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ABSTRACT
Lambda-doubling is the lifting of the degeneracy of a pair of rotational levels of opposite e/ f-symmetry, which is caused by their interac-
tion with rotational levels of an energetically remote electronic state. Historically, this phenomenon has been associated with the symmetry
dependence of the matrix elements that appear in the numerator of a second-order perturbation expression. We show that this effect may be
present even when there is no rotational interaction or when the off-diagonal matrix element of the rotational Hamiltonian is independent of
e/ f-symmetry.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0277788

I. INTRODUCTION
Lambda-doubling is a feature in the rotational spectra of

molecules that is indicative of electronic perturbations by ener-
getically remote states.1–4 Throughout its long history, Λ-doubling
has been interpreted as a consequence of the e/ f-symmetry of the
off-diagonal matrix elements of the rotation and/or the spin–orbit
terms in the Hamiltonian. In each of the contributing interactions
e- and f-symmetries are an alternate way of labeling the parity
quantum number.5 In this paper, we show that Λ-doubling is a
more general phenomenon that may exist even when these matrix
elements are independent of e/ f-symmetry. Lambda-doubling is,
rather, a consequence of the symmetry properties of the perturba-
tion paths, which include both numerator and denominator effects.
(By “path,” we mean the interaction of two states that have the same
e/ f-symmetry and the same total angular momentum quantum
number.)

A diatomic molecule is characterized by its parity, its total
angular momentum, J, with a projection of Ωh along its internu-
clear axis, its total electron spin, S, and its projection, Σh, along that
axis, and the projection, Λh, of the total orbital angular momentum.
(The orbital angular momentum itself, L, is not well-defined for a
diatomic molecule.4) Non-Σ electronic states are orbitally doubly
degenerate, and the rotational levels may be labeled e or f according
to the relation between their parity and the integer or half-integer
value of J.

The symmetrized wave functions of a diatomic molecule that
has an even number of electrons [see Eq. (3.2.95) of Ref. 1] are

∣
2S+1ΛΩ, J⟩e, f

=
1
√

2
[∣

2S+1ΛΩ⟩∣J,Ω⟩ ± (−1)−S+s
∣
2S+1
(−Λ)−Ω⟩∣J,−Ω⟩], (1)

where s = 1 for Σ− states and 0 for all other states. The ± signs cor-
respond to e- and f-symmetries, respectively.5 The corresponding
expression for an odd number of electrons is

∣
2S+1ΛΩ, J⟩e, f

=
1
√

2
[∣

2S+1ΛΩ⟩∣J,Ω⟩ ± (−1)−S+s+ 1
2 ∣

2S+1
(−Λ)−Ω⟩∣J,−Ω⟩].

(2)

[The extra 1/2 term in Eq. (2) comes from the relation between
e/ f-symmetry and parity, as explained in Ref. 5 and p. 140
of Ref. 1.]

In the absence of a perturbation, the energies of the states
described by Eqs. (1) and (2) are independent of e/ f symmetry and
are therefore degenerate. (An important exception is for 2Σ states,
which is discussed in Sec. V.) This degeneracy may be lifted by
a perturbation by an energetically remote state of the same e- or
f-symmetry. According to second-order perturbation theory, the
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energy shift of the perturbed state, ∣i⟩, by a perturbing state, ∣ j⟩, is
given by

δE ≡ hδν = ∣⟨i∣V̂ ∣ j⟩∣2/ΔEij , (3)

where V̂ is the sum of the spin–orbit Hamiltonian, Ĥ SO, and
the rotational Hamiltonian, Ĥ Rot , and ΔEij = Ei − Ej is the energy
difference between the perturbed and perturbing states.

The spin–orbit Hamiltonian for n electrons is given by

Ĥ
SO
=

1
2

n

∑
i=1

âi(ℓ̂
+
i ŝ−i + ℓ̂

−
i ŝ+i ) +

n

∑
i=1

âiℓ̂iz ŝiz , (4)

where âi is an r-dependent, one-electron operator that acts on the
orbital angular momentum of each electron, ℓ̂±i are the raising and
lowering operators for the orbital angular momentum of electron i,
and ŝ±i are the raising and lowering operators for the spin angular
momentum of electron i.

The rotational Hamiltonian is given by

Ĥ
Rot
= BΛ,vΛ{(Ĵ

2
− Ĵ2

z) + (L̂
2
− L̂2

z) + (Ŝ
2
− Ŝ2

z) + (L̂
+Ŝ− + L̂−Ŝ+)

− (Ĵ +L̂− + Ĵ −L̂+) − (Ĵ +Ŝ− + Ĵ −Ŝ+)}. (5)

This operator is derived from the property that the rotational angu-
lar momentum, R = J − L − S, is perpendicular to the bond axis.4 It is
conventional to omit the L̂ 2

− L̂2
z terms, which are uncoupled from

Ĵ and from each other, and instead to add their expectation values
to the electronic term energy. The diagonal terms in Eqs. (4) and
(5) define the zeroth-order Hamiltonian in the case (a) basis set, and
the off-diagonal terms in these equations lead to perturbations by
remote electronic states that are responsible for Λ doubling.

It is also useful to define an operator, Ĥ SU , which contains only
the diagonal terms and the spin-uncoupling, off-diagonal terms of
the rotational Hamiltonian,

Ĥ
SU
= BΛ,vΛ{(Ĵ

2
− Ĵ2

z) + (Ŝ
2
− Ŝ2

z) − (Ĵ
+Ŝ− + Ĵ −Ŝ+)}, (6)

and another operator, Ĥ LU , which contains the diagonal terms and
the L-uncoupling, off-diagonal terms,

Ĥ
LU
= BΛ,vΛ{(Ĵ

2
− Ĵ2

z) + (Ŝ
2
− Ŝ2

z) − (Ĵ
+L̂− + Ĵ −L̂+)}. (7)

The lifting of the degeneracy described by Eq. (3) is known
as Λ-doubling or Λ-splitting. This splitting may be caused by the
symmetry dependence of the matrix element in the numerator of
Eq. (3) and/or by contributions from different perturbation paths
that give rise to a symmetry-dependent energy difference in the
denominator. The off-diagonal matrix elements of Ĥ Rot and Ĥ SO

may depend on e/ f-symmetry. The off-diagonal matrix elements of
Ĥ Rot are J-dependent and diagonal in S, whereas the matrix ele-
ments of Ĥ SO are independent of J and may have off-diagonal
contributions in S.

The square of the matrix element in the numerator of
Eq. (3) yields three terms, ∣⟨i∣Ĥ SO

∣ j⟩∣2, ∣⟨i∣Ĥ Rot
∣ j⟩∣2, and

2⟨i∣Ĥ SO
∣ j⟩⟨ j∣Ĥ Rot

∣i⟩. A sum over intermediate rotational,
vibrational, and electronic states gives rise to the Van Vleck para-
meters, ov(J), pv(J), and qv(J).

6,7 Here, we simplify the problem by
considering only the sum over rotational states.

If we were to ignore the small rotational symmetry dependence
of the energy denominator, the Λ-doubling would be determined
entirely by the e/ f-symmetry of the matrix elements in the numera-
tor. We shall see that the sum of ∣⟨i∣Ĥ SO

∣ j⟩∣2 over perturbation paths
is independent of e/ f-symmetry. It follows that for perturbations
with ΔS ≠ 0 or for which ⟨i∣Ĥ SO

∣ j⟩ is independent of e/ f-symmetry,
we would expect the Λ-doubling to be zero. We show in this study
that even when the numerator is independent of e/ f-symmetry,
the symmetry dependence of the energy denominator may produce
Λ-doubling.

In the following sections, we present three exemplary cases for
which Λ-doubling is produced exclusively by the energy denomina-
tor. In Sec. II, we consider the perturbation of a 1Π state by a 3Σ−
state, for which ΔS ≠ 0. In Sec. III, we consider the perturbation of
a 1Δ state by a 1Π state, for which ⟨i∣Ĥ Rot

∣ j⟩ is independent of e/ f-
symmetry. In Sec. IV, we consider the perturbation of a 2Π state by a
4Σ−. This is a much more complex example of a spin-changing inter-
action, which involves eight perturbation paths and both Hund’s
cases (a) and (b) of angular momentum coupling. Finally, in Sec. V,
we treat the perturbation of a 2Π state by a 2Σ+ state, for which both
numerator and denominator effects are present. Section VI contains
summary and conclusion.

II. SPLITTING OF 1Π BY 3Σ−

In this section, we treat the example of the perturbation of
a 1Π state that belongs to a πσ electronic configuration by a 3Σ−
state that belongs to a π2 configuration. The electronic-rotational
wave functions of these states are given by combinations of Slater
determinants,1

∣
1Π1, J⟩e, f =

1
√

2
[∣

1Π1, vΠ⟩ ± ∣1Π−1, vΠ⟩]

=
1
2
[∣∣π+α, σβ∣ − ∣π+β, σα∣⟩∣J, 1⟩

∓ ∣∣π−β, σα∣ − ∣π−α, σβ∣⟩∣J,−1⟩],

∣
3Σ−1 , J⟩e, f =

1
√

2
[∣

1Σ−1 , vΣ⟩ ± ∣1Σ−−1, vΣ⟩]

=
1
√

2
[∣∣π+α,π−α∣⟩∣J, 1⟩]

± ∣∣π+β,π−β∣⟩∣J,−1⟩],

(8)

where the upper sign in each equation corresponds to e-symmetry
and the lower sign to f-symmetry.

The perturbation of the 1Π state by the 3Σ− state is caused by
the spin–orbit term in the Hamiltonian. Applying Eq. (4) to the
wave functions in Eq. (8), we obtain for the matrix element in the
numerator of Eq. (3) for both e- and f-symmetries:

⟨
1Π1, vΠ, J∣Ĥ SO

∣
3Σ−1 , vΣ, J⟩ =

1
2
√

2
a+⟨vΠ∣vΣ⟩, (9)

where the spin-orbit matrix element for a single spin-orbital8 is

a+ = ⟨π+∣âℓ+∣σ⟩, (10)

and ⟨vΠ∣vΣ⟩ is the vibrational overlap integral.
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To evaluate the energy denominator in Eq. (3), we need to cal-
culate the rotational energy levels of the 3Σ− state. These energies are
obtained by diagonalizing the spin-uncoupling Hamiltonian. The
matrix representation of Ĥ SU for this state is

Ĥ
SU
= BΣ,vΣ

⎛
⎜
⎜
⎝

J(J + 1) 2
√

J(J + 1) 0
2
√

J(J + 1) [J(J + 1) + 2] 0
0 0 J(J + 1)

⎞
⎟
⎟
⎠

, (11)

where the rows and columns are in the order 3Σ−1,e, 3Σ−0,e, and 3Σ−1, f .
The 3Σ−0 state has e-symmetry, and the 3Σ−1 state has pairs of
rotational levels of e- and f-symmetry. It is instructive to com-
pare these symmetries with that of the 3Σ+0 state, which has f-
symmetry, and those of 3Σ+1 , which has pairs of rotational levels
of e- and f-symmetry. The eigenvalues of the 2 × 2, e-block of the
Hamiltonian are

E+(J) ≡ F2e(J) = BΣ,vΣ(J
2
+ 3J + 2),

E−(J) ≡ F1e(J) = BΣ,vΣ(J
2
− J),

(12)

and the eigenvalue of the 1 × 1, f-block of the Hamiltonian is

E0(J) ≡ F1 f (J) = BΣ,vΣ J(J + 1). (13)

We note that, as expected, the sum of the eigenvalues equals the trace
of the matrix.

We introduce a pattern-forming quantum number, N, which
has values of N = J + 1 for E+, N = J − 1 for E−, and N = J for E0.
The energies of levels with a common value of N are

F1e(N) = E−(N = J − 1) = BΣ,vΣN(N + 1),
F1 f (N) = E0(N = J) = BΣ,vΣN(N + 1),

F2e(N) = E+(N = J + 1) = BΣ,vΣN(N + 1).
(14)

These equations demonstrate why the quantum number N is
“pattern-forming.”

The rotational levels of the 3Σ− and 1Π states are depicted
schematically in Fig. 1. The spin-rotational structure of a 3Σ− state
consists of sets of three-fold degenerate N-levels, given by Eq. (14).
Neighboring sets, with values of the pattern-forming quantum
number equal to N + 1, N, and N − 1, have the energies

E(N + 1) = E−(J + 2) = E0(J + 1) = E+(J)
= BΣ,vΣ(J + 1)(J + 2),

E(N) = E−(J + 1) = E0(J) = E+(J − 1) = BΣ,vΣ J(J + 1),
E(N − 1) = E−(J) = E0(J − 1) = E+(J − 2) = BΣ,vΣ(J − 1)J,

(15)

which are expressed as functions of the rigorously good quantum
number, J. The spacings between these sets, which are shown in
Fig. 1, are E(N + 1) − E(N) = 2BΣ,vΣ(J + 1) and E(N) − E(N − 1)
= 2BΣ,vΣ J.

Next, we use second-order perturbation theory to calculate the
effects of perturbation of the 1Π levels by the 3Σ− state. From Eq. (3),
the energy shift is

δEΠ(J) =
∣⟨

1Π1, vΠ∣Ĥ SO
∣
3Σ−1 , vΣ⟩∣2

EΠ(J) − EΣ(J)
. (16)

FIG. 1. Rotational energy structure of the 3Σ− and 1Π states. The red and blue
arrows indicate perturbations of a rotational level, J, of the 1Π state by 3Σ− levels
of e- and f-symmetry, respectively. The path numbers are indicated at the bottom
right of each arrow. Note that for these states, ΔEΠΣ is negative.

The numerator of Eq. (16) does not depend on either J or e/ f-
symmetry, as seen in Eq. (9). The denominator of Eq. (16) is the
symmetry-dependent difference in energy, ΔEΠΣ, between the states
∣
1Π1, vΠ, J⟩ and ∣3Σ−1 , vΣ, J⟩. For F1 f levels of f-symmetry, this energy

difference, depicted by the blue arrow in Fig. 1, is

ΔEΠΣ(F1 f , J) = (TΠ − TΣ) + (BΠ − BΣ)J(J + 1), (17)

where TΠ and TΣ are the electronic term energies of the two states.
(Henceforth, for clarity, we drop the v subscript from the rotational
constants.) For the F1e and F2e levels of e-symmetry, the energy
differences, depicted by the red arrows in Fig. 1, are

ΔEΠΣ(F2e, J) = ΔEΠΣ(F1 f , J) − 2BΣ(J + 1),
ΔEΠΣ(F1e, J) = ΔEΠΣ(F1 f , J) + 2BΣJ.

(18)

The energy shifts of states of e- and f-symmetries are deter-
mined by the symmetries of the eigenstates of Ĥ SU . We express
these eigenstates as linear combinations of case (a) basis func-
tions with coefficients c1, c2, and c3, evaluated for the 3Σ− state. By
diagonalizing Ĥ SU , we find that

∣F2e, J⟩ = c1(J) ∣3Σ−1 , J⟩e + c2(J) ∣3Σ−0 , J⟩e,

∣F1e, J⟩ = −c2(J) ∣3Σ−1 , J⟩e + c1(J) ∣3Σ−0 , J⟩e,

∣F1 f , J⟩ = c3 ∣
3Σ−1 , J⟩ f .

(19)

The coefficients of the eigenvectors have the values

c1(J) = [
J

2J + 1
]

1/2
,

c2(J) = [
J + 1

2J + 1
]

1/2
,

c3 = 1.

(20)
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Combining Eqs. (9), (19), and (20), we obtain9,10

e⟨
3Σ−1 , F1e, J∣Ĥ SO

∣
1Π1, J⟩e = [

J
2(2J + 1)

]

1/2
a+⟨vΠ∣vΣ⟩/2,

f ⟨
3Σ−1 , F1 f , J∣Ĥ SO

∣
1Π1, J⟩ f =

1
√

2
a+⟨vΠ∣vΣ⟩/2,

e⟨
3Σ−1 , F2e, J∣Ĥ SO

∣
1Π1, J⟩e = −[

J + 1
2(2J + 1)

]

1/2
a+⟨vΠ∣vΣ⟩/2.

(21)

Combining Eqs. (16)–(20), we obtain for the energy shift of the
state with f-symmetry,

δEΠ f (J) =
[ f ⟨

3Σ−1 , F1 f , JĤ SO
∣
1Π1, J⟩ f ]

2

ΔEΠΣ(F1 f , J)
=

a2
+ ⟨vΣ∣vΠ⟩2

8 ΔEΠΣ(F1 f , J)
. (22)

For e-symmetry, both the F1e and F2e levels contribute to the energy
shift. The result is

δEΠe(J) =
[e⟨

3Σ−1 , F1e, JĤ SO
∣
1Π1, J⟩e]

2

ΔEΠΣ(F1 f , J) − 2BΣ(J + 1)

+
[e⟨

3Σ−1 , F2e, JĤ SO
∣
1Π1, J⟩e]

2

ΔEΠΣ(F1 f , J) + 2BΣJ
, (23)

where the energy denominators are defined in Eq. (18). Substituting
Eq. (21) into Eq. (23), we obtain

δEΠe(J) =
a2
+⟨vΣ∣vΠ⟩2

8 ΔEΠΣ(F1 f , J)
(

1 + 2ε
1 + 2ε − 4ε2J(J + 1)

), (24)

where ε ≡ BΣ/ΔEΠΣ. Expanding the denominator to second order in
ε, we obtain

δEΠe(J) ≈
a2
+⟨vΣ∣vΠ⟩2

8 ΔEΠΣ(F1 f , J)
{1 + 4ε2J(J + 1)}. (25)

We obtain, finally, for the Λ-splitting,

δν(1Π ∼ 3Σ−, J) = [δEΠ f (J) − δEΠe(J)]/h

= −
a2
+B2

Σ⟨vΣ∣vΠ⟩
2

2h[ΔEΠΣ(F1 f , J)]3
J(J + 1). (26)

It is insightful to compare this result to the direct splitting of 1Π
by 1Σ states. The matrix elements in the numerator are

BvΠ ,vΣ⟨
1Πe, J∣Ĵ +L̂−∣1Σ+e , J⟩ = BvΠ ,vΣ⟨

1Π f , J∣Ĵ +L̂−∣1Σ−f , J⟩

= BvΠ ,vΣbΠΣ
√

J(J + 1), (27)

where bΠΣ = ⟨Σ∣L̂−∣Π⟩ is a rotation-orbit or gyroscopic parameter.
In this case, there is only one perturbation path. Either the 1Πe state
is perturbed by a 1Σ+e state and the energy of the 1Π f state is not
shifted, or the 1Π f state is perturbed by a 1Σ−f state and the energy of
the 1Πe state is not shifted. The Λ doubling in this case is

δν(1Π∼ 1Σ±, J) = ∓
B2
Σ b2

ΠΣ⟨vΣ∣vΠ⟩
2

hΔ[EΠΣ(F1 f , J)]
J(J + 1). (28)

It follows that the ratio of the Λ-splitting by the denominator effect
in Eq. (26) to the splitting by the numerator in Eq. (28) is

δν((1Π∼3Σ−, J)
δν((1Π∼ 1Σ±, J)

= ±
1
2
(

a+
ΔEΠΣ

)
2
(
⟨vΣ∣vΠ⟩

bΠΣ
)

2

. (29)

A perturbing state is said to be “energetically remote” when
a+ ≪ ΔE, in which case, the ratio of the two splttings in Eq. (29)
is very small.

III. SPLITTING OF 1Δ BY 1Π

For the perturbation of 1Δ by 1Π states, the off-diagonal matrix
element of Ĥ Rot is independent of e/ f-symmetry. In this case, the
second-order Λ-splitting of the 1Π state produces a fourth-order
splitting of the 1Δ state.

The wave functions of the 1Π and 1Δ states are

∣
1Π1, J⟩e, f =

1
√

2
{∣

1Π1⟩∣J, 1⟩ ± ∣1Π−1⟩∣J,−1⟩},

∣
1Δ2, J⟩e, f =

1
√

2
{∣

1Δ2⟩∣J, 2⟩ ± ∣1Δ−2⟩∣J,−2⟩},
(30)

and the matrix element in the numerator of the perturbation
equation, δν = ∣⟨i∣V̂ ∣ j⟩∣2/hΔEij , is

⟨
1Π1∣Ĥ

LU
∣
1Δ2⟩ =

1
√

2
bΠΔBvΠ ,vΔ [J(J + 1) − 2]

1
2 . (31)

It is apparent from Eq. (30) that this matrix element has the same
value for e- and f-symmetries. The denominator, however, depends
on e/ f symmetry owing to the splitting of the 1Π state by the 3Σ
state, which was derived in Sec. II. The resulting energy shifts for e-
and f-symmetry are

δEe(J) =
1
2 b2

ΠΔ B2
vΠ ,vΔ[J(J + 1) − 2]

ΔEΠΔ + δΠ(J)/2
,

δE f (J) =
1
2 b2

ΠΔ B2
vΠ ,vΔ[J(J + 1) − 2]

ΔEΠΔ − δΠ(J)/2
.

(32)

After some algebra, the Λ-splitting of the 1Δ state is found to be

δνΔ(J) = [δEΔ f (J) − δEΔe(J)]/h

= −
b2
ΠΔ B2

vΠ ,vΔ[J(J + 1) − 2]
2(ΔEΠΔ)2 δνΠ(J). (33)

Comparing this result to Eq. (26), we see that, whereas δνΠ(J) varies
as J squared, δνΔ(J) varies as J to the fourth power, which corre-
sponds to a fourth-order perturbation. This result is consistent with
the result derived for direct (numerator) Λ-doubling of Δ states by
Brown et al.,11 and in references cited therein.

IV. SPLITTING OF 2Π BY 4Σ−

A. Introduction
The Λ-doubling of a 2Π state by an energetically remote 4Σ−

state is another example where the interaction is caused exclusively
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by the spin–orbit operator and the splitting is exclusively a denom-
inator effect. This case is complicated by the multiplet structure
of the 4Σ− state and by the angular momentum coupling of
the 2Π state.

In calculating the Λ-doubling, the following points are consid-
ered. First, the spin-orbit selection rule, ΔΩ = 0, requires that the
only possible interactions are 2Π 1

2
∼

4Σ−1
2

and 2Π 3
2
∼

4Σ−3
2
. Second, in

the absence of a perturbation, the 4Σ− state is four-fold degenerate. It
is necessary to identify the e/ f-symmetry of each of the four degen-
erate states and to specify the perturbation paths for 2Π states of the
same J and e/ f-symmetry. Third, to calculate the interaction of the
2Π state with each of the 4Σ− multiplet components, it is necessary to
take into account the angular momentum coupling of the 2Π state.
Here we consider the perturbation near the Hund’s case (a) and case
(b) limits of the 2Π state.

B. Properties of the 4Σ states
The spin-uncoupling rotational Hamiltonian is given by

Eq. (6). The matrix representation of this operator for the 4Σ− state
with e-symmetry in the case (a) basis is

⟨ψi∣Ĥ
SU
∣ψj⟩ = BΣ

⎛

⎝

J(J + 1) − 3/4 [3(J − 1/2)(J + 3/2)]
1
2

[3(J − 1/2)(J + 3/2)]
1
2 J(J + 1) − 2J + 9/4

⎞

⎠

,

(34)

where the rows and columns are in the order 4Σ−3
2
,4Σ−1

2
. We diago-

nalize the matrix and solve for the roots of the secular equation. The
results are

Ee+ = BΣ(J2
+ 2J + 3/4),

Ee− = BΣ(J2
− 2J + 3/4).

(35)

Similarly, the matrix representation of Ĥ SU for the 4Σ− state with
f-symmetry is

⟨ψi∣Ĥ
SU
∣ψj⟩ = BΣ

⎛

⎝

J(J + 1) − 3/4 [3(J − 1/2)(J + 3/2)]
1
2

[3(J − 1/2)(J + 3/2)]
1
2 J(J + 1) + 2J + 17/4

⎞

⎠

,

(36)

and its roots are

E f + = BΣ(J2
+ 4J + 15/4),

E f − = BΣ(J2
− 1/4).

(37)

We label the states in the order of increasing energy for a
given e- or f-symmetry and a fixed value of J. The states with
energies Ee−, Ee+, E f−, and E f+ are labeled F1e, F2e, F1 f , and F2 f ,
respectively.13 We define the pattern-forming quantum number, N,
such that

N = J − 3/2, F1e,
N = J + 1/2, F2e,
N = J − 1/2, F1 f ,
N = J + 3/2, F2 f .

(38)

After substituting Eq. (38) into Eqs. (35) and (37), we find that the
energies of all four levels are given by

E(N) = BΣN(N + 1), (39)

which reflects the pattern-forming nature of N in case (b).
We note that case (b) coupling is suitable for 4Σ− states at

all values of J. We also note that interchanging 4Σ− with 4Σ+ is
equivalent to interchanging e- and f-symmetries. We may see this
by comparing the H22 matrix elements in Eqs. (34) and (36). The
relevant wave functions are

∣
4Σ+1

2
, J⟩e = 2−

1
2 [∣

4Σ+1
2
⟩∣J, 1/2⟩] + ∣4Σ+− 1

2
⟩∣J,−1/2⟩],

∣
4Σ−1

2
, J⟩ f = 2−

1
2 [∣

4Σ−1
2
⟩∣J, 1/2⟩] + ∣4Σ−− 1

2
⟩∣J,−1/2⟩].

(40)

The plus sign in the sum for both wave functions is derived from Eq.
(3.2.94) in Ref. 1. The Ω = Ω′ = 1/2 matrix element for both states is

H22 = BΣ[J(J + 1) − 2(
1
2
)(

1
2
) +

15
4
+ (2J + 1)]

= BΣ[J(J + 1) + 2J + 17/4], (41)

where the underlined term comes from Ĵ +Ŝ− + Ĵ −Ŝ+. Similarly,

∣
4Σ+1

2
, J⟩ f = 2−

1
2 [∣

4Σ+1
2
⟩∣J, 1/2⟩] − ∣4Σ+− 1

2
⟩∣J,−1/2⟩],

∣
4Σ+1

2
, J⟩e = 2−

1
2 [∣

4Σ−1
2
⟩∣J, 1/2⟩] − ∣4Σ−− 1

2
⟩∣J,−1/2⟩],

(42)

and

H22 = BΣ[J(J + 1) − 2(
1
2
)(

1
2
) +

15
4
− (2J + 1)],

= BΣ[J(J + 1) − 2J + 9/4]. (43)

It follows that the matrix representations of Ĥ SU for 4Σ∓e and 4Σ±f
are equivalent.

We next derive the wave function associated with each energy
eigenstate by solving the following equation:

Ĥ
SU
∣
4Σ−, Fk, J⟩ = Ek∣

4Σ−, Fk, J⟩, k = 1, 2. (44)

The results for 4Σ− states with e-symmetry and the corresponding
results for 4Σ+ states with f-symmetry are

∣
4Σ−, F1, J⟩e = (

3(J − 1/2)
4J

)

1
2

∣
4Σ−1

2
, J⟩e + (

J + 3/2
4J
)

1
2

∣
4Σ−3

2
, J⟩e,

∣
4Σ−, F2, J⟩e = (

J + 3/2
4J
)

1
2

∣
4Σ−1

2
, J⟩e − (

3(J − 1/2)
4J

)

1
2

∣
4Σ−3

2
, J⟩e,

(45)
where

∣
4Σ−1

2
, J⟩e = 2−

1
2 {∣

4Σ−1
2
⟩∣J, 1/2⟩ + ∣4Σ−− 1

2
⟩∣J,−1/2⟩},

∣
4Σ−3

2
, J⟩e = 2−

1
2 {∣

4Σ−3
2
⟩∣J, 3/2⟩ + ∣4Σ−− 3

2
⟩∣J,−3/2⟩}.

(46)
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Similarly, the results for 4Σ− states with f-symmetry (and the
corresponding results for 4Σ+ states with e-symmetry) are

∣
4Σ−, F1, J⟩ f = (

3(J + 3/2)
4(J + 1)

)

1
2

∣
4Σ−1

2
, J⟩ f + (

J − 1/2
4(J + 1)

)

1
2

∣
4Σ−3

2
, J⟩ f ,

∣
4Σ−, F2, J⟩ f = (

J − 1/2
4(J + 1)

)

1
2

∣
4Σ−1

2
, J⟩ f − (

3(J + 3/2)
4(J + 1)

)

1
2

∣
4Σ−3

2
, J⟩ f ,

(47)
where

∣
4Σ−1

2
, J⟩ f = 2−

1
2 {∣

4Σ−1
2
⟩∣J, 1/2⟩ − ∣4Σ−− 1

2
⟩∣J,−1/2⟩},

∣
4Σ−3

2
, J⟩ f = 2−

1
2 {∣

4Σ−3
2
⟩∣J, 3/2⟩ − ∣4Σ−− 3

2
⟩∣J,−3/2⟩}.

(48)

It will be convenient when describing the perturbation paths to refer
to the eigenfunctions in Eqs. (45) and (47) as the e1, e2, f1, and f2
eigenstates associated with the 4Σ− state.

C. Properties of the 2Π state
Unlike the 4Σ± states, the angular coupling of 2Π evolves from

case (a) toward case (b) with increasing J. Here, we consider the
limits of pure case (a) and pure case (b).

In the case (a) limit, the 2Π state functions are

∣
2Π 3

2
, J⟩e/ f = 2−

1
2 [∣

2Π 3
2
⟩∣J, 3/2⟩ ± ∣2Π− 3

2
⟩∣J,−3/2⟩],

∣
2Π 1

2
, J⟩e/ f = 2−

1
2 [∣

2Π 1
2
⟩∣J, 1/2⟩ ± ∣2Π− 1

2
⟩∣J,−1/2⟩].

(49)

The case (b) 2Π wave functions are expanded in the case (a)
basis by means of a unitary transformation,

∣J, S, N,Λ⟩ =
S

∑
Σ=−S
(J,Ω, S,−Σ∣J, S, N,Λ)∣J,Ω, S,Σ⟩, (50)

where the quantity in parentheses is a Clebsch–Gordan coefficient,
and it is understood that Λ = Ω − Σ. (See p. 130 in Ref. 1.) For a 2Π
state,

∣
2Π, F1, N = J − 1/2⟩e/ f = (

J − 1/2
2J + 1

)

1/2
∣
2Π1/2⟩e/ f

+ (
J + 3/2
2J + 1

)

1/2
∣
2Π3/2⟩e/ f ,

∣
2Π, F2, N = J + 1/2⟩e/ f = (

J + 3/2
2J + 1

)

1/2
∣
2Π1/2⟩e/ f

− (
J − 1/2
2J + 1

)

1/2
∣
2Π3/2⟩e/ f .

(51)

It will be convenient to refer to these functions as the e1, e2, f1,
and f2 eigenstates associated with the 2Π state. We use the symbol N0
to designate the pattern forming quantum number and the symbol
J0 = J for the total angular momentum quantum number of the 2Π
state, so that the relations between J and N introduced in Eq. (51)
are

N0 = J0 + 1/2, F2e, F2 f ,
N0 = J0 − 1/2, F1e.F1 f .

(52)

D. Matrix elements for each of the perturbation paths
We use the results of the previous sections to evaluate the

matrix elements that appear in the numerator of the second-order
perturbation theory expression [Eq. (16)] for the energy shift. We
evaluate these matrix elements in the case (a) and case (b) lim-
its. Since there are four eigenstates for 2Π and 4Σ−, there are 16
matrix elements to be considered in each limit. Conservation of
symmetry (i.e., the requirement that e-states perturb only e-states
and f-states perturb only f-states) reduces this number to 8. These
interactions are shown schematically12 in Fig. 2 for case (a), and the
corresponding perturbation paths are depicted in Fig. 3.

The paths that connect rotational levels of 2Π and 4Σ− must
conserve e/ f symmetry and the total angular momentum quantum
number, J. The quantum numbers of the 4Σ− state, which are listed
to the right of the energy levels in Fig. 3, are determined by invoking
the relation between N and J given in Eq. (38). For example, J = N −
3/2 for all four f2 levels shown in this figure. Path 4 connects the f2
level of 2Π(F2, J0) with the f2 level of 4Σ−(N = J0 + 3/2). Following
the same reasoning, path 3 connects the same f2 level of 2Π(F2, J0)

with the f1 level of 4Σ−(N = J0 − 1/2). We refer to path 4 by the label
f2 − f2 and path 3 by the label f2 − f1. The other paths are named
similarly.

Similar reasoning is applied in the case (b) limit of 2Π, except
that in this case, N is a pattern forming quantum number, and
the selection rule ΔN = 0,±1 applies. We denote the correspond-
ing quantum number for the 2Π state by N0. Figure 4 shows that
paths (2) and (8), which involve ΔN = ±2, are not allowed. The
corresponding path diagram is given by Fig. 5.

It is instructive to use Eqs. (35) and (37) to calculate the energy
levels depicted in Fig. 5. The four 4Σ− levels associated with each
value of N are degenerate. For example, the levels with N = N0 all
have a rotational energy of BΣN0(N0 + 1). For the e1 level, Eqs. (35)
and (38) give J = N0 + 3/2 and

E(4Σ−, J, e1) = BΣ(J2
− 2J + 3/4) = BΣN0(N0 + 1). (53)

The same result is obtained for E(4Σ−, J, f1), E(4Σ−, J, e2) and
E(4Σ−, J, f2).

FIG. 2. Schematic diagram of the spin–orbit interactions of the rotational levels of
the 2Π and 4Σ− states in the case (a) limit of the 2Π state. This diagram shows
that 4Σ− states of e- or f-symmetry interact only with 2Π states of the same e/ f
symmetry. The red lines and dots correspond to e-symmetry, and the blue ones
correspond to f-symmetry.
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FIG. 3. Diagram of the rotational energy levels of the 2Π
and 4Σ− states in the case (a) limit of the 2Π state. The
arrows indicate the symmetry-allowed paths for spin–orbit
interactions. The path numbers are indicated at the bot-
tom right of each arrow. Paths 1, 2, 5, and 6—shown in
red—indicate the interactions of states of e-symmetry, and
paths 3, 4, 7, and 8—shown in blue—indicate the interac-
tions of states of f-symmetry. In each of the contributing
interactions, J = J0, as indicated by the red annotation on
the right side of the figure. The separations between the e-
and f-energy levels are calculated using Eqs. (35) and (37).
Note that for these states, ΔEΠΣ is negative.

Similarly, the four levels associated with the 2Π state in case (b)
are degenerate. Diagonalization of Ĥ SU yields7,14

E± = BΠ [(J + 1/2)2
−Λ2

± Xv/2]], (54)

where

Xv = [Yv(Yv − 4) + 4(J + 1/2)2
]

1
2 ,

Yv = AΠ/BΠ.
(55)

The plus sign in Eq. (54) corresponds to e2 and f2, and the
minus sign corresponds to e1 and f1. For Yv = 0 or 4, we obtain
Xv/2 = J + 1/2. Inserting the relations between N0 and J0 given by
Eq. (52) and setting Λ = 1 for a Π state, we obtain the energy for
both e- and f-symmetries in case (b):

E = BΠ[N0(N0 + 1) − 1]. (56)

We now have all the tools needed to calculate the off-diagonal matrix
elements of Ĥ SO for each path. The results are listed in Table I of

FIG. 4. Schematic diagram of the spin–orbit interactions of the rotational levels of
the 2Π and 4Σ− states in the case (b) limit of the 2Π state. The red lines and
dots correspond to e-symmetry, and the blue ones correspond to f-symmetry. The
labeled dots indicate the ΔN = 0,±1 selection rule for the matrix elements. This
diagram is a revised version of Fig. 4.69 in Ref. 9.

the Appendix. The path numbers correspond to those in Figs. 3 and
5. The paths are labeled si − s′j , where s is the e/ f symmetry of the
2Π level, s′ is the e/ f symmetry of the 4Σ− level, and i and j each
equal 1 or 2. We label the matrix elements c1a, . . . , c8a for Hund’s
case (a) and c1b, . . . , c8b for Hund’s case (b). A property of these coef-
ficients is that the sum of their squares for a given e- or f-symmetry
is independent of symmetry. For example, c2

1a + c2
2a = c2

3a + c2
4a. This

property is important because it implies that even though the off-
diagonal matrix elements of Ĥ SO may depend on e/ f-symmetry,
the square of these matrix elements summed over all paths belong-
ing to a particular perturbation [in this case, paths 1 and 2 for
2Π(F2e, J)∼ 4Σ−(J, e) and paths 3 and 4 for 2Π(F2 f , J)∼ 4Σ−(J, f )]
is the same for both symmetries. [The same property is shown in
Eq. (20) for 1Π ∼ 3Σ−.] It follows that if Ĥ Rot does not introduce
e/ f-symmetry dependence of the numerator (in this case because
ΔS ≠ 0), the only source of Λ-doubling is the energy denominator.

E. Calculation of the Λ-doubling: Case (a)
We use the matrix elements listed in Table I to calculate the

Λ-doubling. We consider first the case (a) limit of the 2Π state. For
the F2 state (i.e., for 2Π3/2 with AΠ > 0 and 2Π1/2 with AΠ < 0), the
energy shift of the e-levels is the sum of the contributions from paths
1 and 2. The energy denominator is calculated using Eq. (35), which
gives, for these two paths, E(4Σ−, J0, e2) − E(4Σ−, J0, e1) = 4BΣJ0. The
energy shift from the two paths is

δEΠ(F2 ,e) =
c2

1a

ΔEΠΣ − 4BΣJ0
+

c2
2a

ΔEΠΣ
=

1
4

a2
+⟨vΠ∣vΣ⟩

2

× {
3
4
(

J0 − 1/2
J0

)
1

ΔEΠΣ − 4BΣJ0
+

1
4
(

J0 + 3/2
J0

)
1

ΔEΠΣ
}

=
a2
+⟨vΠ∣vΣ⟩2

4ΔEΠΣ
{

3
4
(

J0 − 1/2
J0

)
1

1 − 4εJ0
+

1
4
(

J0 + 3/2
J0

)}

≈
a2
+⟨vΠ∣vΣ⟩2

4ΔEΠΣ
[1 + 3ε(J0 − 1/2 ], (57)
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FIG. 5. Diagram of the rotational energy levels of the 2Π
and 4Σ− states in the case (b) limit of the 2Π state. The
arrows indicate the symmetry-allowed paths for spin–orbit
interactions. The path numbers are indicated at the bot-
tom right of each arrow. Paths 1, 5, and 6—shown in
red—indicate the interactions of states of e-symmetry, and
paths 3, 4, and 7—shown in blue—indicate the interactions
of states of f-symmetry.

TABLE I. Matrix elements for the perturbation paths connecting the 2Π and 4Σ− states.a

Path ⟨
2Π(a), J∣Ĥ SO

∣
4Σ−, J⟩ ⟨

2Π(b), J∣Ĥ SO
∣
4Σ−, J⟩ ⟨

2Π(b), N0∣Ĥ
SO
∣
4Σ−, N0⟩

(1) e2 − e2 −

√
3
4

√
J−1/2

J −

√
2
3

√
J

J+1/2 −

√
2
3

√
N0−1/2

N0

(2) e2 − e1 − 1
2

√
J+3/2

J 0 0

(3) f2 − f1 −

√
3
4

√
J+3/2

J+1

√
1
6

√ (J−1/2)(J+3/2)
(J+1/2)(J+1)

√
1
6

√
N2

0−1
N0(N0+1/2)

(4) f2 − f2 − 1
2

√
J−1/2

J+1

√
1
2

√
J+1/2

J+1

√
1
2

√
N0

N0+1/2
(5) e1 − e2 −

√
1

12

√
J+3/2

J

√
1
6

√ (J−1/2)(J+3/2)
J(J+1/2)

√
1
6

√
N0(N0+2)

(N0+1/2)(N0+1)
(6) e1 − e1 − 1

2

√
J−1/2

J −

√
1
2

√
J+1/2

J −

√
1
2

√
N0+1

N0+1/2
(7) f1 − f1 −

√
1

12

√
J−1/2

J+1 −

√
2
3

√
J+1

J+1/2 −

√
2
3

√
N0+3/2

N0+1

(8) f1 − f2 1
2

√
J+3/2

J+1 0 0

aThe matrix elements are divided by a common factor of a+⟨vΠ∣vΣ⟩/2.

where

ΔEΠΣ(F2, J) = (TΠ − TΣ) + (BΠ − BΣ)J0(J0 + 1), (58)

and ε = BΣ/ΔEΠΣ.
Similarly, the energy shift of the f-levels is produced by paths

3 and 4. The energy denominators are calculated from Eqs. (35) and
(37), which give

E(4Σ−, J0, f1) − E(4Σ−, J0, e1) = 2BΣ(J0 − 1/2),

E(4Σ−, J0, f2) − E(4Σ−, J0, e1 = 6BΣ(J0 + 1/2)
(59)

The resulting energy shift is

δEΠ(F2 , f ) =
c2

3a

ΔEΠΣ − 2BΣ(J0 − 1/2)
+

c2
4a

ΔEΠΣ − 6BΣ(J0 + 1/2)

=
a2
+⟨vΠ∣vΣ⟩2

4ΔEΠΣ
{

3
4
(

J0 + 3/2
J0 + 1

)
1

1 − 2ε(J0 − 1/2)

+
1
4
(

J0 − 1/2
J0 + 1

)
1

1 − 6ε(J0 + 1/2)
}

≈
a2
+⟨vΠ∣vΣ⟩2

4ΔEΠΣ
{

3
4
(

J0 + 3/2
J0 + 1

)[1 + 2ε(J0 − 1/2)]

+
1
4
(

J0 − 1/2
J0 + 1

)[1 + 6ε(J0 + 1/2)]}

=
a2
+⟨vΠ∣vΣ⟩2

4ΔEΠΣ
[1 + 3ε(J0 − 1/2 ]. (60)
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Comparison of Eqs. (57) and (60) shows that the denominators do
not generate Λ-doubling of the F2 levels.

We perform a similar calculation of the splitting of the F1 levels
of the 2Π state. For paths 5 and 6, the relevant energy difference,
calculated using Eq. (35), is E(4Σ−, e2) − E(4Σ−, e1) = 4BΣJ0. The
energy shift of the e-level is

δEΠ(F2 ,e) =
c2

5a

ΔEΠΣ + AΠ − 4BΣJ0
+

c2
6a

ΔEΠΣ + AΠ

=
1
4

a2
+⟨vΠ∣vΣ⟩

2
{

1
12
(

J0 + 3/2
J0

)
1

ΔEΠΣ + AΠ − 4BvJ0

+
1
4
(

J0 − 1/2
J0

)
1

ΔEΠΣ + AΠ
}

=
1
4

a2
+⟨vΠ∣vΣ⟩2

ΔEΠΣ + AΠ
{

1
12
(

J0 + 3/2
J0

)
1

1 − 4ε′J0
+

1
4
(

J0 − 1/2
J0

)}

≈
1

12
a2
+⟨vΠ∣vΣ⟩2

ΔEΠΣ + AΠ
[1 + ε′(J0 + 3/2)], (61)

where ε′ = BΣ/(ΔEΠΣ + AΠ).
Similarly, for paths 7 and 8, the relevant energy differences are

E(4Σ−, J0, f1) − E(4Σ−, J0, e1) = 2BΣ(J0 − 1/2),

E(4Σ−, J0 f2) − E(4Σ−, J0, e1) = 6BΣ(J0 + 1/2).
(62)

The shift of the f-level is accordingly,

δEΠ(F1 , f ) =
c2

7a

ΔEΠΣ + AΠ − 2BΣ(J0 − 1/2)

+
c2

8a

ΔEΠΣ + AΠ − 6BΣ(J0 + 1/2)

=
1
4

a2
+⟨vΠ∣vΣ⟩2

ΔEΠΣ + AΠ
{

1
12
(

J0 − 1/2
J0 + 1

)
1

1 − 2ε′(J0 − 1/2)

+
1
4
(

J0 + 3/2
J0 + 1

)
1

1 − 6ε′(J0 + 1/2)
}

≈
1

12
a2
+⟨vΠ∣vΣ⟩2

ΔEΠΣ + AΠ
[1 + ε′(5J0 + 7/2)]. (63)

Combining Eqs. (61) and (63) gives for the Λ-doubling of the F1
levels:

δEΠ(F1 , f ) − δEΠ(F1 ,e) =
1
3

a2
+⟨vΠ∣vΣ⟩2

ΔEΠΣ + AΠ
ε′(J0 + 1/2)

=
2
3

a2
+⟨vΣ∣vΠ⟩2

(ΔEΠΣ + AΠ)
2 BΣ(J0 + 1/2). (64)

This non-zero splitting of the F1 levels is in contrast to the zero
splitting of the F2 levels.

F. Calculation of the Λ-doubling: Case (b)
Finally, we turn to the splitting of the 2Π levels in the case (b)

limit, which are depicted in Fig. 5.
The shift of the e-levels is produced by paths 1, 5, and 6. The

result is

δEΠ(e) =
c2

1b
ΔEΠΣ

+
c2

5b
ΔEΠΣ + 2BΣN0

+
c2

6b
ΔEΠΣ − 2BΣ(N0 + 1)

, (65)

where
ΔEΠΣ(N0) = (TΠ − TΣ) + (BΠ − BΣ)N0(N0 + 1). (66)

The shift of the f-levels is produced by paths 3, 4, and 7. The result
is

δEΠ( f ) =
c2

7b
ΔEΠΣ

+
c2

3b
ΔEΠΣ + 2BΣN0

+
c2

4b
ΔEΠΣ − 2BΣ(N0 + 1)

. (67)

In the limit of large N0, the coefficients listed in Table I have
the values c2

1b = c2
7b =

1
6 a2
+⟨vΠ∣vΣ⟩2, c2

3b = c2
5b =

1
24 a2

+⟨vΠ∣vΣ⟩2, and
c2

4b = c2
6b =

1
8 a2
+⟨vΠ∣vΣ⟩2, and the Λ-doubling, δEΠ( f ) − δEΠ(e), van-

ishes. At intermediate values of N0, the Λ-doubling is

δEΠ( f ) − δEΠ(e) ≈
a2
+⟨vΠ∣vΣ⟩2

4ΔEΠΣ
{

2
3

N0 + 1/2
N0(N0 + 1)

+
1
6

N2
0 +N0 + 1

N0(N0 + 1/2)(N0 + 1)
(1 − 2ε)

−
1
2

1
N0 + 1/2

(1 + 2ε)}

≈
a2
+⟨vΠ∣vΣ⟩2

12 ΔEΠΣ N0
. (68)

The Λ-splitting vanishes as a+ → 0 and N0 →∞.

V. SPLITTING OF 2Π BY 2Σ+

The numerator effect is absent in the examples that we have
considered so far because, in those cases, the off-diagonal matrix ele-
ment of the rotational Hamiltonian is either zero or independent of
e/ f symmetry. In this section, we show that both the e/ f-symmetry
dependence of the numerator, which is responsible for the conven-
tional Λ-doubling effect, and the J-dependent denominator effect
may exist simultaneously for the same state.

We consider here the perturbation of the 2Π state by the 2Σ+
state. The conventional Λ-doubling of the OH(X2Πi) state has been
studied extensively.15,16 The rotational energy levels of these states
are shown schematically in Figs. 6 and 7 for Hund’s cases (a) and
(b), respectively. There are four possible symmetry-preserving paths,
which are named e2 − e, f2 − f , e1 − e, and f1 − f , where the sub-
scripted letter denotes the 2Π level, and the unsubscripted letter
denotes the 2Σ+ level. The matrix elements for these paths [see
Eqs. (3.5.28) and (3.5.29) in Ref. 1] are collected in Table II in the
Appendix.

Ignoring for the moment the denominator effect, the second-
order energy shifts for the 2Π 1

2
state in case (a) are

δEe = [
1
4

a2
+⟨vΠ∣vΣ⟩

2
+ B2

vΠ ,vΣb2
ΠΣ(J − 1/2)2

− BvΠ ,vΣbΠΣa+⟨vΠ∣vΣ⟩(J − 1/2)]/ΔE,

δE f = [
1
4

a2
+⟨vΠ∣vΣ⟩

2
+ B2

vΠ ,vΣb2
ΠΣ(J + 3/2)2

+ BvΠ ,vΣbΠΣa+⟨vΠ∣vΣ⟩(J + 3/2)]/ΔE,

(69)
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FIG. 6. Diagram of the rotational energy levels of the 2Π and 2Σ+ states in the
case (a) limit of the 2Π state. The arrows indicate the symmetry-allowed paths.
The path numbers are indicated at the bottom right of each arrow. Paths 1 and
3—shown in red—indicate the interactions of states of e-symmetry, and paths 2
and 4—shown in blue—indicate the interactions of states of f-symmetry.

where

ΔE = TΠ − TΣ + (BΠ − BΣ)(J + 1/2), (70)

and the second-order Λ-splitting is

δν0
Π = [4B2

vΠ ,vΣb2
ΠΣ + 2BvΠ ,vΣbΠΣ a+⟨vΠ∣vΣ⟩ ](J + 1/2)/hΔE. (71)

For the 2Π 3
2

state (paths 1 and 2), the coefficients c1a and c2a are equal
and, accordingly, there is no Λ-splitting.

We derived δν0
Π by assuming that the 2Σ+e and 2Σ+f states

are degenerate. But, in fact, their energies, which are obtained by
diagonalizing Ĥ SU [see Eqs. (3.5.21) and (3.5.22) in Ref. 1], are

E(2Σ+e/ f , J) = TΣ + BΣ[J(J + 1) + 1/4 ∓ (J + 1/2)], (72)

and their difference is

E(2Σ+f , J) − E(2Σ+e , J) = 2BΣ(J + 1/2). (73)

This difference stems from the property that the spin-uncoupling
matrix element, ⟨2Σ+1

2
∣Ĵ −Ŝ+∣2Σ+− 1

2
⟩ = J + 1/2, is not zero.

A consequence of the energy difference between the 2Σ+f and
2Σ+e energies is that the perturbations of the 2Π f and 2Πe states
have different energy denominators. This property is accounted for
by multiplying δE f in Eq. (69) by the factor 1 + 2ε(J + 1/2), where
ε = BΣ/ΔE. The total Λ-splitting is given by

δνΠ(J) ≈ δν0
Π(J) + [

1
4

a2
+⟨vΠ∣vΣ⟩

2
+ B2

vΠ ,vΣb2
ΠΣ(J + 3/2)2

+ BvΠ ,vΣbΠΣ a+⟨vΠ∣vΣ⟩(J + 3/2)]
2ε(J + 1/2)

hΔE
. (74)

In the low-J limit (i.e., J ≪ a+/4B), we retain only the first term
in the brackets in Eq. (74). The additional splitting caused by the
denominator effect is then given by

δνΠ(J) − δν0
Π(J) ≈

1
2

a2
+⟨vΠ∣vΣ⟩

2BΣ(J + 1/2)/h(ΔE)2. (75)

In this limit, ΔE ≈ TΠ − TΣ, and the ratio of the additional splitting
caused by the denominator effect to the total splitting is approxi-
mately −a+(J + 1/2)/4(TΣ − TΠ). We note that the contributions
to the splitting from both the numerator and denominator are lin-
ear in J. These results may be compared to the splitting of 2Π(F1)

by 4Σ+, which is also linear in J, whereas the splitting of 1Π by 3Σ−
is quadratic in J, and the splitting of 1Δ by 1Π varies as the fourth
power of J.

In the case (b) limit, we define a pattern forming quantum
number, N, such that N = J − 1/2 for states of e-symmetry and
N = J + 1/2 for states of f-symmetry. Equation (72) shows that the
rotational energy levels of the 2Σ+ state are two-fold degenerate, with
energies E(2Σ+, N, e) = E(2Σ+, N, f ) = BΣN(N + 1). These energy

FIG. 7. Diagram of the rotational energy levels of the 2Π
and 2Σ+ states in the case (b) limit of the 2Π state. The
arrows indicate the symmetry-allowed paths. The path num-
bers are indicated at the bottom right of each arrow. Paths
1 and 3—shown in red—indicate the interactions of states
of e-symmetry, and paths 2 and 4—shown in blue—indicate
the interactions of states of f-symmetry.
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TABLE II. Matrix elements for the perturbation paths connecting the 2Π and 2Σ+ states.

Path ⟨
2Π(a)∣Ĥ Rot

+ Ĥ SO
∣
2Σ+⟩ ⟨

2Π(b)∣Ĥ Rot
+ Ĥ SO

∣
2Σ+⟩

(1) e2 − e −bΣ,Π BvΣ ,vΠ

√
(J − 1/2)(J + 3/2) (N0+1

N0
)

1
2 2−

3
2 a+⟨vΠ∣vΣ⟩

(2) f2 − f −bΣ,Π BvΣ ,vΠ

√
(J − 1/2)(J + 3/2) (N0+1

N0
)

1
2
[2

1
2 bΣ,Π BvΣ ,vΠN0 + 2−

3
2 a+⟨vΠ∣vΣ⟩]

(3) e1 − e −bΣ,Π BvΣ ,vΠ(J − 1/2) + a+⟨vΠ∣vΣ⟩/2 ( N0
N0+1)

1
2
[−2

1
2 bΣ,Π BvΣ ,vΠ(N0 + 1) + 2−

3
2 a+⟨vΠ∣vΣ⟩]

(4) f1 − f bΣ,Π BvΣ ,vΠ(J + 3/2) + a+⟨vΠ∣vΣ⟩/2 ( N0
N0+1)

1
2 2−

3
2 a+⟨vΠ∣vΣ⟩

levels are shown schematically in Fig. 7 for three consecutive values
of N.

The energy shifts produced by the four paths are

δEe =
c2

1b
ΔEΠΣ + 2BΣN0

+
c2

3b
ΔEΠΣ

≈
c2

1b(1 − 2εN0)

ΔEΠΣ
+

c2
3b

ΔEΠΣ
,

δE f =
c2

4b
ΔEΠΣ − 2BΣ(N0 + 1)

+
c2

2b
ΔEΠΣ

≈
c2

4b[1 + 2ε(N0 + 1)]
ΔEΠΣ

+
c2

2b
ΔEΠΣ

.

(76)

It is apparent that the denominator effect in case (b) is pro-
duced by paths 1 and 4. After some algebra, we obtain for the
Λ-doubling

δνΠ = δν f − δνe

= {−
1

N0
+ 2ε(N0 + 1/2)}ξ2

/hΔEΠΣ

+ {−
1

N0
ξ2
± 4BvΠ ,vΣbΠΣ ξ(N0 + 1/2)}/hΔEΠΣ, (77)

where the ± signs correspond to regular (AΠ > 0) and inverted
(AΠ < 0) 2Π states, respectively. (Here and in the following equa-
tion, we use the notation ξ ≡ a+⟨vΠ∣vΣ⟩/2.) The first term on the
right-hand side of Eq. (77) is the contribution from the denomina-
tor, and the second term is the contribution from the numerator.
The ratio of the contributions from the denominator and numerator
is

[− 1
N0
+ 2ε(N0 + 1/2)]ξ

− ξ
N0
± 4BvΠ ,vΣbΠΣ(N0 + 1/2)

≈ ±
ε ξ

2BvΠ ,vΣbΠΣ
= ±

a+
4bΠΣ ΔEΠΣ

. (78)

We find that the denominator effect depends very weakly on N and
vanishes in the case (b) limit when a+ → 0.

VI. SUMMARY AND CONCLUSIONS
The second-order energy shift of a rotational level that is per-

turbed by an energetically remote electronic state is given by the
square of the matrix element of the perturbing terms in the Hamil-
tonian divided by the energy difference between the perturbed and
perturbing states. With the exception of 2Σ states, unperturbed
rotational states that differ only in their e/ f-symmetry are degen-
erate. The lifting of this degeneracy by an electronic perturbation is

known as Λ-doubling. The conventional explanation of Λ-doubling
is that it is caused by the e/ f-symmetry dependence of the off-
diagonal matrix element in the numerator of the perturbation
expression.

In this study, we have shown that Λ-doubling may also have
contributions from the energy denominator. The symmetry depen-
dence of the denominator is a consequence of the requirements
that the perturbed and perturbing states have both the same e/ f-
symmetry and the same total angular momentum, J. Satisfaction of
these two requirements leads to the possibility that either the rota-
tional or the electronic energy of the perturbing state may be e/ f
symmetry-dependent. The denominator effect is important because
it can lift the degeneracy of a state even when the matrix elements
of the perturbing terms in the Hamiltonian are independent of e/ f
symmetry.

In this study, we provide six examples of how the e/ f-symmetry
of the denominator can arise, as follows:

(i) In the perturbation of 1Π by 3Σ− states, there are three paths:
two with e-symmetry and one with f-symmetry. The larger
number of paths with e-symmetry produces a net splitting.
Figure 1 shows that the energy difference of these paths fol-
lows from the e/ f-symmetry of the rotational levels of the
3Σ− states. An example where denominator effects may be
important is the perturbation of the A1Π state of CO.17 In
that case, the full effective Hamiltonian includes all of the per-
turbing states, and the denominator effects from very remote
perturbing states cannot be distinguished from numerator
effects.

(ii) In the perturbation of 1Δ2 by 1Π states, there are two energy
paths: one with e-symmetry and one with f-symmetry. The
energy difference of these paths is a consequence of the Λ-
doubling of the 1Π state. Lambda-doubling of the 1Δ state is,
therefore, a higher order consequence of the symmetry depen-
dence of the rotational levels of the 1Π states. We note that, as
shown in Ref. 11, the 1Δ2 state can also be split directly by a Σ
state.

(iii) In the perturbation of the F1 levels of the 2Π state by the
2Σ+ state, there are again only two energy paths: one with
e-symmetry and one with f-symmetry. Figure 6 shows that
the energy difference of these paths is a consequence of the
electronic energy difference between the 2Σ+f and 2Σ+e states.
This energy difference is produced by the spin-uncoupling
terms in the Hamiltonian. The same effect occurs for the F2
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levels of a 2Π state. For these perturbations, both numerator
and denominator effects exist simultaneously.

(iv) In the case (b) splitting of the 2Π state by the 2Σ+ state,
there are four paths, two of each symmetry. The splitting
depends very weakly on N and vanishes when a+ goes
to zero.

(v) In the perturbation of the F1 levels of the 2Π state by the
4Σ− state, there are four energy paths: two with e-symmetry
and two with f-symmetry. Figure 3 shows that the energy dif-
ferences of these paths are a consequence of the rotational
properties of the 4Σ− state. The same is true for the F2 levels
of 2Π state.

(vi) Finally, in the case (b) splitting of the 2Π state by the 4Σ−
state, there are six paths, three of each symmetry. This splitting
depends very weakly on N and vanishes when either a+ = 0 or
N →∞.

The main finding of this study is that Λ-doubling may be
significant even where there is no rotational interaction (e.g.,
for ΔS ≠ 0), or when the off-diagonal matrix element of Ĥ Rot

is independent of e/ f-symmetry. We have shown that the Λ-
doubling for 1Π ∼ 3Σ− is proportional to a2

+B2J2
/(ΔE)2 [see

Eq. (26)]; for 1Δ ∼ 1Π, it is proportional to a2
+B4J4

/(ΔE)4 [see
Eq. (33)]; and for 2Π(F1)∼

4Σ−, it is proportional to a2
+BJ/(ΔE + A)2

[see Eq. (64)].
When the spin–orbit interaction is strong, the energy denom-

inator effects are large and systematically observable. This is espe-
cially true for molecules containing heavy atoms, where Hund’s
case (c) is applicable. In that case, the spin quantum number is
not specified, and Λ-doubling is replaced by Ω-doubling. For this
type of doubling, which has not been systematically studied, e/ f-
splitting will provide a spectrum-only path toward reconstruction
of partial L,Λ, and S characters of the states. The denominator
effect may also play a major role in the Λ-doubling of high Ryd-
berg states, where the energy spacing between electronic states
is small.
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APPENDIX: OFF-DIAGONAL MATRIX ELEMENTS
OF Ĥ SO

+ Ĥ Rot

For three electrons, the electronic configuration of a regular 2Π
state is σ2π, and for an inverted 2Π state, it is π3. The electronic wave
functions for these states are given by the following combinations of
Slater determinants:

∣
2Π 1

2
, J, σ2π⟩e, f =

1
√

2
[∣π+β, σα, σβ∣∣J, 1/2⟩ ± ∣π−α, σα, σβ∣∣J,−1/2⟩],

∣
2Π 3

2
, J, σ2π⟩e, f =

1
√

2
[∣π+α, σα, σβ∣∣J, 1/2⟩ ± ∣π−α, σα, σβ∣∣J,−1/2⟩],

∣
2Π 1

2
, J,π3

⟩e, f =
1
√

2
[ ∣π+α,π+β,π−β∣∣J, 1/2⟩

± ∣π+α,π−α,π−β∣∣J,−1/2⟩ ],

∣
2Π 3

2
, J,π3

⟩e, f =
1
√

2
[ ∣π+α,π+β,π−α∣∣J, 1/2⟩

± ∣π+β,π−α,π−β∣∣J,−1/2⟩ ].
(A1)

The wave functions for the components of 2Σ± and 4Σ± states
are

∣
2Σ+1

2
, J⟩e, f =

1
2
[(∣π+α,π−β, σα∣ − ∣π+β,π−α, σα∣)∣J, 1/2⟩] ± (∣π+α,π−β, σβ∣ − ∣π+β,π−α, σβ∣)∣J,−1/2⟩],

∣
2Σ−1

2
, J⟩e, f =

1
√

12
[(2∣π+α,π−α, σβ∣ − ∣π+α,π−β, σα∣ − ∣π+β,π−α, σα∣)∣J, 1/2⟩

± (2∣π+β,π−β, σα∣ − ∣π+α,π−β, σβ∣ − ∣π+β,π−α, σβ∣)∣J,−1/2⟩],

∣
4Σ−1

2
, J⟩e, f =

1
√

6
[(∣π+α,π−α, σβ∣ + ∣π+α,π−β, σα∣ + ∣π+β,π−α, σα∣)∣J, 1/2⟩

± (∣π+β,π−β, σα∣ + ∣π+α,π−β, σβ∣ + ∣π+β,π−α, σβ∣)∣J,−1/2⟩],

∣
4Σ−3

2
, J⟩e, f =

1
√

2
[∣π+α,π−α, σα∣∣J, 3/2⟩ ± ∣π+β,π−β, σβ∣∣J,−3/2⟩].

(A2)
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Using these wave functions, we calculate the matrix elements of the spin–orbit operator for both the σ2π and π3 configurations. The
results are

⟨
2Π 3

2
, σ2π∣Ĥ SO

∣
4Σ−3

2
⟩ =

1
2
⟨∣π+α, σα, σβ∣∣âℓ̂+2 ŝ2

−
∣∣π+α,π−α, σα∣⟩ = −a+⟨v∣ΠvΣ⟩/2,

⟨
2Π 3

2
,π3
∣Ĥ

SO
∣
4Σ−3

2
⟩ =

1
2
⟨∣π+α,π+β,π−α∣∣âℓ̂+3 ŝ3

−
∣∣π+α,π−α, σα∣⟩ = −a+⟨v∣ΠvΣ⟩/2,

⟨
2Π 1

2
, σ2π∣Ĥ SO

∣
4Σ−1

2
⟩ =

1
2

1
√

3
⟨∣π+β, σα, σβ∣∣âℓ̂+2 ŝ2

−
× [∣∣π+α,π−α, σβ∣ + ∣π+α,π−β, σα∣ + ∣π+β,π−α, σα∣⟩] =

1
2
√

3
a+⟨v∣ΠvΣ⟩,

⟨
2Π 1

2
,π3
∣Ĥ

SO
∣
4Σ−1

2
⟩ =

1
2

1
√

3
⟨∣π+α,π+β,π−α∣∣âℓ̂+3 ŝ3

−
× [∣∣π+α,π−α, σβ∣ + ∣π+α,π−β, σα∣ + ∣π+β,π−α, σα∣⟩]

= −
1

2
√

3
a+⟨v∣ΠvΣ⟩.

(A3)

The factor of
√

3 is a consequence of the presence of three
Slater determinants for the 4Σ−1

2
state, only one of which [under-

lined in Eq. (A3)] has a non-zero matrix element. The minus
signs on the right-hand sides of these equations come from
rearranging the spin-orbitals into standard order after operation
by Ĥ SO.

Next, we derive the off-diagonal matrix elements that appear
in the numerator of the perturbation expression. We consider
first the perturbation of the 2Π state by the 4Σ− state. For
this case, where ΔS ≠ 0, the matrix elements of Ĥ Rot are zero.
From Eq. (A3), we know that ⟨2Π 1

2
∣Ĥ SO

∣
4Σ−3

2
⟩ = −a+⟨vΠ∣vΣ⟩/2

√
3

and ⟨2Π 1
2
∣Ĥ SO

∣
4Σ−3

2
⟩ = −a+⟨vΠ∣vΣ⟩/2. We then use the elec-

tronic/rotational wave functions for ∣2Π, J⟩e, f given by Eq. (51) and
the wave functions for ∣4Σ−e. f ⟩e, f given by Eqs. (35) and (37) to calcu-
late the off-diagonal matrix elements of Ĥ SO. The results are given
in Table I.

The paths listed in column 1 of this table correspond to the
numbered arrows in Fig. 3. The matrix elements in columns 2 and 3
correspond to Hund’s cases (a) and (b) for the 2Π state, respectively.
They are consistent with Eqs. (4.3.2-5) and (4.3.2-6) in Ref. 9. In col-
umn 4, the matrix elements for case (b) are expressed as functions of
the pattern-forming quantum number, N0. The relation between N
for the 4Σ− state and N0 for the 2Π state is obtained from Eqs. (38)
and (52). These equations yield N = N0 − 1 for F1e, N = N0 for F1 f
and F2e, and N = N0 + 1 for F2 f .

The matrix elements in column 2 of Table I are labeled
c1a . . . c8a in the body of the paper, and those in columns 3 and 4 are
labeled c1b . . . c8b in the body of the paper. We illustrate the calcula-
tion of the matrix elements for path 6. For case (a), the 2Π(e1) wave
function is ∣2Π1/2⟩, and the matrix element equals −a+⟨vΠ∣vΣ⟩/2

√
3

times the coefficient of the 4Σ−1
2

function. For the e1 − e1 path, the
result is

c6a = −
a+⟨vΠ∣vΣ⟩/2
√

3

√
3(J − 1/2)

4J
= −

1
4

√
J − 1/2

4J
a+⟨vΠ∣vΣ⟩.

(A4)
Replacing J by N0 + 1/2 gives the value of c6a in the table.

For case (b), the 2Π wave function is given by Eq. (51), and the
matrix element listed in Table I is

c6b = −
a+⟨vΠ∣vΣ⟩/2
√

3

¿
Á
ÁÀ3(J − 1/2)

2(J + 1/2)

√
J − 1/2

4J

− a+⟨vΠ∣vΣ⟩/2

¿
Á
ÁÀ J + 3/2

2(J + 1/2)

√
J + 3/2

4J

= −

√
1
2

√
J + 1/2

J
a+⟨vΠ∣vΣ⟩/2. (A5)

Setting J = N0 + 1/2 gives the value of c6b listed in the table.
We confirm by explicit calculation of these matrix elements

that ⟨2Π(b)∣Ĥ SO
∣
4Σ−⟩ = 0 for paths 2 and 8 (which are intention-

ally missing in Fig. 5), in accord with the selection rule ΔN = 0,±1
for case (b).

The matrix elements for the perturbation of 2Π state by the 2Σ+
state are calculated in a similar fashion and are listed in Table II.
The matrix elements in this table are for the regular 2Π state. For the
inverted state, a+ should be replaced by −a+, and c3a and c4a should
be interchanged.
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