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The self-consistent electron pairs method for 
multiconfiguration reference state functionsa) 

Hans-Joachim Werner and Ernst-Albrecht Reinsch 

Institutfiir Physikalische und Theoretische Chemie der Universitiit, D-6000 FrankfurtlM, West Germany 
(Received 15 October 1981; accepted 18 November 1981) 

An efficient direct CI method which includes all singly and doubly substituted configurations with respect to 
an arbitrary multiconfiguration (MCSCF) reference function is described. The configurations are generated by 
subsequently applying spin-coupled two-particle annihilation and creation operators to the complete MCSCF 
function. This considerably reduces the size of the n -electron basis and the computational effort as compared 
to previous multireference CI treatments, in which the configurations are defined with respect to the 
individual reference configurations. The formalism of the method is very similar to the closed-shell "self­
consistent electron pairs" (SCEP) method of Meyer. The vector H c is obtained in terms of simple matrix 
operations involving coefficient and integral matrices. A full transformation of the two-electron integrals is 
not required. Test calculations with large basis sets have been performed for the 3B I and 'A I states of CH, 
(LIE = 9.5 kcal/mol) and for the CH,(3B.) + H, ..... CH3 + H reaction barrier (LIE = 10.7 kcal/mol). As a 
preliminary test for the accuracy of the results obtained with contracted wave functions of the above type 'the 
potential energy and dipole moment functions of the OH X 'II and A ,~+ states have been calculated. For 
the 'II state r, and We deviate by less than 10- 3 A and 1 cm- I

, respectively, from the experimental data. For 
the ,~+ state the agreement is somewhat less good, which is probably due to basis set defects. Around the 
eqUilibrium distance the calculated dipole moment functions are in very close agreement with those 
previously obtained from PNO-CEPA wave functions. 

I. INTRODUCTION 

During the last decade much progress has been made 
in the calculation of accurate electronic wave functions 
which cover a large fraction of the correlation energy. 
The computational methods used to treat this problem 
may be devided into two classes: (a) the conventional 
CI methods, 1-8 which involve the explicit construction 
and storage of the Hamilton matrix, and (b) the direct CI 
approaches,9-13 which solve the Schrodinger equation 
iteratively without explicit construction of the Hamil­
tonian. The former methods have the advantage of being 
very general, i. e., any types of configurations may be 
included and excited state calculations present no par­
ticular problems. However, the size of the configura­
tion expansion is quite limited, and therefore configura­
tion selection schemes2,3 or transformations to pair 
natural orbitals4- 8 often have to be performed. In the 
direct CI approaches, the vector H c, which is only 
needed for finding the desired eigenvector, is computed 
"directly" from the one and two electron integrals, so 
called "coupling coeffiCients, " and the elements of the 
"trial vector" c. This method has the advantage of being 
capable of treating much longer configuration expansions 
than the conventional CI methods. 

The direct CI method, as developed by Roos, 10 was 
originally restricted to all single and double substitutions 
from a closed shell reference determinant. However, 
in order to treat excited states or to study the formation 
of chemical bonds, one often needs multi configuration 
(MCSCF') wave functions as the zeroth order approxima­
tion. In recent years the convergence with MCSCF 
methods has been much improved and MCSCF wave 
functions are now routinely available. 14 In many cases 

a) Presented in part at the 5th Seminar on Computational Methods 
in Quantum Chemistry, Groningen, September 1981. 

very accurate results can be obtained at just the MCSCF 
level. 15- 19 However, the reliability of the results often 
depends crucially on the configuration and/or orbital 
spaces considered. In order to remove such uncertain­
ties the development of efficient CI methods, which in­
clude all single and double substitutions with respect to 
an arbitrary MCSCF type reference function, is a com­
monly accepted goal. 

Recently, several generalizations of the direct CI 
method to one open sheU20,21 or several closed shell22 

reference configurations have been described. Using 
the graphical unitary group approach (GUGA) developed 
by Paldu~3 and Shavitt,24 Siegbahn generalized the direct 
CI method for arbitrary multiconfiguration reference 
state functions. 25 Other MR-CI methods have recently 
been described by Buenker and Peyerimhoff, 2,3 Brooks 
and Schaefer,26,27 Duch and Karwowski, 28 Duch,29 Tavan 
and Schulten, 30 Taylor,8 Liu and Yoshimine31 and Lischka 
et al. 32 Much of this recent progress is due to the reali­
zation that for the case of wave functions with at most 
two electrons in the external orbital space, the coupling 
coefficients can always be factorized into a complicated 
but relatively small set of "internal coefficients" and a 
large but very simple set of "external coefficients" which 
do not have to be stored. 24,25 That this is true for 
wave functions which include double substitutions from 
a multiconfiguration reference function has been shown 
earlier in a slightly different context by Meyer. 4 

The common feature of the above MR-CI treatments 
is that they include all singles and doubles which can be 
generated from several reference configurations. This 
leads to rapidly growing configuration expansions as the 
number of reference configurations increases. An al­
ternative to this ansatz for the case of MCSCF refer­
ence functions has first been proposed by Meyer. 4 Instead 
of including all single and double substitutions with re­
spect to the individual reference configurations one 
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may generate the doubly substituted configurations by 
subsequently applying spin-coupled two-particle an­
nihilation and creation operators to the complete MCSCF 
function. In this way those configurations which arise 
from different reference configurations by applying the 
same operators are contracted with appropriate coef­
ficients. Furthermore, it has been shown4 that by using 
the pair annihilation and creation operators only such 
configurations are generated which belong to the "first 
order interacting space"33.34 of the reference function. 
These facts often considerably reduce the length of the 
configuration expansion. Most important in this con­
text is that for a given set of M correlated internal or­
bitals the number np of linearly independent pair func­
tions is always;:; M2 and, in contrast to the more general 
MR-CI case, essentially independent of the number of 
reference configurations. This may drastically reduce 
the computational effort, since the number of operations 
required for the two most expensive steps of any direct 
CI approach is proportional to np N 4 and - rfp N 3

, where 
N is the number of external orbitals. As will be dem­
onstrated in Sec. V, the approximation of generating the 
configurations from a contracted reference function 
seems to have very little influence on the accuracy of the 
results. In fact, the "contracted multiconfiguration 
reference-CI" (CMR-CI) wave functions differ from 
the corresponding uncontracted MR-CI wave functions 
only by relatively unimportant second order terms, and 
therefore, virtually the same results are to be expected 
for both cases, provided the reference function prop­
erly approximates the state under consideration. Only 
in cases where two internal states are nearly degenerate 
and have a different electronic structure-as is, for 
instance, the case near avoided crossings-an appreci­
able change of the contraction coefficients through elec­
tron correlation effects is to be expected. One can 
easily account for this effect, however, by relaxing the 
coefficients during the iteration process. This will be 
investigated in some detail in a separate publication. 
We note that a direct CI formalism based on the CMR­
CI ansatz has recently also been described by Siegbahn.35 

However, in this treatment the important semi-internal 
configurations were not accounted for and no numerical 
results were given. 

Most CI methods described in the literature require 
a full transformation of the two-electron integrals 
into MO basis as a first step. Although this seems to 
be no longer a bottleneck for relatively small basis sets, 
the transformation time (- N 5 ) becomes comparable to 
the remaining time (- N4) for about 50-70 basis functions 
in the largest symmetry block. Therefore, various 
schemes have been proposed which avoid the full integral 
transformation.11.12.36 A particlarly simple and efficient 
approach is the "self consistent electron pairs" (SCEP) 
method of Meyer. 11 The SCEP method is in prinCiple a 
direct CI, i. e., the explicit construction of the Hamil­
ton matrix is avoided. However, the structure of the 
formalism and the computational process is quite dif­
ferent from the original direct CI method. 9•10 In the 
latter the individual integrals are handled together with 
the appropriate coupling and CI coefficients and the full 
CI vector has to be kept in high speed memory. On the 
other hand, in the SCEP method, those coefficients 

which can always be treated with the same internal cou­
pling coefficients are grouped into matrices and vee­
tors. By a particular normalization of the doubly sub­
stituted configurations the "external" coupling coef­
ficients are removed entirely. The elements of the 
vector He are then obtained in terms of simple ma-
trix operations involving the coefficient matrices and 
generalized Coulomb and exchange operators, which 
represent the two-electron integrals with at least two 
internal orbitals in a particular order. The contribu­
tions of the integrals with three and four external or­
bitals are included by calculating one external exchange 
operator per pair iteration. At the expense of four ma­
trix multiplications per pair per iteration, these op­
erators can be obtained directly from the two electron 
integrals in AO baSiS, thus avoiding the full integral 
transformation, This is most advantageous for calcu­
lations with large basis sets and not too many pairs. 
Since only four matrices have to be held simultaneously 
in high speed memory, large scale SCEP calculations 
can easily be performed even on minicomputers with a 
small amount of available central memory. On the other 
hand, the matrix formalism is optimally suited for the 
use of modern supercomputers with efficient array 
processors. We may note in this place that some of 
the characteristic features of the SCEP method, e. g., 
the use of integral matrices and externally singlet and 
triplet coupled configurations, have also been adopted 
in the most recent direct-CI methods of Siegbahn. 25 •35 

The SCEP method was originally restricted to all 
single and double substitutions with respect to one 
closed shell reference determinant. It has been pro­
grammed and applied by Dykstra, 11 Werner and 
Reinsch,37 and Zirz and Ahlrichs. 36 Dykstra39 has re­
formulated the SCEP theory for certain types of open­
shell wave functions and for GVB reference state func­
tions which consist only of closed shell determinants. 
However, in both cases the semi-internal configurations 
were left out. Recently, Flesch and Meyer40 have gen­
eralized the SCEP procedure for a spin-unrestricted 
open-shell reference determinant (UHF-SCEP). 

In this paper we will describe the generalization of 
the SCEP method for arbitrary multi configuration ref­
erence functions. For the reasons discussed above we 
will define the configuration state functions with respect 
to a contracted reference function (CMR-SCEP), but 
only very minor changes of the formalism are necessary 
to generalize it to the uncontracted MR-SCEP case. 
Very similar to the closed shell SCEP method our ap­
proach is based on simple matrix operations. The 
main difference lies in the fact that the internal Coulomb 
and exchange operators do not enter with fixed coeffi­
cients but rather have to be linearly combined with 
precalculated factors. These factors, which may be 
regarded as "internal coupling coefficients, " depend 
only on the structure of the reference function. There­
fore, their number is relatively small and independent 
of the size of the basis set. They will be explicitely 
given in terms of overlap and transition density matrix 
elements between a set of "core functions"· which are 
obtained by deleting one or two internally spin coupled 
electrons from the reference function. This makes 
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possible evaluating all factors quite quickly even without 
techniques such as the unitary group approach. 

In Sec. II we describe in some detail the construction 
of the orthogonal set of configuration state functions. In 
Sec. III the formulas for the Hamilton matrix ele­
ments are given and the iteration process is described. 
Some computational aspects and possible extensions of 
the method are discussed in Sec. IV, and finally in Sec. 
V some numerical results are presented. It will be 
shown, that the efficiency of our method compares very 
favorably with other MR-CI methods recently described 
in the literature and that with CMR-CI wave functions 
highly accurate results can be obtained. 

II. CONSTRUCTION OF THE CONFIGURATION STATE 
FUNCTIONS 

As is common practice, the wave function is expanded 
in an n-particle basis of orthogonal, spin (and possibly 
symmetry) adapted configuration state functions (CSF's) 
{'I'}. The CSF's are constructed from an orthonormal 
set of molecular orbitals. In the following we shall de­
note those orbitals which are occupied in any of the 
reference configurations "internal orbitals" (labeled by 
i, j, ... ) and the remaining ones "external orbitals" 
(a, b, ... ). The internal orbital space may further be 
devided into a set of "core" orbitals, which are doubly 
occupied in any of the reference configurations and not 
correlated, and the remaining set of "valence" orbit­
als. In the following the indices i,j, k, ... , will denote 
valence orbitals only, and the corresponding summations 
are over this subspace only. The indices r, S ••• run 
over valence and external orbitals. 

The total wave function may be devided into four parts 

where 

(2) 

is the reference state function, which may be composed 
of several configurations >v~f. The coefficients ak and 
the internal orbitals are usually optimized in a preced­
ing MCSCF calculation. The internally excited configura­
tions >VI, the singly excited and semi-internal doubly ex­
cited configurations lJI's, and the doubly external con­
giruations >V~ have zero, one, and two electrons, re­
spectively, in the external subspace. 

As has been extensively discussed elsewhere4.33.34 
the configuration basis should exactly span the "first 
order interacting space" of the reference state func­
tion. It has been shown by Meyer4 that such a basis can 
be obtained by subsequently applying spin-coupled pair 
annihilation and creation operators iJ and iJ+, re­
spectively, to the reference function ,p-o 

(3) 

with 

1 
111 7]J , P=-I, m=l, 

AW,m= I/ff( 7], Tii + P 7]J Ti,) , p=± 1 , m=O, (4) 

Til TiJ , P=-I, m=l. 

p = 1 - 2s denotes Singlet (p = 1) and triplet (P = -1) pairs 
and 7] I are the usual spin-orbital annihilation operators. 
According to the spin-coupling in Eqs. (3) and (4) the 
configurations ,p-~jp are always spin-eigenfunctions, pro­
vided the same is true for lfro• However, in general, 
the lJr~jp are not orthonormal and often not even linearly 
independent. For the doubly external configurations the 
elements of the metric matrix are given by 

(>v~~pl>V%~q) =i (Bae Bbd + pBad Bbe ) Bpq L (cJ>mml cJ>klqm) , (5) 
m 

where 

(6) 

Hence, in order to orthogonalize the configurations 
one has just to transform a linearly independent subset 
of the n-2 electron core functions4 cJ> lipm into a new set 
cJ>PPm 

such that 

is valid. Since the final wave function is invariant to a 
unitary transformation of the cJ>ppm, the transformation 
matrices A (M can be found by any of the usual orthog­
onalization procedures. It is to be noted, that different 
transformations are performed for singlet (P= 1) and 
triplet (P = - 1) pairs, but in order to retain spin adapted 
configurations the same transformation has to be per­
formed for all three components (m= 0, ± 1) in the triplet 
case. For SimpliCity, in the following the spin index p 
is considered as part of the pair label P. The orthogonal 
doubly external configurations are now obtained as 

According to this definition only the "diagonal" con­
figurations are normalized (~al ,p-'j,a) = 1, whereas 

(8) 

(>v~1 lJr"J) =i (a* b). This particular normalization makes 
possible the simple matrix formalism in the next sec­
tion, since all external coupling coefficients become 
unity. We may now define "pair functions" 

.T. '" ""b .T.ab Cpab = p""pb , 'J!p =f..J '-'p "'p , '-'r (9) 
ab 

which are represented by the symmetric (singlet pairs) 
or antisymmetric (triplet pairs) coefficient matrices 
Cp • 

Quite analogously to the doubly external configura­
tions we define the semi-internal (and singly excited) 
configuration space. Again we first construct a set of 
n - 1 electron core functions 
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k J(1- P)/21];<I>iJP.1+ 1/v'21);<I>iiP.o, m=1/2, 

<l>iJP·"-l(1-P)/21);<I>iJP._1- P/v'21]i.<I>w.o, m=-1/2. 

(10) 
A linearly independent subset of these functions is then 
orthonormalized according to the condition 

1/2 
L (<I>s .. 1 <l>T .. ) = liST 

"=-1/2 

and the spin-adapted orthonormal semi-internal and 
singly excited configurations are obtained as 

As for the pair functions wp represented by the ma­
trices Cp we may define contracted singly external 
functions 

(11) 

(12) 

(13) 

which are represented by the (column) vectors cs . In 
the following we shall call the Ws simply "singles, " but 
it has to be kept in mind that they contain implicitly 
the semi-internal doubly excited configurations. 

Finally, the singly and doubly internally excited con­
figurations W~~P are Schmidt orthonormalized on the 
reference function ,po. If not differently stated, in the 
following >Po is considered as member of the set of in­
ternal configurations {>PI}' We note that usually the 
reference configurations {o/~.f} span a subspace of {o/I}, 
so that the coefficients ak entering into Eq. (1) via >Po 
are effectively reoptimized in the CI wave function. 
This may be used to relax them during the iteration. 
Of course, the internal coupling coefficients, which 
will be defined in terms of the <I> p, <I> s, and 0/1 in the 
next section, have then to be recalculated. 

For the sake of simplicity in later expressions we 
have to define three more types of core functions: 

m = 1/2, 

m = -1/2, 
(14) 

{ 

1]J<I>S.1/2' P=-l, m=l, 

<l>JSP"= 1/v'2(1]J<I>S~1I2-P1)J<I>S.1/2)' P=±l, m=O, 

1]J <l>S.-1I2' P=-l, m=-l 

(15) 

and <l>fJp" which is defined as <l>jJJ>m [cf. Eq. (6)] but with 
'PI instead of 'Po. 

We note that the construction of the function sets {<I>p} , 
{<I> s}, and {o//} as described above is not unique, since 
the individual sets may be subject to any unitary trans­
formation without changing the final wave function. 

III. THE HAMILTON MATRIX ELEMENTS 

Our aim is to solve the SchrOdinger equation which in 
our configuration basis takes the form 

(~:IH-EI>It)=o, for all P, a, b, (16) 

(o/sIH-EI>p)=o, for all S, a, (17) 

(18) 

E = (0/0 I HI 0/0) + Ecorr is here taken to be the total energy, 
but other chOices for Ecorr may be used in order to ob­
tain CEPA type solutions. 5• 11 In the direct CI method 
the solution of Eqs. (16)-(18) can be obtained by vari­
ous iteration schemes. The simplest way is to update 
the coefficients according to first order perturbation 
theory11 

C'JJ'("'2)=c~b(n) _(w~bIH_EI>p(n»/E;b, (19) 

with 

(20) 

Similar equations can be applied for the coefficients of 
the semi-internal and internal configurations (co = 1). In 
order to obtain the quantities (>p~b I fj - EI ,p), (o/s I H 
- EI 0/), and (o/II H - EI 0/) in a compact form, we use the 
generalized internal Coulomb and exchange operators 

(Jkl)rs=(rsl kl), Jkl =J1k , (21a) 

(Kkl) (kll) Kkl = (K1k)+ , rs = r s, (21b) 

where r, s refer to all orbitals and k, 1 to internal or­
bitals only. The J and K represent an ordered subset 
of the two-electron integrals (rsl tu) in MO basis. An 
efficient algorithm for their evaluation is given in Ref. 
14. In contrast to previous treatments4• 11 •14(a) we here 
label different operators by superscripts and their ma­
trix elements by subscripts. We further define the ex­
ternal exchange operators 

[K(Cp)]rs= L C~b(ral bs) (22a) 
ab 

where r, s, a, b are the orbital vectors and (IlPllJa) are 
the two-electron integrals in AO basis. K(Cp ) is the 
only quantity that depends on integrals with four external 
orbitals. Finally, we need the Fock operator for the 
frozen core (in MO basis) 

F =h+ L (2J ee _K ee
) , (23) 

e 

where the index c runs over core orbitals only. 

Using the definitions in Sec. II it is now straightfor­
ward though somewhat lengthy to derive the following 
matrix elements: 
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(W~ I fI I wp) = p 12 {~) CpF + K(Cp )] j o(P, jS) 

+ L CpJ kl j C1'k(P, jS) ( , 
nl fa 

(28) 

(29) 

(waJ I H I ws) = [K(C;)+ 1/..f2~(F j Cs + pCstF)o(P, jS) 

+ 1/12 L (J klj Cs + p cst J kl) a:(P, jS)] , 
Jkl ab 

(w~1 H I wo) = 6po [FCp +Cp F +K(CP)]ab 
(30) 

+[L (JkICO + pCQJlk)C1'k(P, Q)--2
1 

L(KkICO kl kl 

+PCQKlk)f3'k(P,Q)+CoY(P, Q)], (31) 
ab 

where 

C$ = 1/I2(jCs + pcst) o(P, jS) . (32) 

In Eqs. (24)-(32) j just denotes the jth unit vector in or­
bital basis, i. e., F j is the jth column of the matrix F, 
and f c+ denotes the dyadic product of the vectors f and 
c, i. e., (f c+h, = fk C,. The factors (J are simply overlap 
integrals, C1kl and 13kl are transition density matrix ele­
ments, and y are Hamilton matrix elements between the 
core functions indicated by the symbols in parenthesis 

1/2 
o(S, jI) = L (<p Sm I <p5m) , (33) 

m=-1/2 

o(P, jS) = t (<ppm I <P JSPm) , (34) 
m=-s 

s 

o(P, k1I) = L (<ppm I <P~,pm) , (35) 
m=-s 

1/2 
C1kl(S,jI)= L (<Psml1Jk1JI+17kil,I<p5m), (36) 

m=-1/2 
1/2 

Cikl(S, 1') = L (<p Sml1Jk 1J1 + 17,Pi,1 <PTm) , (37) 
m=-1/2 

s 

C1kl(S, jI)= L (<ppm I 1Jk1J,+ 1ik1711 <PJspm) , (38) 
m=-s 

s 

C1kl(P, Q)= L 6pQ (<pPmI1Jk1JI+17k1ill<pom) ' (39) 
m=-s 

i3kl(S, T) =<<PS,l/211Jk1J11 <PT,l/2) 

+(<PS,-1/21 1i"k 1711 <PT,-1/2) 

+ (<P S,l/21 1ik 1J11 <PT,-1/2) 

+ (<PS,-1/211Jk1711 <PT,l/2) , (40) 

( ) ( I + -+-1) (1-P)(1-q) 
13kl P, Q = <Pp,o Tik1JI+Pq1Jk1J, <Po,o + 2 

X{ (<pp,ll Ti k 1J11 <PO,l) + (<pp,-ll 1ik 1i,1 <PO,-l)} 

(1 - P) {( I + - I ) + 12 <PP,-l 1J k 1J1 <Po,o 

+ pq(<pp, ll 1ik Ti II <po,o)}+ (1 frq
) 

X{(<pp,ol 1ik1J11 <PO,-l)+ pq(<PP,OI1Jk1i,1 <PO'l)}' 

y(1, J)=(wllfIlwJ), 
1/2 

y(S, T) = L (<p Sm I fI I <PTm) , 
m=-1/2 

s 

y(P, Q) = L 6pQ(<ppml fI I <l>om> . 
m=-s 

(41) 
(42) 

(43) 

(44) 

By inspection of Eqs. (28)-(32) it seems on first sight 
that the exchange operators K(Cp ) and K(C;) have to be 
calculated for each pair in each iteration. However, for 
calculating ('l!'~ J jj - EJ 'l!') only the operator 

(45) 

is needed, whereas for calculating (w~J H - EJ w> only 
the elements [K(Cp)]ak appear (k internal!). One easily 
verifies that these elements can be obtained as follows: 

[K(Cp )lak=[K(Cp )lak- 1/12 L L [pJlkcs+K'kcslao(P, lS) 
s I 

(46) 
Hence, only one external exchange operator has to be 
calculated per pair and iteration. 

By adding up the various matrix elements we obtain 
for the desired quantities in Eqs. (16)-(18) 

(~bIH-EI'l!'>=[t(Gp+PG~.)-ECplab' (47) 

(~lfI-EI\fF>={gs-ECs]a, (48) 

(49) 

where the matrices Gp , the vectors gs, and the ele­
ments gI are given by 

+ L [26po F+ L Jkl C1lk(P, Q) -LK kl i3'k(P, Q)+l y(P, Q)]Co + 12 L[LF j a(P, jS)+ L Jklj C1lk(P, js)lc~, 
o kl kl S J J kl J 

(50) 

gs=LFjL C10(S, jI)+LJkljLcrC1Ik(S,j1)+L [OSTF+LJkIQIk(S, T)- LKkl~'k(S, T)+ly(S, 1')1 CT 
J I Jkl I T kl kl J 

and 

gI = L y(I, J) c J + L [LtFcsa(S, j1)+ L j+JkICSC1lk(S, jI)l + 1/v'8L L tr(C ;'(Kkl + PK'k)l o(P, klI) • (52) 
J s J Jkl J P kl 
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The factors (i and ~ in Eq. (51) are defined as 

a~I(S, 1') = a~I(S, 1') - L o(P, kS) o(P, IT) , 
p 

(53) 

~III(S, 1')=#3",(S, T)+LPo(P, kS)o(P, IT). (54) 
p 

The structure of the matrices Gp and the vectors gs 
is very similar to the closed shell case. ll The matrices 
Gp can be written in the simple form 

Gp =K(Cp )+ L FpoCo + L fpsc'S + LFPICr , (55) 
o s r 

where the matrices F PO and F PI are linear combinations 
of internal Coulomb and/or exchange operators and the 
vectors fps are linear combinations of particular 
columns of F and the Jill. In order to avoid storing 
the Fpo , FPI, and fps, which would require an ex­
ceedingly large amount of mass storage, we recalculate 
these quantities in each iteraction. This is usually fast 
(- N 2 ) as compared to the matrix multiplications in Eq. 
(55) (- N 3

) and the evaluation of the external exchange 
operators K(Cp ) (- N 4 ). It is to be noted, that the Cp 

have nonzero elements only in their external part, i. e. , 
C;,s=O if r$M or s$M. Therefore, one only needs the 
external part of the Gp , and the number of operations 
for each matrix multiplication in Eq. (55) can be re­
duced from N 3 to (N - M)3. This saves considerable 
computation time for systems with many electrons. 
The evaluation of the vectors gs involves only (- N 2

) 

operations and is therefore, in most cases, much 
faster than the computation of the Gp , even though the 
number of <Ps is often considerably larger than the num­
ber of <Pp (cf. Sec. V). We note that it is usually ad­
vantageous to perform the summation over T in Eq. 
(51) first. 

We further need the energy denominators in Eq. (20) 

E~b =E~ H~ + [(aaJ bb)+ p(abj ab)] /(1 + (jab) - E, (56) 

where 

E~ = [F + L (J"I alk(P, P) - K kl{:3lk(P, P)/2] 
~ ~ 

+ y(P, P)/2 . (57) 

The two-electron integrals in Eq. (56) are not available 
if one avoids a full integral transformation. Therefore, 
we replace them in analogy to the closed shell casell 

by the approximations 

(abJ ab)~ 0 (58a) 

(aaJ bb) ~ [(JH + JII),.a + (Ji i + JJi)bb] (58b) 

for P=(ijP). If <PPm is a linear combination of several 
<PW>m we just use the indices of the function with the 
largest coefficient. Such approximations may influence 
the speed of convergence but have no effect on the final 
solution. The energy denominators <~ 1 H - EI \)~) can 
be evaluated exactly by 

E~ = [F + L Jkl G:lk(S, S) - Kkli3lk(S, S)] + y(S, S) - E • 
u ~ 

(59) 
From the above matrix elements the correlation en-

ergy, here defined as Eeorr = E - Eo, may be obtained. 
For the converged solution Eeorr can be written as a sum 
of energy contributions (~1l, (~1l, and (pI in the simple 
way 

(60) 

where 

(61) 

(~I) = (ir s J H I \)0) = L c~ (\)~ j Ii j iro> , (62) 

" 
(63) 

However, E.,~!r is correct only to first order in the 
errors of the expansion coefficients. Therefore, it is 
more appropriate to use the energy expectation value, 
which is of second order accuracy and an upper bound 
to the true energy in each iteration. It can also be 
written in partitioned form as follows: 

where 

(~2) =[ EW + tr (C ;'Gp )] /N , 

(~2) =(E~U +c'Sgs)/N, 

(}2) =(EP' +clgr)/N, 

with 

(64) 

(65) 

(66) 

(67) 

N=(\)I ,,) = L tr(Cp Cp )+ L cscs + L ~ . (68) 
p S r 

For the converged solution one has E ~~~r = E ~~~r, but 
it should be noted that the partitionings are different. 

Finally, the elements of the first order reduced den­
sity matrix take the form 

Dab = (I: csc'S + 2 L CPC;) , (69a) 
s P ab 

DaJ JI: Cs LCro(S, jI)+..f2 LCp L cso(P, jS)] , ~s r p S a 

(69c) 

IV. COMPUTATIONAL ASPECTS 

In our program, first the operators F, Jkl
, and Kkl 

are evaluated and transformed into MO basis. This cor­
responds to a partial integral transformation which re­
quires about t N 4 M + 3 N 3 AI- + 'f N 3 M operations, H where 
N is the number of basis functions and M is the number 
of correlated orbitals. Since usually M« N the time re­
quired for this step is very small as compared to a full 
integral transformation. 

In the second program step, the internal factors (J, 

a, /3, and yare calculated. In prinCiple, this can be 
done by any of the well-known CI techniques. However, 
due to the relatively complicated structure of the core 
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functions cj'>p, cj'>s, and >¥1, many of these techniques, 
which often rest upon specific spin couplings, cannot 
straightforwardly be applied. In our present program, 
the core functions are therefore represented in deter­
minantal form and the factors are calculated in a rather 
brute force way according to Eqs. (33)-(44), (53), and 
(54). For the systems studied so far, the time needed 
for this step was always small as compared to the total 
time. 

The iteration process proceeds in the following se­
quence: first, the internal coefficients c1 are deter­
mined. This is a very fast process which can be done 
exactly for fixed c s, C p in each iteration. Secondly, 
the operators K(Cp ) are evaluated. Often, all Cp and 
K(Cp ) can be stored simultaneously in high speed mem­
ory, so that all operators can be evaluated efficiently 
during one sequential read of the integral file. Thirdly, 
the matrices Gp and the vectors gs are computed and 
improved Cp and Cs are obtained. During the individual 
steps the various contributions to the energy expecta­
tion value are summed up. At the end of the iteration 
this yields the energy which corresponds to the c1 of 
the present and the Cp , c s of the preceding iteration. 

The efficiency of any direct CI approach depends, of 
course, on the number of iterations required. In or­
der to speed up and guarantee convergence (in the sense 
that E(n+ll :::.e<nl) various improved iteration schemes, 
as for inst;nce the well known Davidson technique, 41 

can be devised. The improvement of convergence by us­
ing Davidson's method is, however, not very large, 
which is mainly due to the small number of variational 
parameters. A more effective "scaling procedure, " 
which also guarantees convergence, is briefly outlined 
in the following. The wave function is expanded as 

1J1(n+l1 =1J1(n) + L ApA1J1~nl + L AsAIJ1~l + L C[1J1[ • (70) 
p s 1 

The parameters c1 , AS, and Ap can be determined vari­
ationally by performing a small CI in the basiS of the 
functions 1J1(">, 1J11, A1J1 s , and A1J1p • The Hamilton matrix 
elements needed are easily evaluated during the cal­
culation of AG~nl and Ag~nl. For instance, 

(A1J1~nlIHI1J1(nl)=tr(ACp(nlG~n»), (71) 

(AIJ1~nl I H I A1J1~nl> '" tr(llC;<nlF po Ac~n» 

+ opo tr[ACp(n)K(AC~nl)) , (72) 

(A1J1~nl I H I A1J1~"l) = Ac'S(n l AC;,(nlfps 

+ {2 L rK(AC~n»)AC~n)(T(p, jS), 

(73) 
etc. Using the optimal parameters Ap the improved 
coefficients are obtained as 

(74) 

and similarly for c~n+O. For the first iteration (i. e. , 
with 1J1w '" \flo) the above scheme corresponds to the ex­
ternally contracted CI method proposed by Siegbahn. 25 ,36 

However, since in the latter treatment the configurations 
are generated from the individual reference configura­
tions the number of parameters A is usually larger 
than in our case. Unfortunately, the above scheme re-

quires calculating the operators K(ACp), whereas for 
AGp K(ACp ) is needed. If the operators are calculated 
directly from the two-electron integrals in AO basis this 
increases the computational effort for the N 4 step by a 
factor of 2. Therefore, on the one hand, the advantage 
of using the scaling procedure depends On the number 
of iterations saved; on the other hand, it will probably 
be most useful for calculations with many pairs and 
relatively small basis sets, since then the evaluation 
of the 2:oF poCo becomes more expensive than the com­
putation of the K(Cp ). However, several variants of the 
scaling procedure are possible, which have to be tested 
in practice. For instance, one may apply it only to the 
pair functions in intermediate iterations, for which the 
Cs and K(C~) are kept fixed. Presently, we have im­
plemented only a simpler scaling procedure, where the 
scaling factors are determined individually by minimiz­
ing the energy for 

(75) 

This simple procedure, which completely neglects the 
coupling of the pairs, does not guarantee but often 
stabilizes convergence. 

In order to save computation time it is sometimes 
advantageous not to calculate all Gp , gs in each itera­
tion. In our program it is therefore possible to improve 
the Cs for fixed Cp , c[, or the Cp for fixed cs, c[ sever­
al times. In certain cases some Cp converge consider­
ably faster than the majority, e. g., if core-core or 
core-valence correlation effects are considered. Then 
considerable computation time can be saved by freezing 
such Cp for several intermediate iterations. On the 
other hand, it is sometimes advantageous to perform 
additional iterations only for those pairs which con­
verge most slowly. 

The speed of convergence can also be influenced by 
the choice of the external orbitals, which may be sub­
ject to any unitary transformation without influencing 
the final energy. In the original SCEP formalismll 

Meyer proposed to determine "optimal" correlation or­
bitals for each pair by diagonalizing the external part 
(I.e., 0ir",Ori",Ofor i~M) of the operator 

op=Fpp+1(Jii+Jjj) , (76) 

[p", (ijP) J. In each iteration one has then to transform 
Gp to the basis of the eigenfunctions of Op. The llCp 
are now determined in the new basiS and finally trans­
formed back to the original one. According to our ex­
perience with the closed-shell SCEP program such 
transformations are often not necessary if canonical 
Hartree-Fock orbitals are employed as a common set. 
However, if one uses a localized internal orbital set­
e. g., because many pairs are then negligible in larger 
molecules-the delocalized external orbitals may lead to 
poor convergence. In such cases, the optimal correla­
tion orbitals often considerably speed up convergence. 
Another reason for the use of improved correlation or­
bitals may be that the MCSCF process yields completely 
arbitrary external orbitals. Possibly, it will be suf­
ficient in most cases to uSe a common set of orbitals 
for all pairs by diagonalizing one suitably chosen 
operator. 
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TABLE 1. Calculated energies for too 3Et and tAt states of CH2• a 

Method Reference Basis Eref Eref E tot ~ref ~CI 

CMR-CI This work (642/42)b -38.9327 - 39. 0630 - 38.9148 - 39.0461 11.2 10.6 

MR-PNO-CI 8 (642/42) -38.9330 - 39.0596 - 38.9154 - 39. 0427 11. 1 10.6 

MR-CI 43 (642/32) -38.9333 - 39. 0622 - 38.9157 -39.0453 11. 1 10.6 

MR-CI 44 (853/41) -38.9336 - 39. 0695c - 39. 0527c 10.5 

MRD-Cr 45 (542/21)d -38.9307 - 39.0614 12.1/11.1· 

GVB-POL-CI 46 (532/21) 10.6/10.4f 

MCSCF 47 (963/42) -38.9348 - 38.9175 10.9 

CMR-Cr This work (9621/52)g -38.9341 -39.0715 - 38.9170 - 39.0562 10.7 9.6 

CMR-Cr This work (9721/52)h - 38.9341 - 39. 1160h -38.9170 - 39. 1003h 10.7 9.8/9.3f 

Experiment 49(a) ~ 9. 0 
49(b) 19.5 

aE in a. u., ~ in kcal/mol. 
'eTO basis set of Huzinaga (Ref. 50); C: l1s/6p (521111/3111); d: 1. 3, 0.4; H: 6s (3111); p: 1. 0, 0.25; geometry as 
inRef. 8: 3Et : 0'=132.3', r=2.04a.u.; tAt: 0'=101.4°, r=2.101 a.u .. 

cAll singles and doubles with respect to full valence reference. state functions. 
ctwith additional basis functions in the middle of the bonds. 
·Variational and extrapolated results. 
fT. and To, respectively. 
"<iTO basis set of Huzinaga (Ref. 50); C: lls/7p (311111111/211111); d: 1. 3, 0.4;/: 0.65, H: 7s(31111); p: 1. 0, 0.25; 
at the optimized geometries: 3E t : 0'=132.9', r=2.037a.u.; 'A t : a=102.0°, r=2.095a.u .. 

hwith core-core and core-valence correlation; basis as footnote g but p functions not contracted. 

Finally, we note that sometimes considerable com­
putation time can be saved by defining equivalent pairs 
according to molecular symmetry. 11.42 In such cases one 
needs to calculate the Gp , K(Cp ) only for one of the 
equivalent pairs. The Cp for the remaining pairs can 
be generated by simple symmetry considerations. For 
instance, in CH4 one can localize the internal orbitals so 
that four equivalent bond orbitals are obtained. The 
number of different Gp to be calculated is then reduced 
from 16 to three (valence shell correlation only). 

V. APPLICATIONS 

The purpose of this section is twofold: first, we wish 
to demonstrate the efficiency of our method for some 
examples and compare it with other calculations recent­
ly reported in the literature. Secondly, we have cal­
culated the potential and dipole moment functions for the 
two lowest states of the OH radical in order to compare 
the accuracy of the CMR-SCEP results with previous 
accurate uncontracted MR-CI and PNO-CEPA cal­
culations. 

The comparison of computation times for various 
methods on the basis of particular programs running on 
different machines can, of course, give only a rough 
indication about the relative efficiency. The times de­
pend on the specific installation and conversion fac­
tors may be different for individual program steps. All 
CPU times quoted in this paper refer to a DEC KL/1091 
computer with double precision arithmetic for all float­
ing point operations. For comparison we note that we 
found the DEC-10 machine to be about 20% slower than 
a UNIVAC 1108 and five times slower than a IBM 370/ 
168. 

Unfortunately, in the literature often the CPU times 
for CI calculations are given without the time needed 
for the preceding integral transformation. Clearly, the 

total times (including integral sorting or symmetry 
orbital transformation steps) should be compared with 
the times given below for the SCEP program. 

As a first example we chose the CH2 radical, since 
Taylor8 recently presented complete computation times 
for MR-PNO-CI calculations for this system. He cal­
culated the 3 Bl state with a one determinant RHF refer­
ence function and the 1 Al state with a two-configuration 
reference function. Similar MR-CI calculations have 
been reported previously by Bauschlicher and Shavitt 
(BS).43 Following Taylor, we first used a (642/42) con­
tracted GTO basis set. In Table lour calculated en­
ergies are compared to the results of various other MR­
CI calculations. The singlet-triplet splitting is vir­
tually the same as obtained by Taylor and BS with simi­
lar basis sets. For comparison we have also calculated 
the energies with a considerably larger (9621/52) basis 
set. With this basis the computed reference energies 
are close to the best previous values of Meadows and 
Schaefer,47 and the variational total energies for the 
correlated wave functions are lower than in any other 
previous CI calculation. With respect to the smaller 
basis the calculated S- T splitting is reduced by about 
1 kcal!mol. This lowering is mainly due to the in­
clusion of the f function into the carbon basis set, which 
has not been done in any other of the former calcula­
tions. Including the core-core and core-valence cor­
relation effects and taking into account the difference of 
the zero point energies of about -0. 55kcal/mol48 weob­
tain a singlet-triplet splitting of 9.3 kcal/mol, which 
is in good agreement with the value of about 9 kcal! 
mol obtained from (indirect) photochemical experi­
ments. 49

(a) However, there is a large discrepancy with 
the value of 19.5 kcal/mol obtained from (direct) photo­
detachment experiments. 49(b) It has been proposed45, 48 

that this difference can be removed by assigning some 
peaks in the photoelectron spectrum of CHi to "hot 
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TABLE II. Details of the CHz calculations. 

State 3BI IAI IAI 

Basis (642/42) (642/42) (9621/52) 

Nwnber of orbitals 48 48 66 

Nwnber of configurationsa 3454 3359 6980 

Computation times in secondsb per iteration 
step 

Internal factors 2.5 2.7 2.7 

Operators F, Jill, Kill 39.5 41. 2 123.9 

Operators K(Cp) 45.5 49.0 151. 7 

~O FpO CO' ACp 17.9 18.8 46.7 

Singles, internals 5.7 5.0 8.7 

Density matrix 2.8 2.8 5.9 

Fixed time 48.5 52.5 135.8 

Time per iteration 70.5 73.9 207.1 

Total time (five interations, 
energy converged to 10-.6 a. u. ) 401 422 1171 

MR-PNO-CI, Ref. 8e 3409 5402 

a3BI: one reference configuration, 13 pairs, 20 Singles, two internals; tAl: two reference 
configurations, 13 pairs, 18 singles, five internals. 

bDEC KL/I091 double precision (~20% slower than UNIVAC 1108 and five times slower than 
IBM 370/168), 

COn UNIVAC 1108. 

bands, " but this assignment could not be confirmed by 
new experiments of Lineberger et al. 51 We note that 
preliminary CI calculations with very large and flexible 
basis sets indicate that the experimental electron af­
finity of 0.21 eV 49 (b) forthe 3Bt state, whichis consistent 
with the S-T splitting of 19.5 kcal/mol, is much too 
low. A value of 0.67 eV, which corresponds to an S-T 
splitting of 9 kcal/mol, seems to be more likely. 

The computation times for the various steps of the 
SCEP calculations for CHz are listed in Table n. The 
time needed for the internal factors is negligible. The 
calculation of the internal Coulomb and exchange opera­
tors Jill and Kill requires about 10% of the total time. 
About 90% of the iteration time is spent for the calcula­
tion of the external eXChange operators K(Cp ) and for 
the pair contributions to Gp • Here we should like to 
emphasize that the computation of the K(Cp ) should not 

TABLE III. Convergence of the CI calculations for CH3. a 

Ecl-E Rolf 

be considered a price one has to pay for Circumventing 
the full integral transformation. Instead, this step is 
in a completely equivalent way part of evaluating H c 
in any direct CI method. Thus the effort for a full in­
tegral transformation should be compared only with the 
evaluation of the internal operators Jill and KkI and the 
four matrix multiplications per pair per iteration con­
tained in Eq. (22b). The semi-internal and internal con­
figurations require only very little time. Hence, a 
"first order CI calculation, " which includes only these 
configurations, would be extremely fast, since no matrix 
multiplications and no external exchange operators are 
required. The total computation time for each state in 
order to obtain the correlation energy with an accuracy 
of 10-6 a. u. amounts to about 7 min (five iterations). 
The times for the large basis set are about three times 
larger. The convergence of the CI iteration process is 
demonstrated in Table III. Only three iterations (4.5 

Iteration 3BI tAt AE (kcal mol-!) CPU time (min) 

Ob - 0.115276 
Ie - O. 108 033 
2 - 0.129 929 
3 -0.130304 
4 -0.130325 
5 - 0.130 32~ 

aBasis (642/42), see Table I. 
bperturbational energies. 

- O. 122 900 12.8 
-0.171233 11.8 
-0.130557 10.9 
-0.1311.94 10.6 
- O. 1313.52 10.6 
- 0.13126Q 10.6 

"Variational energies corresponding to the wave function of the preceding iteration. 
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TABLE IV. Results of barrier height calculations for the CH2 eBI) + H2 abstraction reaction. a 

Method Reference Basisb Reactants Saddle point Barrier height 

SCF this work A -40.052093 -40.015228 23.2 
MCSCF(5)d this work A -40.070322 -40.043933 16.6 
MCSCF(9)C this work A -40.070322 -40.044175 16.4 
MCSCF(9)C 25(b) A' 17.8 
CMR(5)-CI this work A -40.199294 -40.184000 9.6 
MR(5)-CI 26(b) A' 11. 3 
SD-CI 53 DZP" -40.20398 -40.18223 13.65f 

11.8& 
SCF this work B -40.065173 -40.026469 24.3 
MCSCF(5)d This work B -40.083696 -40.055362 17.8 
CMR(5)-CI This work B -40.232110 -40.215031 10.7 

"Geometries see Ref. (53). 
bsasis A: Dunning 54DZ contraction of Huzinaga's (Ref. 50) 9s/5p set; de: 0.7, PH: 0.7. 
A ': as basis A but without P functions on the H atoms of CH2. B: basis (642/42), see Table I. 

cAll configurations which can be formed from the 3at , 4at, 5a t , and 1b j orbitals with doubly 
occupied lato 2a to and 1b2 orbitals. 

dThe five configurations with largest coefficients in a natural orbital description of MCSCF(9). 
"As basis A, but exponents of polarization functions de: = 0.74, PH: 1. O. 
fVariational result. 
!!With Davidson's (Ref. 52) correction. 
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min CPU time) for each state are required in order to 
obtain the S- T splitting with an accuracy of three 
decimal figures. 

by factors of 10.7, 7.4, and 2.4, respectively, which 
quite nicely demonstrates the expected basis set depen-

In the CH2 system the number of pairs and singles is 
quite small. As a larger example we have performed 
some calculations for the CH2(3 B1) + H2 - CH3 + H reaction 
barrier. This system was chosen in order to compare 
with calculations reported by Siegbahn25 using a G UGA 
direct-CI method. The geometries for the transition 
state and the reactants were taken from the work of 
Bauschlicher. 53 The results are presented in Table IV. 
As for CH2 we have employed two basis sets: a small 
one (A in Table IV) which is of double zeta plus polariza­
tion quality and essentially the same as used by 
Siegbahn. 25 The only difference to Siegbahn's basis set 
(A') is that we did not omit the polarization functions 
at the hydrogen atoms of CH2. The larger basis set 
(denoted B) is the same (642/42) contracted set used 
for the CH2 calculations (cf. Table I). By comparison 
of the data for basis A and A' it is found that the ad­
ditional polarization functions lead to a considerable 
lowering of the calculated barrier height already at the 
Hartree-Fock and MCSCF levels. However, enlarging 
the basis set then increases the calculated barrier 
height by about 1 kcal/mol. The final CI value of 10.7 
kcallmol is not considered to be very reliable, since 
we neither optimized the geometries nor investigated the 
effect of further basis set improvements. The calcula­
tions are simply examples chosen to give an idea of the 
computational effort needed and how that effort increases 
if the basis is enlarged by approximately a factor of 2 
(this is the case for each symmetry block). Some details 
and the timings are given in Table V. For the small 
basis set the evaluation of the K(Cp ) (- N4) the pair con­
tributions ~oFpoCo to Gp (- N 3

) and the remaining ef­
fort for the internal and semi-internal configurations 
(- N 2

) take approximately the same time. For the twice 
as large basis set the times for the three steps increase 

TABLE V. Details of the CH2e B 1) + H2 calculations. a 

Basis 

Number of orbitals 

Number of configurationsb 

(421/21) 

35 

4378 

computation times in minutes per iterationc 

Step 

Internal factors 2.6 

Operators F, Jkl , Kkl 0.48 

Operators K(C p) 0.70 

1:0 FpO CO' ~Cp 0.65 

Singles, internals 0.70 

Density matrix O. 13 

Fixed time 3.2 

Time per iteration 2.0 

Total time (six iterations, 
Energy converged to 10-6 a. u.) 15.5 

Times for other direct CF [Ref. 25(b), five reference 
configurations, 30 orbitals, 16096 configurations] 

(642/42) 

68 

18703 

2.6 

4.4 

7.5 

4.8 

1.7 

0.4 

7.6 

14.0 

92.0 

Fixed time 1. 9 + integral transfer 

Time per iteration 26.4 

aAt the reaction barrier, geometry see Ref. (53). 
bFive reference configurations, 32 pairs, 98 singles, 26 in­
ternals. 

COn DEC KL/109l, see Table II. 
dan CDC 6400. This computer is about as fast as the DEC-10. 
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TABLE VI. Calculated molecular constants for OH (X 2m. a 

Method Reference r. B. a. w. W(JX8 D. Il. (dll/drlr. 

RHF This work 0.950 19.69 0.658 4056.6 75.5 2.99 1. 765 0.82 
MCSCF(3) This work 0.973 18.78 0.788 3666.7 97.8 3.63 1. 676 0.25 
RHF-CI This work 0.967 19.02 0.694 3819.0 81. 2 1. 693 0.57 
CMR(3)-CI This work 0.971 18.84 0.728 3737.4 88.2 4.39 1. 672 0.405 

Experiment 60 0.970 18.91 0.724 3737.8 84.9 4.63 1.668 

PNO-CI 5(c) 0.966 19.06 0.695 3841 80.2 4.22 1. 705 0.55 
PNO-CEPA 5(c) 0.971 18.85 0.727 3742 85.3 4.35 1. 683 0.40 
MR(3)-CI 55 0.794 18.87 0.68 3713.0 83.2 4.43 1. 634 0.40 
MCSCF 58 0.972 18.79 0.628 3723.6 83.2 4.70 1. 675 0.59 

aD. in eV, Il. in D, (dll/dr)~ in D/A, r. in A, all other values in cm-I • Basis set (52 contractions): 0: l1s/6p GTO • basis set of Huzinaga (Ref. 50), innermost 3s and 2p contracted; d: 2.626, 0.657; f: 1. 313; H: 6s set of Huzinaga, 
innermost 3s contracted. p: 1.2, 0.3; da: 0.75. 

dency. The timings for the small basis set calculations 
can be compared to those given by Siegbahn for the same 
system. In this context it is important to note that the 
number of configurations included in Siegbahn's uncon­
tracted MR-CI calculations is much larger (16096 for 
30 basis functions) than in our CMR-CI calculations 
(4378 for 35 basis functions). Clearly, this makes the 
former calculations much more expensive. Even our 
calculations with the more than twice as large basis set 
(18703 configurations for 68 basis functions) is con­
siderably faster. Of course it is not clear whether the 
time difference is only due to the different number of 
configurations and pairs. In any case, the restriction 
to small basis sets which may be required for the ex­
pensive un contracted MR-CI calculations seems to in­
torduce much larger errors than generating the config­
urations from a contracted reference function. 

Finally, we present calculations for the ground state 
(X zIT) and the first excited state (A z~+) of OH. This sys­
tem has been chosen in order to compare the CMR­
SCEP results to previous MR-CI calculations of Chu, 
Yoshimine, and Liu (CYL)55 and PNO-CI, and PNO­
CEPA calculations of Meyer. 5(C),56 As CYL we employed 
for the ground state just the three reference configura­
tions which are needed to properly describe the dissocia­
tion of the molecule into the 0 e P) + H state; for the ex­
cited state the same five reference configurations as 
chosen by CYL have been used, although only two of 

TABLE VII. Calculated molecular constants for OH (A 2~+). a 

Method Reference r. B. a. 

RHF This work 0.997 17.86 0.895 
MCSCF(5) This work 0.997 17.88 0.924 

CMR(5)-CI This work 1. 008 17.50 0.865 

Experiment 60 1.012 17.36 0.787 

PNO-CEPA 5(b) 1. 009 17.46 0.819 
MR(5)-CI 55 1. 008 17.50 0.88 

them are needed to describe the asymptotic 0 eD)+ H 
state. For comparison with the PNO-CI results of 
Meyer, we have performed also single-reference-CI 
(RHF -CI) calculations for the ground state around the 
equilibrium distance. The (9521/421) contracted GTO 
basis set is essentially the same as used in Ref. 5(c). 
The calculated spectroscopic constants are compared to 
experimental and the previous theoretical data in Tables 
VI and VII. As expected, the RHF -CI results are in 
good agreement with the corresponding PNO-CI values. 
Moreover, the CMR-CI results for the ground state 
are in excellent agreement with the experimental data 
and the PNO-CEP A values. The MR-CI results of 
CYL for the zn state are somewhat less accurate, which 
is probably due to basis set deficiencies. It is to be 
noted, that the MR-CI results are considerably more 
accurate than the RHF-CI values. This is accomplished 
with only a doubling of the computation times (RHF -CI: 
15 pairs, 16 singles, 14 min CPU time; CMR-CI: 22 
pairs, 53 singles, 10 internals, 25 min CPU time for 
energy converged to 10-6 a. u.; only Czv symmetry used). 
Of course, near the equilibrium distance SCEP -CEP A 
calculations could be performed with the same effort 
as required for the RHF-CI calculations, but the one­
reference determinant approximation breaks down at 
larger distances. 

For the A z~+ state (Table VII) the results are some­
what less accurate. Again our CMR-CI data are in 

w • w.x. D. T. T~ 

3322b 115.6 0.91 4.28 
3322b 129.0 1.11 4.72 2.19 
3242b 100.9 2.23 4.19 2.04 

3245c 102.3 

3178.9 92.9 2.49 4.05 1. 97 

3248 96.9 2.23 4. 15 
3198.5c 106.2 2.29 4.17 2.03 

are in A, D., T., and T~ in eV, other values in cm-I • Basis set see Table VI. 
bFrom polynomial fit of seventh degree. 
cFrom first two DC values. 
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FIG. 1. Calculated dipole moment functions (in a. u.) of the 
OH radical. -: MR-CI, this work; - - -: MR-CI, Ref. 55; 
-' -: PNO-CEPA, Refs. 5(c) and 56; ••• : MCSCF(17), Ref. 
58. The small figure in the lower part shows the EDMF's for 
the 2 n state on a larger scale. The calculated energies and 
dipole moments for 15 internuclear distances between 1.5 and 
10 bohr are available on request. 

very good agreement with the PNO-CEP A values of 
Meyer, but in both cases the equilibrium distance is 
about 0.004 A too short and, as a consequence, w. is 
about 60 cm-1 too large. These errors are probably 
due to basis set defects. In view of the fact that the 
equilibrium distance obtained by CYL displays the same 
error, their considerably better w. value seems to be 
fortuitous. 

The calculated dipole moment functions (EDMF's) for 
the two states are shown in Fig. 1. To our knowledge, 
no accurate function for OH has been determined experi­
mentally. It is well known, that the RHF and RHF -CI 
approximations do not produce reliable EDMF's, where­
as the CEPA method has been shown to yield very ac­
curate EDMF's around the equilibrium distances of 
molecules with single bonds. HI,56,57 In fact, our CMR­
SCEP functions are in perfect agreement with Meyer's 
CEPA functions up to a distance of about 2.1 Bohr. At 
larger distances, in particular beyond the maxima of the 
EDMF's the MCSCF function faUs off too rapidly, and 
the differences between the MCSCF and CEPA dipole 
moments become very large. It seems that either 
CEPA-like corrections or better reference wave functions 
are required in order to fully account for this large 
correlation effect. Near the equilibrium distances the 

dipole moment functions of CYL also closely parallel 
the CMR-SCEP curves, but are shifted to lower values. 
For the ground state we have tried various extensions 
of the basis set at the equilibrium distance, which did 
not lead to a significant change of the dipole moment. 
Therefore, the shifts of CYL's functions seem to be due 
to basis set defects. Finally, we note that the dipole 
moment function of Stevens et al. 58 obtained from 
MCSCF wave functions near the equilibrium distance 
probably has a slope that is much too large. Unfortu­
nately, this function has been used by Mies59 to deter­
mine infrared transition probabilities, which are now 
widely used by experimentalists. According to the er­
ror of (d{J./ dr)re it is to be expected that the Einstein 
coefficient of spontaneous emission for the fundamental 
transition obtained by Mies are considerably too large. 

VI. SUMMARY 

An iterative CI method has been described which is 
able to produce highly accurate results at a moderate 
expense. The wave functions optimized consist of all 
singly and doubly excited configurations which can be 
generated from a contracted multiconfiguration (MCSCF) 
reference function (CMR-CI). According to our pre­
liminary experience with wave functions of this type 
virtually the same results are obtained as with more 
general MR-CI treatments, which include all singles 
and doubles with respect to the individual reference 
configurations. However, near avoided crossings, 
where two internal states are nearly degenerate, it may 
be important to relax the internal contraction coef­
ficients. Judging by the examples given in this con­
tribution, it seems that the computation times for the 
CMR-SCEP method are one order of magnitude less than 
reported for other MR-CI programs, even for quite 
simple systems with only a few reference configurations. 
On the one hand, this improvement results from the re­
duction of the number of pairs, which for a given basis 
set mainly determines the computational effort for any 
direct CI method. But on the other hand, part of the 
improvement may be due to the fact that the SCEP meth­
od is based on simple matrix operations, which can be 
efficiently performed with very little index operations. 
Since only very few matrices have to be kept simul­
taneously in high speed memory and a full transforma­
tion of the two-electron integrals is avoided, very large 
basis sets can be used even on relatively small com­
puters without making the calculation exceedingly ex­
pensive. Furthermore, as has been discussed in Sec. 
N, the matrix structure enables a great flexibility of 
the method. Finally, we note that during the prepara­
tion of this paper it came to our knowledge that Ahlrichs61 

has simultaneously developed an MR-CI formalism 
which is closely related to our treatment. 

Note added in proof. In order to compare directly 
the results obtained with contracted and uncontracted 
MR-CI wave functions, we have performed some ad­
ditional uncontracted MR-SCEP calculations. For the 
CH3 e B 1) + H2 system, one obtains (saddle point, basis 
A): 104 pairs, 186 singles, 27 internals, 12974 con­
figurations, EMR- C1 = - 40.184319, i. e., the correlation 
energy is lowered by only 0.2%. This negligible im-

J. Chern. Phys., Vol. 76, No.6, 15 March 1982 



3156 H.-J. Werner and E.-A. Reinsch: Self-consistent electron pairs method 

provement is payed for by a factor of more than three 
in the computation time (CPU time per iteration: 6.4 
min). For the ground state of OH, the un contracted 
MR-SCEP results are (in cm- i

): Be = 18.83, a e = O. 726, 
We = 3736.1, We Xe = 87.2. The correlation energy at the 
equilibrium distance is improved by only 0.14%. Be­
tween r = 1. 5 bohr and r = 2. 5 bohr, the dipole moment 
functions differ by less than 0.004 D. The largest 
deviation occurs at about 3.5 bohr and amounts to 
0002 D. 
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