we shall exam
ine the effect of these parameters on the product vibrational 
distributions. Figure 4 displays the vibrational distributions 
for different b!ax values. The populations of lower vibra
tionallevels vary with b :ax' but those of higher levels do not 
change. When the values of A * are varied, the peak of the 
vibrational popUlation distribution shifts and coincides with 
the value of A * (Fig. 5). 

The effect of s* is shown in Fig. 6. Again the peak of the 
distribution is detennined by the value of A *, and the fonn of 
the collision energy distribution affects only the width of the 
vibrational popUlations. In Fig. 7, the width of the collision 
energy distribution is kept constant, but the most probable 
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FIG. 4. Product vibrational populations for different values of b :. ••. The 
populations are made to join smoothly with the b :. •• = 00 populations. 

collision energy is changed. As the collision energy distribu
tions move to higher energy, the vibrational distributions 
become wider. However, the peak of the vibrational distribu
tion remains at v* = A *. 

B. The specific opacity function 

Figure 8 displays the specific opacity function normal
ized to unity for several product vibrational channels when 
A * = 10. The specific opacity function, Pv. (b *), is calculat
edas 

Pv. (b *) = LEr(b.) f(E *)dE * / (00 f(E *)dE * • 
Et(b.) / Jo (24) 

where E r (b *) and E r (b *) are defined in Table I. As can be 
speculated from Fig. 1, when v* = A *, Pv. (b *) is very nar
row and peaks at b * = 1. When v* <A *, Pv. (b *) is broad 
andextendspastb * = 1;whenv* >A *,Pv• (b *) is broad and 
does not extend past b * = 1. 

c. Product rotational energy distribution and average 
rotational energy 

The product rotatational energy distributions for sever
al vibrational levels are shown in Fig. 9 for A * = 10, and Fig. 
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30 

FIG. 5. Product vibrational populations for different values of A *. The pop
ulations are normalized to unity. 
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FIG. 6. Product vibrational populations for different values of s*. The pop
ulations are normalized to unity. 

10 displays the average rotational energies, (R * (v*) ), 
which are defined as 

(R *(v*» = 1
00 

R *P(v*,R *)dR */1
00 

P(v*,R *)dR *. 
(25) 

This can be rewritten by using Eq. (14) as 

(R*(v*» 

= fo f(E*) [S~~~:~ R *P(b *,E*)b *db * ] dE* 

fo f(E*) [S~~~:~ P(b*,E*)b*db* ]dE* 
(26) 

As seen in Fig. 9, the rotational energy distribution appears 
identical for v*>A *, resulting in constant rotational energies 
for those vibrational levels. This result is caused by our choice 
of the collision energy distribution: The numerator of the Eq. 
(18) contains a functionf(E*)P(b*,E)b*IJI- 1

, which is 
exp[ - (E* - Et)/s*]. Consequently when Et = 0, 
P(v*,R *)dR * becomes 
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FIG. 7. Product vibrational populations for different values of E~. The 
populations are normalized to unity. 
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i
VO

+
I12 

[iRO+dRO/2 ] 
P(v"',R "')dR '" ex: exp[ - (v'" + R '" -A "')Is'" ]dR '" dv'" 

vO-1I2 RO-dRO/2 

i
vo+ 112 

-:::;dR'" exp[ - (v'" + R '" - A "')Is'" ]dv'" 
Vo - 112 

= dR '" exp[ - (v'" + R '" - A "')Is"'] for R "';;oA '" - v'" 

= 0 for R '" < A '" - v'" , (27) 

using a box integral. Thus the rotational distributions be
come an exponential ofR '" for v'" > A"', and they appeariden
tical. However, the general trend of the average rotational 
energy, namely, that it decreases linearly for v'" up to 
v'" = A * and changes its slope more slowly for v* > A '" is 
independent of the form of the collision energy distributions 
(see the Appendix). 

IV. DISCUSSION 

A. Predictions of the CPR model 

It was demonstrated in the last section that once the 
CPR approximation is adopted, the experimental observa
bles can be computed in a straightforward manner. This is a 
direct consequence of the kinematic constraint for the reac
tive system to which the CPR model is applied: the rota
tional motion and the angular momentum are kinematically 
constrained. Consequently, once the value of the product 
recoil energy is fixed, the product vibrational energy is 
uniquely determined. In other words, the vibrational motion 
of the product is kinematically constrained as well as the 
rotation in the framework of the CPR model. This idea can 
be contrasted with the more general view that the product 
vibrational distribution is a dynamical property of the reac
tion and is a direct probe of the potential energy surface for 
the reaction system. 

The information on the dynamics of the kinematically 
constrained reaction is contained in the values of A * and 

, 
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" 
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FIG. 8. Specific opacity function for several product vibrational levels. 
Each function is normalized to unity at the peak. The value of b:::ax is taken 
to be infinite, and if b :::.x #- 00, the specific opacity functions vanish for 
b·> b :ax. For the corresponding vibrational distribution, see Fig. 4. 

b !ax in the CPR model. The former reflects the value of the 
product recoil energy and the latter determines the largest 
impact parameter. These dynamical properties can be stud
ied by measuring the product vibrational distribution at dif
ferent collision energies, or by measuring the product rota
tional distributions preferably at low vibrational levels to 
probe the largest impact parameter. 

The vibrational distribution calculated from the CPR 
model is generally bell-shaped (Figs. 4-7) and the width 
varies as the collision energy distribution changes. The most 
populated vibrational level has the energy equal to the value 
of A "', which is essentially the exoergicity minus the recoil 
energy. This results from the fact that the vibrational level 
v'" = A '" can be populated in two cases, when b '" = 1 and 
when E '" = O. Because of this, the phase space for the 
v'" = A '" level is the largest, causing the most populated level 
to be at v'" = A"'. 

It may be informative to investigate the behavior of the 
vibrational distribution by evaluating the integral in the nu
meratorofEq. (22). Weassumeb!ax = 00. UsingEq. (19), 
the first integral can be shown to be [/3 2 (E "') - a 2 (E '" ) ]12, 
which becomes (2E "') -I using Eq. (13), provided that the 
vibrational level v'" is accessible at the collision energy E '" . 
Therefore, the vibrational popUlation is approximately ex
pressed as 

P(v"') ex:fo f(E "')E ",-IdE'" , (28) 

where x is zero for v'" less than A"', and x = v* - A '" for 
v'" >A "'. Consequently, the populations for v'" <A'" are 
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20 

FIG. 9. Product rotational energy distributions in several vibrational levels. 
The distributions for v· higher than v* = 10 appear identical. For the corre
sponding vibrational distribution, See Fig. 4. 
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FIG. 10. Average product rotational energies as a function of h! ... The 
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equal when b!ax = 00 (see Fig. 5), and the populations 
slowly decrease for increasing v* since the available range of 
collision energy becomes smaller. When b!ax =1= 00, the 
phase space at the large impact parameter becomes nonreac
tive, reducing the populations at lower vibrational levels 
more effectively. It should be noted that the vibrational pop
ulation will appear to be a step function ifthe collision ener
gy distribution is very narrow. 

There exists in the CPR model a strong correlation 
between the impact parameter and the product vibrational 
level, which arises from an energy partitioning between the 
rotational and the vibrational states. Therefore, in head-on 
collisions (i.e., b * = 0), all available energy must remain in 
vibration, leading to higher vibrational states, and if the im
pact parameter is large, energy goes into the rotational mo
tion and the vibrational energy must be small. Consequently, 
the CPR model predicts that small values of the impact pa
rameter produce high vibrational excitation with low rota
tional excitation while large values produce low vibrational 
excitation with high rotational excitation. 

The specific opacity function for the most populated vi
brationallevel,Pv• =A' (b *), is sharply peaked at the impact 
parameter equal to the equilibrium internuclear distance of 
the product diatomic molecule. Why is this the case? From 
Eq. (to), we find that b * must be equal to I in order to 
produce v* = A *, i.e., b = r •. Therefore the specific opacity 
function must be a {j function peaking at b * = 1, if the width 
of the vibrational energy is ignored. 

The average rotational energy in each vibrational level 
decreases linearly at v* <A *, and then starts to vary more 
slowly. When b!ax = 00, the average rotational energy de
creases by 1 for each vibrational level, since each vibrational 
level takes one unit of energy out of total available energy, 
subtracting one from the rotational energy. When b !ax < 00, 

the average rotational energy decreases more rapidly, for the 
phase space associated with smaller rotational excitation no 
longer leads to reaction. Thus, the rotational energy distri
butions lose their lower energy portions and the average ro
tational energy becomes greater. It might appear puzzling 
that the rotational distributions for v* > A * are identical and 

the specific opacity functions are different, whereas the aver
age rotational energies for v* > A * are equal. This is because 
the collision energy distribution is different for each product 
vibrational level since, for the given vibrational level v*, the 
collision energy E * less than v* - A * cannot lead to reaction 
(see Fig. 1). Thus if one tries to deduce the specific opacity 
function from the rotational distribution, the collision ener
gy distribution must be corrected for this "vibrational en
doergicity. " 

The vibrational endoergicity and the fact that more 
phase space is available for reaction with lower collision en
ergy suggest that the average collision energy defined in Eq. 
(21) does not correctly represent the average value of the 
reactive collision energy distribution. Thus we obtain an in
equality 

(E*) + 1iE*=I=v* + (R *(v*» + (Tf*) , (29) 

where the quantities in brackets represent average values. 
Note that the reaction exoergicity and the average product 
recoil energy are given in reduced quantities. This inequality 
appears counterintuitive, and extreme care should be taken 
in estimating the average product recoil energy from energy 
balance. The equality can be recovered if we replace (E *) by 
the average collision energy leading to reaction in which a 
vibrational level v* is formed. This quantity is denoted by 
(E * (v*» and expressed as 

(E*(v*» 

sO' E*f(E*) [S~~~:~ P(b * ,E*)b *db * ]dE* 
= 

SO' f(E*) [S~~~:~ P(b*,E*)b*db * 1dE * 

(30) 

Then we write 

(E*(v*» + liE * = v* + (R *(v*» + (Tf*). (31) 

It must be pointed out that the sum of (E * (v*» over all 
product vibrational states is still different from (E *) since 
the lower collision energies are more heavily weighted. 

So far, we confined our discussions to a heavy + heavy
light .... heavy-heavy + light reaction (I), in which a parti
cular mass combination constrained the reagent orbital an
gular momentum to appear as a product rotational angular 
momentum. It can be realized immediately that the equality, 
IJI = ILl, can be obtained whenever the product orbital an
gular momentum is negligible. This is true when either the 
impact parameter for the product repulsion or the product 
recoil energy is nearly zero. For these two cases, we may 
apply the CPR model to the reaction even if the system is not 
kinematically constrained (but the two reduced masses, p 
andp', should be carefully distinguished in these cases). 

B. Comparison with experimental results 

There have been numerous studies on kinematically 
constrained reactions. We may make comparisons of the 
predictions of the CPR model with some selected experi
mental results. In the following, we examine the validity of 
the CPR approximation semiquantitatively since it is be
yond the scope of this article to use the collision energy dis-
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tributions applicable in each experiment. It must be remem
bered that, in addition to the CPR approximation, we 
assumed the reaction probability, P( b • ,E .), is independent 
of the impact parameter and the collision energy [Eq. (19) ]. 

1. Ba+HF ..... BaF+H 

Gupta, Perry, and Zare6 studied the Ba + HF 
- BaF + H reaction under crossed-beam conditions, and 
measured the vibrational distributions and the average rota
tional energy in each product vibrational level for different 
collision energy distributions. The reaction exoergicity is 4.4 
kcallmol and the vibrational frequency of the ground state 
vibration is 1.34 kcallmol, so the value of A • should be less 
than 3.3. The vibrational population in general appear bell
shaped with the maximum lying at v = 1 when (Ecol ) = 1.6 
kcallmol, and at v = 2 when (Ecol ) = 6.5 kcallmol, sug
gesting that the value of A • is approximately 2 and that the 
product recoil energy is about 1.7 kcallmol. When the aver
age collision energy is 13.5 kcal/mol, the product vibrational 
population does not appear bell-shaped, but linearly de
creases for increasing v. The average rotational energy in a 
given vibrational level decreases slowly for increasing v with 
a slight change in slope at v::::: 2. The experimental results at 
lower collision energies agree fairly well with the predictions 
of the CPR model. But the vibrational distribution for 
(Ecol ) = 13.5 kcallmol is different from the expected bell
shaped distribution and this may indicate the CPR approxi
mation may fail at higher collision energies. 

2. Ba+ CHaBr ..... BaBr ..... CHa 

Munakata, Matsumi, and Kasuya7 studied the energy 
disposal in the reaction Ba + CH3Br - BaBr + CH3 as a 
function of collision energy. However, the CPR model is not 
readily applicable to this system due to two reasons. First, 
the kinematic constraint is not so favorable as in the previous 
experiment, since the leaving CH3 group may not be suffi
ciently light. Second, we must assume that the CH3 group 
carries the same amount of internal energy independent of 
the impact parameter and the collision energy as well as the 
product recoil energy. We must, therefore, apply the CPR 
model to this system with reservations. 

This reaction is exoergic with AE = 16.7 kcallmol, and 
the vibrational frequency of the ground state equals 192.47 
cm -I. For the range of the collision energies studied (2.9 to 
4.9 kcal/mol), the product vibrational distributions appear 
to be bell-shaped with the maximum lying between v = 12 
when (Ecol ) = 2.9 kcallmol and v = 10 when (Ecol ) = 4.1 
kcallmol. The exception is the vibrational population when 
(Ecol ) = 4.9 kcal/mol, in which case the vibrational popula
tion is nearly flat for v < 10 and then decreases for increasing 
v. The average rotational energy in each vibrational level 
shows a distinct feature; (Erot (v» decreases linearly 
between v = 0 and v - 10, and then (Erot (v» starts to vary 
very slowly. These trends are in good agreement with the 
predictions of the CPR model, and we roughly estimate the 
value of A should be 5.5 kcal/mol and the recoil energy is 
around 11 kcal/mol, and the b:'ax is about 1.5. 

3. Ba+CFal .... Bal+ CFa 

The product state distribution of Bal produced by the 
Ba + CF31 reaction has been studied by Johnson, Allison, 
and Zare.8 This reaction is even less kinematically con
strained than the Ba + CF 3Br system discussed above. 
However, the vibrational distribution is bell-shaped with the 
peak lying at v:::::50. In addition, they concluded that in
creasing vibrational excitation of the product is correlated 
with decreasing rotational excitation. This suggests that 
there exists energy partitioning between vibration and rota
tion of the product, and this idea is consistent with the CPR 
prediction. From the availability ofthe energy they speculat
ed that the CF3 product has little internal energy, and this 
may be the reason why the predictions of the CPR model are 
in agreement with the experimental results. 

4. Ba+HI .... Bal+H 

The specific opacity function was deduced by Noda et 
al.9 from the rotational distribution of the Ba + HI 
- Bal + H reaction for the v = 8 product Bal vibrational 
level. Unfortunately the exoergicity of the reaction, the 
height of the translational energy barrier, and the velocity 
dependence of the reaction probability are not precisely 
known. Consequently the specific opacity function could not 
be uniquely determined in this study. When the reaction is 
assumed to proceed with equal probability for any transla
tional energy, the specific opacity function, Pv = 8 (b), peaks 
sharply atb = 2.6 A with the width of LoA (FWHM). The 
vibrational distribution is bell-shaped with the maximum ly
ing at v = 10_12.10 

By considering the predictions of the CPR model, we 
estimate the value of A is about 3.4 kcal/mol from the vibra
tional energy of the v = 10 level, which places a lower limit 
for the dissociation energy of the Bal molecule at 74.0 kcal/ 
mol. This might be compared to the upper limit of 78 kcal/ 
mol determined by Johnson, Allison, and Zare.8 The CPR 
model is able to predict with success the shape of the specific 
opacity function for a product vibrational level close to the 
maximum in the vibrational distribution. However, closer 
inspection reveals some discrepancies: Since the Bal v = 8 
level lies below the most populated vibrational level, the spe
cific opacity function predicted by the CPR model should 
extend beyond b = re' The equilibrium internuclear dis
tance ofBal is reported to be 3.0. A. II Therefore, the predict
ed specific opacity function has the maximum at the impact 
parameter which is slightly too large. 

C. Beyond the CPR approximation 

The constant product recoil approximation is so simple 
that it serves as a convenient test bed for comparison with 
experimental studies of kinematically constrained bimolecu
lar reactions. Surely this is a virtue. However, simplicity may 
also be its downfall. We expect that product recoil energy 
will be constant in general over a limited range of collision 
energies for direct kinematically constrained reactions. Con
nor et al. 12 examined the F + HF .... F 2 + H reaction using 
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quasiclassical trajectories. Their results for this kinematical
ly constrained system show that the fraction of available 
product energy in translation lfTf) is nearly a constant frac
tion of the initial collision energy. This indicates that the 
CPR approach will fail in some cases. In this section, we 
present possible extensions of the CPR model and investi
gate their applicability. 

An obvious and more flexible approach is to assume a 
power series expansion for the dependence of the product 
recoil energy on the collision energy: 

Tf='Lkj(Ti)j/}1 (32) 
j 

which still assumes that T f is the same for all impact param
eters that lead to reaction. It is interesting to keep the first 
two terms ofEq. (32): 

(33) 

i.e., Tf has a linear dependence on Ti. We refer to this 
approximation as the linearly varying product recoil 
(LVPR) model. With this modification, Eq. (10) becomes 

v*=(1-kl -b*2)E*+At, (33) 

where using Eq. (llc), 

At= [aE-ko+E(A) +E(BC) -E(C)]lwe' (34) 

Thus the expression for v* has the same mathematical form 
as Eq. (10) [and would reduce to Eq. (10) if kl = 0]. 

This expression can be further simplified by dividing 
both sides by 1 - k l , and we obtain 

VO = (1 - ba2 )E (1 - k l ) +Ao , (35) 

where 

VO = v*/(l - k l ) , (36a) 

bO = b */0 - k l )1/2, (36b) 

E =E*/(l-kl)' (36c) 

and 

AO =At/(l-k1 ). (36d) 

Note that Eq. (35) has the same form as Eq. (10), if the 
collision energy is multiplied by I - k I' Thus the predictions 
of the CPR model can be applied to the L VPR model with
out detailed calculations! Specifically, (1) the product vibra
tional distribution is bell-shaped, and the peak of the distri
bution is located at v* = A * (i.e., VO = AO), (2) reactions 
with small impact parameters lead to products in high vibra
tional states with low rotational excitation, (3) the specific 
opacity function for v* = A t peaks at b * = (1 - k I) 1/2 

(i.e., bO = 1) instead of b * = 1 in the CPR model, and (4) 
the product rotational distribution and the average rota
tional distribution in each vibrational level have the same 
trend as predicted by the CPR approximation. 

Probably the most interesting difference between the 
predictions of the CPR and LVPR models is that the peak of 
the specific opacity function is shifted to smaller values in 
the LVPR model. For example, if kl = 0.5, the specific opa
city function for v* = A * peaks at b * = 0.87. This may ex
plain why the peak of the specific opacity function for the 
Ba + HI ....... Bal (v = 8) + H reaction lies at a smaller value 
than the equilibrium internuclear distance of Bal. 

It is possible to include more terms in the expansion, Eq. 
( 31 ), as well as the dependence of the product recoil energy 
on the impact parameter. The addition of these terms, unfor
tunately, cannot lead to simple expressions like Eq. (10) and 
(35), and computation must be carried out in each case. 
However, it must be stressed that as long as the product recoil 
energy is expressed as a function of the impact parameter 
and/or collision energy, the vibrational motion of the product 
is uniquely defined and the product energy partitioning can be 
discussed in terms of the dynamical and kinematic con
straints of the reaction. 

As a last remark, we consider the case where the product 
recoil energy distribution is determined by some probability 
distribution. For example, the DIPR-DIP model suggests 
that the product recoil energy distribution becomes a Gaus
sian reflecting the ground state vibrational wavefunction of 
the AB reactant. 13 Nevertheless the CPR or LVPR models 
can be applied by carrying out the CPR computations first 
with several values of A *, and then averaging the results over 
A * weighted by their probabilities. This process is quite gen
eral since the CPR and L VPR models are based on energy 
conservation, which is always correct. 
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APPENDIX: EFFECTS OF OTHER FORMS OF THE 
COLLISION ENERGY DISTRIBUTION 

Throughout the article, we used the collision energy dis
tribution which is described by a simple function defined in 
Eq. (20). Here we consider two other forms of the collision 
energy distributions in order to test the conclusions stated in 
the article. 

The first function is a Gaussian-type collision energy 
distribution, which is defined as 
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FIG. 11. Average product rotational energy (circles) and product vibra
tional population (squares) for the collision energy distribution described 
byEq. (Al). Themaximumimpactparameter,b:',.,.,is 1.5 (open symbols) 
and 00 (solid symbols). 
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f(E*) = exp[ - (E* _E~)2/t*] , 

and the second function is defined as 

f(E*) = (E* - E~)-1/2 exp[ - (E* - E~)/u*] 

for E*>E~ 

= 0 for E*<E~, 

(At) 

(A2) 

where E~, t*, and u* are adjustable parameters. For func
tion (A 1 ), the most probable collision energy is at E * = E ~ , 
and (E*) ~E~ with E~>t *. For function (A2), the most 
probable collision energy is at E * = E ~, and (E *) ~ u* / 
2 + E~. We calculated the product vibrational distribution 
and the average rotational energy in each vibrational level 
when b:ax = 1.5 and b:ax = 00. The results are displayed 

in Figs. 11 and 12 for functions (AI) and (A2), respective
ly. As can be seen from the figures, the exact calculations 
follow the predictions ofthe CPR model closely: The vibra
tional distributions are bell-shaped when b :ax ¥= 00, and the 
average rotational energy decreases linearly for increasing t' 
up to v* = A *, and then changes slowly its slope, i.e., de
creases slowly for function (AI) and increases slightly for 
function (A2). Therefore, the predictions stated in this arti
cle may be compared with experimental observations. It 
must be noted, however, that the exact shapes of the calcu
lated quantities depend on the form of the collision energy 
distribution applicable to each experiment, even though the 
general trends follow the CPR calculations presented . 
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