Accurate calculation of the attractive interaction of two ground state helium atoms

B. Liu, and A. D. McLean

Citation: The Journal of Chemical Physics 59, 4557 (1973); doi: 10.1063/1.1680654
View online: https://doi.org/10.1063/1.1680654
View Table of Contents: http://aip.scitation.org/toc/jcp/59/8
Published by the American Institute of Physics

Articles you may be interested in

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
The Journal of Chemical Physics 132, 154104 (2010); 10.1063/1.3382344

Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
The Journal of Chemical Physics 90, 1007 (1989); 10.1063/1.456153

Density-functional thermochemistry. III. The role of exact exchange
The Journal of Chemical Physics 98, 5648 (1993); 10.1063/1.464913

How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers?
The Journal of Chemical Physics 105, 11024 (1996); 10.1063/1.472902

Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
The Journal of Chemical Physics 96, 6796 (1992); 10.1063/1.462569

On the validity of the basis set superposition error and complete basis set limit extrapolations for the binding energy of the formic acid dimer
The Journal of Chemical Physics 142, 094311 (2015); 10.1063/1.4913766
Accurate calculation of the attractive interaction of two ground state helium atoms

B. Liu and A. D. McLean
IBM Research Laboratory, San Jose, California 95193
(Received 16 June 1973)

No theoretical study of the van der Waals interaction of two ground state helium atoms has yet been successful in predicting the depth \(\epsilon_m \) of the attractive well to within a desirable accuracy of \(\approx 0.1 \) \(^\circ\)K. Recent calculations including only inter-atomic correlation gave \(\epsilon_m = 12.02 \) \(^\circ\)K. Bertoncini and Wahl calculated a correction of \(1.23 \) \(^\circ\)K due to changes in intra-atomic correlation with nuclear separation and gave \(\epsilon_m = 10.79 \pm 0.3 \) \(^\circ\)K, well within the \(10.4 \) \(^\circ\)K to \(11.2 \) \(^\circ\)K range estimated from experimental data. However, this correction adversely affects the long range behavior of the curve, and still neglected is the interaction of intra- and interatomic correlation effects. The present configuration interaction (CI) calculation, simultaneously including all of these effects, is designed to converge on the exact clamped nuclei result within an accuracy of \(\approx 0.1 \) \(^\circ\)K = \(3 \times 10^{-7} \) a.u. for the interaction energy \(\Delta E(R) = E(R) - E(\infty) \).

At each \(R \), three calculations were done to obtain orbitals. (1) A self consistent field (SCF) calculation in the given one-particle basis producing \(1\sigma_g \), \(1\sigma_u \), followed by a localization \(\sigma_A = (1/\sqrt{2}) \times (1\sigma_g + 1\sigma_u) \), \(\sigma_B = (1/\sqrt{2}) \times (1\sigma_g - 1\sigma_u) \). (2) A CI calculation in the four-particle space \(\sigma_A^2 \sigma_B^2 \), \{\sigma_A^2, \sigma_B^2\} \otimes \{\text{two electrons into the SCF virtual space}\} , followed by a transformation of the SCF virtual orbitals to natural orbitals, NO(2). (3) A CI calculation in the space \(\sigma_A^2 \sigma_B^2 \), \{\sigma_A^2, \sigma_B^2\} \otimes \{\text{two electrons in the SCF virtual space}\} , followed by a transformation of the SCF virtual orbitals to NO(3). Orbitals for the CI calculation of \(\Delta E(R) \) were \(\sigma_A, \sigma_B \), leading occupation members of NO(2), and leading occupation members of NO(3), orthogonalized successively to preceding orbitals until the original one-particle space is spanned. Members chosen from NO(4) are optimum for configurations containing the intra-atomic correlation effects, those from NO(3) for
LETTERS TO THE EDITOR

TABLE I. Interaction energies of two ground state helium atoms (in degrees Kelvin).a

<table>
<thead>
<tr>
<th>R (Å)</th>
<th>$\Delta E (R)$</th>
<th>$\Delta E_{\text{SCF}} (R)$</th>
<th>$\Delta E_{\text{mol}} (R)$</th>
<th>$\Delta E_{\text{at+mol}} (R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.588</td>
<td>3845</td>
<td>4269</td>
<td>3669</td>
<td>3804</td>
</tr>
<tr>
<td>2.117</td>
<td>312</td>
<td>428</td>
<td>272</td>
<td>300</td>
</tr>
<tr>
<td>2.381</td>
<td>67.9</td>
<td>132</td>
<td>50.7</td>
<td>61.6</td>
</tr>
<tr>
<td>2.646</td>
<td>4.10</td>
<td>39.6</td>
<td>-3.57</td>
<td>0.37</td>
</tr>
<tr>
<td>2.752</td>
<td>-3.92</td>
<td>24.4</td>
<td>-9.47</td>
<td>-6.93</td>
</tr>
<tr>
<td>2.858</td>
<td>-7.69</td>
<td>15.0</td>
<td>-11.7</td>
<td>-10.1</td>
</tr>
<tr>
<td>3.069</td>
<td>-9.14</td>
<td>5.64</td>
<td>-11.4</td>
<td>-11.0</td>
</tr>
<tr>
<td>3.175</td>
<td>-8.58</td>
<td>3.45</td>
<td>-10.2</td>
<td>-10.2</td>
</tr>
<tr>
<td>3.704</td>
<td>-4.33</td>
<td>0.28</td>
<td>-4.81</td>
<td>-4.85</td>
</tr>
<tr>
<td>4.233</td>
<td>-1.98</td>
<td>0.02</td>
<td>-2.15</td>
<td>-2.21</td>
</tr>
<tr>
<td>5.292</td>
<td>-0.49</td>
<td>0.00</td>
<td>-0.53</td>
<td>-0.55</td>
</tr>
<tr>
<td>10.583</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

a$\Delta E (R)$ is from a CI calculation containing all classes of configurations. $\epsilon_m = \Delta E (3.02 \, \text{Å}) = 9.23 \, ^\circ\text{K}$. $E(\infty) = -5.79563131$ a.u. $\Delta E_{\text{SCF}} (R)$ is the SCF result. $E_{\text{SCF}} (\infty) = -5.72335906$ a.u. $\Delta E_{\text{mol}} (R)$ is from a CI calculation which includes $\sigma^2 \sigma^2$, all single excitations, and $\{ \sigma \alpha \} \otimes \{ \sigma \alpha \}$; two electrons into remaining space. $\Delta E_{\text{at+mol}} (R)$ adjusts $\Delta E_{\text{mol}} (R)$ by the change in ΔE from ΔE_{SCF} on addition of intra-atomic terms to the SCF configuration. Comparison of $\Delta E_{\text{at+mol}} (R)$ with $\Delta E (R)$ shows the lack of additivity of the inter- and intra-atomic correlation effects.

dispersion effects.

In the CI calculations of $\Delta E (R)$, members of different classes of configuration were included to different levels of orbital truncation until convergence was demonstrated. These classes included all types of excitation from the reference configuration, $\sigma^2 \sigma^2$, through quadruples, taking care to restrict the choice of configurations to a level which did not introduce unacceptable superposition error. Parallel calculations were carried out starting from two independent one-particle basis sets to complete the convergence studies. The results of Table I computed with the smaller one-particle basis give a curve with $\epsilon_m = 9.23 \, ^\circ\text{K}$ at $R = 3.02 \, \text{Å}$ which crosses the energy asymptotic at $r_0 = 2.69 \, \text{Å}$. While refined calculations in the layer basis are not yet complete, our present evidence indicates that the likely change at the minimum in the curve on extrapolation to the exact clamped nuclei nonrelativistic result will be to deepen the well by not more than 0.3 °K. Beyond ~4.0 Å both Table I and the refined results agree with accurate perturbation theory results to within 0.02 °K.7,8 Our results for inter- and intra-atomic correlation agree with previous theoretical results. The major discrepancy with previous theoretical estimate of $\epsilon_m = 10.79 \pm 0.3$ °K4 is due to the coupling of inter- and intra-atomic correlation. Table I shows how this coupling invalidates the additivity of the two types of correlation.

Resolution of the present results with experimental estimates both through calculation of observables, as well as through estimation of Born–Oppenheimer corrections, is in progress.