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(Received 9 December 2014; accepted 5 January 2015; published online 28 January 2015)

A direct-potential-fit analysis of all accessible data for the A 1Σ+ − X 1Σ+ system of NaH and NaD
is used to determine analytic potential energy functions incorporating the correct theoretically
predicted long-range behaviour. These potentials represent all of the data (on average) within the
experimental uncertainties and yield an improved estimate for the ground-state NaH well depth
of De = 15797.4 (±4.3) cm−1, which is ∼20 cm−1 smaller than the best previous estimate. The
present analysis also yields the first empirical determination of centrifugal (non-adiabatic) and
potential-energy (adiabatic) Born-Oppenheimer breakdown correction functions for this system, with
the latter showing that the A-state electronic isotope shift is −1.1(±0.6) cm−1 going from NaH to
NaD. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906086]

I. INTRODUCTION

Alkali hydrides are among the simplest diatomic mole-
cules, and as such, they are of great interest as testing
grounds for theory. The one with the smallest reduced
mass is LiH, for which 80 years of experimental studies1–3

culminated the direct-potential fit (DPF ) analysis by Coxon
and Dickinson4 which yielded quantum-mechanically accurate
analytic potential energy function and Born-Oppenheimer
breakdown (BOB) correction functions that explain all of
the available data for all four isotopologues (on average)
to within the experimental uncertainties. The next smallest
alkali hydride is NaH, and determining analogous quantum-
mechanically accurate potential energy and BOB correction
functions for it was the objective of the present work.

While NaH has piqued interest as an observable molecule
in cool stars in recent years,5,6 it has been the object of study
since the early 1930s.7,8 As is illustrated by Fig. 1, the potential
energy functions of the lower 1Σ+ states of the alkali halides
are governed by a series of avoided crossings as the outer
walls of each of the lowest 1Σ+ states in turn each takes on
a substantial degree of ionic character.2,9 In particular, the
avoided crossings between the X- and A-state potentials give
rise to the unusual shapes of the A-state potential minima that
are more quartic than quadratic, which is the reason that their
vibrational spacings and Bv values initially increase with v .
In addition, the analogous avoided crossings with the C states
have the effect of causing the A-state potentials to be abruptly
cut off in order to allow them to approach the H(1s)+alkali(np)
asymptotes from below.

All previous empirical analyses of data for the A 1Σ+−
X 1Σ+ system of NaH were based on classical Dunham
expansion fits,10 sometimes followed by application of the
first-order semiclassical Rydberg-Klein-Rees (RKR) inver-
sion procedure11,12 to obtain potential function points. In
contrast, the present paper uses the fully quantum-mechanical
“DPF” procedure of Refs. 13–15 to determine analytic

potential energy functions for both the X 1Σ+ and A 1Σ+ states
that incorporate the correct theoretically known long-range
behaviour,16 together with centrifugal and potential energy
BOB functions for both states.

II. OVERVIEW OF PREVIOUS WORK

NaH was first observed in 1930 by Hori who reported
absorption bands of the A 1Σ+− X 1Σ+ system spanning four
vibrational levels of the X state and 18 levels of the A state.7

In a paper on the NaH emission spectrum published the next
year, he reported data for an additional band that he believed
to be 0← 0, increased all of his previous the A-state v ′ values
by one unit8 and extended the range of the observed bands to
span what was later shown to be17 the range v ′(A)= 3–20 for
v ′′(X)= 0–3. The first NaD data were obtained by Olsson in
1934,17 rovibrational bands for v ′′(X)= 0–1 and v ′(A)= 7–17,
which he reported together with new NaH measurements for
v ′′(X) = 0–1 and v ′(A) = 7–17. His first-order semiclassical
analysis showed that Hori’s revised v ′ numbering for NaH had
to be increased by 3 units. Following Pesl et al.,18 we have used
uncertainties of ±0.3 cm−1 to weight most of the 2430 NaH
transitions reported by Hori7,8 and Olsson17 and ±0.05 cm−1

for Olsson’s 604 NaD transitions.17

After a decade of inactivity during World War II, work on
this system resumed with Pankhurst’s 1949 report19 of high
temperature emission spectra of bands with v ′′(X)= 3–8 and
v ′(A)= 1–7 which had estimated line position uncertainties of
±0.1 cm−1, a factor of three smaller than that those for the
earlier work.7,8,17 Unfortunately, most of his data have been
lost, and all we were left with is a Deslandres table of band
origins, a list of A-state rotational constants, and tables of
combination differences for v ′′(X)= 3–8 and v ′(A)= 1–7 with
J = 1–32. While the latter comprise remarkable sets of pseudo-
microwave S(J) data spanning a large range of J values for a
wide range of v ′′(X) and v ′(A) levels, they seem to have been
overlooked in some later studies.18
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FIG. 1. Potential energy functions of the lowest six 1Σ+ states of NaH as
calculated by Aymar, Deiglmayr, and Dulieu:9 solid red curves are states
dissociating to neutral fragments, while the dashed-dotted-dotted curve is the
lowest state dissociating to the ion-pair limit (blue long-dashed line) and the
blue dotted curve shows the inward extrapolation of its limiting long-range
behaviour.

After a further interregnum of 30 years, work on this
system began in earnest in 1980 with Orth and Stwalley’s
observation of the (v ′, v ′′) = (0, 6)–(0, 8) and (1, 6)–(1, 8)
bands in emission.20 Although their ±0.1 cm−1 line position
uncertainties were the same as those of Pankhurst,19 they did
provide the first direct observation of the lowest vibrational
level of the A 1Σ+ state. A year later, the first microwave data
for this system were reported by Sastry et al.21 While their data
consisted of only the R(0) line for each of v ′′(NaH)= 0–3, the
R(1) and R(2) lines for v ′′(NaD) = 0 and the R(2) line for
v ′′(NaD)= 1–3, its very high precision led to much improved
low-order Dunham constants and the first examination of
Born-Oppenheimer breakdown effects and deviations from
first-order semiclassical reduced-mass scaling for this system.
In 1987, this work was extended by Leopold et al.22 who
measured R(J) transitions for J = 0–6 in v = 0, for J = 0–7
in v = 1, and for J = 0–5 in v = 3. Their work led to the
determination of low-order molecular constants that were
“. . . typically an order of magnitude more accurate than the
best values previously available . . . .”22

The first infrared vibrational measurements for NaH were
performed in 1988 by Magg and Jones using a tunable
diode laser spectrometer.23 The ±0.001 cm−1 uncertainties of
their data for 19 transitions of the vibrational fundamental
and 7 transitions of the first hot band meant that when
combined with the pure rotational data they yielded “. . . the
most complete set of accurate values of the (low-order)
ground-state Dunham parameters . . . ” to date.23 A year
later, Maki and Olson24 measured the infrared spectrum of
NaH using a Fourier transform spectrometer and extended

the data set to include transitions in the 3← 2 band with
uncertainties of ±0.002 cm−1. This led to the determination
of a further-improved set of Dunham constants and the first
systematic determination of BOB parameters for this system.
However, as with all such parameter-expansion analyses, it was
impossible to delineate between true BOB effects and those
due to breakdown of first-order semiclassical reduced-mass
scaling.

Since 1990, all experimental studies of NaH or NaD
have involved measurements of their ultraviolet A 1Σ+-X 1Σ+

spectra. First of all, in 1993, Rafi et al.25 reported new
measurements of v ′′(X) = 0 bands for v ′(A) = 13–22 and of
v ′′(X)= 1 bands for v ′(A)= 12–25, in the form of band origins
and A-state Bv and Dv rotational constants. Although their
original line lists were lost,26 since these measurements are the
only observations of levels lying above v ′(A)= 20, we chose
to include their band origin data and to use their rotational
constants to construct a set of synthetic pure rotational ∆J
= 1–6 A-state transitions for each of their bands, which we
included in our data set. The uncertainties we associated with
these synthetic data were ±0.2 cm−1, which is roughly the
size of the uncertainties that Rafi et al.25 had assigned to their
band origins. Three years later, Lochbrunner et al.27 reported
measurements of NaH band absorption from v ′′(X) = 0–3
into v ′(A) = 2–15 and of NaD bands for v ′′(X) = 0–2 into
v ′(A) = 5–17. However, their results were only reported in
the form of lists of band origins and Bv′ and Dv′ values and
a new set of Dunham coefficients. Fortunately, the data for
their (v ′, 0)= (8, 0)–(15, 0) bands were obtained privately for
inclusion in the later analysis of Pesl et al.,18,28 but the data
for their nine v(A) > 0 NaH bands and all of their twenty-five
NaD bands are represented here only by their band origins.
However, the precision of their results was only at the same
ca. ±0.3 cm−1 level as the early data of Hori.7,8 The first
high resolution (±0.006 cm−1) electronic data for this system
were those of Bahns et al. who reported the measurement
of 141 transitions from v(X) = 0 and 1 into v(A) = 3–9 with
J ′′= 0–30.29 Additional high-precision (±0.001−0.02 cm−1)
UV data were later obtained by Pesl et al.18 who applied a new
variant of Doppler spectroscopy to laser-induced fluorescence
from NaH molecules formed by reactive scattering of crossed
beams of Na2 and H atoms. They observed 280 transitions
from bands for v ′′(X) = 2–8 and v ′(A) = 6–9 and combined
their results with all accessible earlier data to obtain a
further improved sets of Dunham constants and RKR turning
points.

Most recently, Huang et al.30 used fluorescence depletion
spectroscopy and stimulated emission pumping to delineate
the properties of levels in the upper portion of the ground-
state potential well. However, their analysis ignored the
information about the A 1Σ+ state that was contained in their
data. In particular, they added the differences between their
pump and probe laser frequencies to estimates of X 1Σ+ state
term values for the lower levels of their pump transitions
that were calculated from the spectroscopic constants of
Pesl et al.18 and fitted the resulting set of term values
to conventional Dunham (v + 1/2) polynomials for Gv and
Bv (ignoring centrifugal distortion). Their observation and
inclusion of data for v(X) = 21 certainly made their X-state
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analysis the most comprehensive to date. However, their
neglect of the older data and of the information about the
A 1Σ+ state and their reliance on term values generated from
previously reported molecular constants18 rather than on the
actual data on which they were based were weaknesses of their
approach.

In all previous studies of this system, the analyses
were based on historic parameter-fitting Dunham-type treat-
ments,10,31 and with two exceptions,21,24 when isotope effects
were considered at all it was assumed that they could
be accounted for by first-order semiclassical reduced-mass
scaling.10,13 In contrast, the present work reports the first DPF
analysis of this system, which is fully quantum-mechanical,
and whose basic results are analytic expressions for the
potential energy curves and any relevant BOB functions for
the state(s) in question. BOB effects are particularly important
in molecules with small reduced mass, especially hydrides,
and a combined-isotopologue DPF analysis allows them to
be taken into account properly. In addition, the A 1Σ+ of the
alkali hydrides is known to have an abnormal “truncated”
potential energy curve, and for such cases, no finite Dunham
expansions can readily represent all of its level energies,
while a DPF analysis using an appropriate model potential
form can. The purpose of this paper is therefore to present a
combined-isotopologue DPF analysis of all available data for
this system that yields highly accurate and compact analytic
representations of the potential energy curves for the X 1Σ+

and A 1Σ+ of NaH.

III. SELECTION AND TREATMENT OF DATA

The properties and sources of the data used in the present
analysis are summarized in Table I. The uncertainties shown
there were taken from the appropriate experimental paper and
were used for all lines from that source, with the following
exceptions. In the case of the electronic band data, if a line
had a discrepancy much larger than its neighbours and another
line in that data set had the same energy, its uncertainty was
multiplied by a factor of three. This modification affected
58 of the Hori NaH data and 11 of the Olsson NaD data.
Similarly, if a relatively large discrepancy occurred for a line
associated with the highest observed J-level in a given branch,
its uncertainty was multiplied by a factor of two. This second
adjustment only affected 3 of the Hori data.7,8 Finally, if a line
had a discrepancy from our best-fit model of more than 8 times
the average uncertainty for its band/group, we concluded that
it was an outlier (possibly mis-assigned) and de-weighted it
out of the final fits. This led to removal of 1 Hori NaH datum,
13 Olsson NaD data, 5 Pesl et al. NaH data, 4 of the Pankhurst
“combination difference” pure rotational data, and 15 of the
Bahns et al. data, including the three assigned to v ′= 10 and 12
for which the discrepancies of >10 cm−1 show that they were
completely mis-identified. Moreover, while all of the synthetic
A 1Σ+-state pure rotational Rafi25 data were consistent with our
best models (within the assumed 0.2 cm−1 uncertainties), the
discrepancies of his band origins for v(A) = 0–20 led us to
assign them uncertainties of ±1 cm−1, while the much larger

TABLE I. Experimental data used in the final analyses of the present work.

Isotope Type Uncertainty (cm−1) v(A1Σ+) v(X1Σ+) J range No. Data Source

NaH Electronic 0.3–0.9 3–20 0–3 0–37 1905 Hori7,8

Electronic 0.3 4–13 0–1 0–24 524 Olsson17

Electronic 1.0 1–7 3–8 0 27 Pankhurst19

Pure rotational 0.1 . . . 3–8 0–32 149 Pankhurst19

Pure rotational 0.1 1–7 . . . 0–32 186 Pankhurst19

Electronic 0.1 0–1 6–8 0–33 261 Orth20

Pure rotational 7 × 10−6 . . . 0–3 0–1 4 Sastry21

Pure rotational (3–15) × 10−6 . . . 0–3 0–8 27 Leopold22

Vib-rotational 0.001–0.009 . . . 0–2 0–15 26 Magg23

Vib-rotational 0.001–0.002 . . . 0–3 0–21 58 Maki24

Electronic 1.0 12–20 0–1 0 17 Rafi25

Synthetic MW 0.2 13–25 0–1 0–6 144 Rafi25

Electronic 0.3–0.6 8–15 0 0–25 298 Lochbrunner27

Electronic 0.3–0.4 2–9 1–3 0 9 Lochbrunner27

Electronic 0.006 & 0.31 3–9 0–1 0–22 126 Bahns29

Electronic 0.001–0.017 2–8 6–9 1–29 275 Pesl18

Electronic “pump” 3.0 7–12 0 & 9 0–14 50 Huang30

Electronic “probe” 2.0 7–12 10–21 1–14 277 Huang30

Vib-rotational 1.0 . . . 0, 9–21 1–14 286 Huang30

Total: 4642

NaD Electronic 0.05–0.15 7–17 0–1 0–29 591 Olsson17

Pure rotational 0.000 007 . . . 0–3 1–3 5 Sastry21

Electronic 0.30–0.50 4–17 0–4 0 25 Lochbrunner27

Total: 621

Total overall: 5263
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discrepancies (increasing from −4 to −60 cm−1) for his 7
v(A)= 21–25 band origins led us to deweight them completely
out of the final data set. All of the other older (pre 2010) data
retained in our analysis were weighted by the uncertainties
shown in column-3 of Table I, while numbers shown in its
column-7 are the numbers of each type of data used in the
final analysis.

The present work utilizes the data of Huang et al.30 in a
much more direct way than they did.32 First of all, following
their approach, we use the differences between their pump and
probe transition energies to define a set of 286 pseudo-vib-
rotation transitions from levels with v(X) = 0 and J = 0–14
into those with v(X) = 9–21. However, rather than represent
the properties of the lower levels of the X state by a previously
reported set of Dunham expansion parameters, we have relied
in our inclusion of all of the earlier data for this system to define
the lower portion of that potential energy well. Moreover,
rather than neglect information about the A state, we have
also included their 50 “pump” transitions from v(X)= 0 and 9
into v(A)= 7–12 and their 277 v(A)= 7–12 into v(X)= 9–21
“probe” transitions as separate data. As shown in Table I,
we have assigned uncertainties of 1.0, 3.0, and 2.0 cm−1

to these three components of their data, within which they
are in good agreement with our best models. Listings of our
entire data set and of the differences between those data and
our recommended model are included in the supplementary
material associated with this paper.33

IV. DIRECT-POTENTIAL-FIT DATA ANALYSIS

A. The radial Hamiltonian

Most spectroscopic data may be described in terms of
differences between eigenvalues of potential energy func-
tion(s) for the electronic state(s) involved in the transition.
However, for species of small reduced mass, especially
hydrides, BOB effects give rise to differences between the
effective potential energy functions for different isotopologues
and introduce isotopologue-dependent corrections to the
“mechanical” centrifugal potential. The present work uses
Watson’s formulation of this problem,34,35 in which the
effective radial Schrödinger equation for isotopologue-α of
a diatomic molecule A-B may be written in the form36

Ĥ ψv,J(r) =

− }

2

2µα

d2

dr2 +

V (1)

ad (r)+∆V (α)
ad (r)

+
[J(J+1)]~2

2µαr2


1+g(α)(r)


ψv,J(r)

= Ev,J ψv,J(r). (1)

Here, V (1)
ad (r) is the effective adiabatic internuclear potential

for a chosen reference isotopologue (denoted α = 1), ∆V (α)
ad (r)

is the difference between the effective adiabatic potential for
isotopologue-α and that for the chosen reference isotopologue,
µα is the normal reduced mass of atoms A and B with masses
M (α)

A
and M (α)

B , and g(α)(r) is the effective non-adiabatic
correction term to the centrifugal potential for isotopologue
α. As was shown by Watson, ∆V (1)

ad (r) and g(α)(r) may each
be written a sum of terms associated with the two atoms.34,35

We find it most convenient to express those terms using the
mass-difference and mass-ratio representation of Ref. 36,

∆V (α)
ad (r)= ∆M (α)

A

M (α)
A

SA
ad(r)+

∆M (α)
B

M (α)
B

S B
ad(r), (2)

g(α)(r)= M (1)
A

M (α)
A

RA
na(r)+

M (1)
B

M (α)
B

R B
na(r), (3)

in which ∆M (α)
A/B ≡ M (α)

A/B−M (1)
A/B is the difference between the

masses of atom A or B in isotopologue-α and in the reference
isotopologue, SA/B

ad (r) represents the “adiabatic” potential-
energy BOB correction function for atom A or B, and RA/B

na (r)
is the (dimensionless) “non-adiabatic” centrifugal BOB radial
strength function for atom A or B.

B. Data analysis procedure

The present analysis involved application of a stan-
dard DPF procedure.14,15,37 Observed transition energies are
compared to eigenvalue differences generated by solving
Eq. (1) using parameterized analytic trial potential energy
and BOB functions, and a standard non-linear least-squares
procedure is used to optimize those parameters.14 The partial
derivatives of the eigenvalues with respect to the param-
eters of the model required by this procedure are readily
calculated using the standard Hellmann-Feynman theorem
expression: ∂Ev,J

∂p j
=


ψv,J(r)����

∂V (r )
∂p j

����ψv,J(r)

. The preliminary

trial potential-function parameters required to initiate such fits
may be generated by fitting the chosen functional form to a set
of turning points generated by application of the semiclassical
“RKR” inversion procedure11,12 to a conventional set of
molecular constants, or by ab initio calculations.38

For a given model, we characterize the quality of fit by the
“dimensionless root-mean-square devation,”14,15,37 A “good”
fit is one for which dd . 1. However, if dd is persistently
significantly greater than unity for a particular subset of the
data, independent of the number of free parameters in the
model, it usually means that the estimated uncertainties for
that group of data are too small and should be increased. This
was the basis of the data-weighting/data-selection procedure
described in Sec. III.

C. The potential energy function form

It is well known that the outer walls of the potential
energy wells of the A 1Σ+ states of all of the alkali hydrides
change shape abruptly, just before they rise past the energy of
the alkali nP1/2 atomic state because of an avoided crossing
between a strongly attractive 1Σ+ “diabatic” ion-pair state
and a 1Σ+ van der Waals state that dissociates to the alkali
nP1/2+H(2S) threshold (see Fig. 1).2,9,39 Because this unusual
behaviour would seem to preclude normal merging to inverse-
power-sum long-range behaviour, we have chosen to represent
the potential energy function for this state by an “Expanded
Morse Oscillator” (EMO) function. This function has the form
of a simple Morse potential whose exponent coefficient is a
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function of distance

VEMO(r)=De

(
1−e−βEMO(r )·(r−re)

)2
, (4)

in whichDe is the well depth, re is the equilibrium internuclear
distance, and the exponent coefficient

βEMO(r)=
Nβ
i=0

βi y
ref
q (r)i (5)

is expressed as a power series in a dimensionless variable

y ref
q (r)= rq−rqref

rq+rqref

(6)

that is defined by a selected expansion centre rref and power q.
The free fitting parameters of this potential form are De,

re, and the expansion coefficients βi of Eq. (5), while the
values of Nβ, q, and rref are optimized manually. There are
no rules governing the choice of q and rref other than that
experience shows that “too small” values of the former (q . 2)
sometimes lead to potential functions that behave badly in the
extrapolation region(s) outside the “data range,” the region
bounded by the inner and outer turning points of the highest
vibrational level involved in the analysis, and that we would
normally expect the latter to lie within this “data range.” The
geometric mean of those two turning points is usually a good
initial trial value for rref.

In contrast with the A 1Σ+ state, the potential energy
function for the X 1Σ+ state of NaH is expected to show the
normal merging to inverse-power-sum long-range behaviour,
so we represent it by the Morse/Long-Range (MLR) function
that has the general form of a Morse-type potential with two
key differences: (i) the exponent distance factor (r − re) is
replaced by a dimensionless variable that is also linear in r
near re, but approaches a constant as r→ ∞, and (ii) there is a
pre-factor in front of the exponential term that defines the long-
and very-short-range behaviour of the potential. This function
has the form

VMLR(r)=De

(
1− uLR(r)

uLR(re) e−βMLR(r )·yeq
p (r )

)2

, (7)

in which De and re are as defined above, while the radial
distance variable has the same form as that of Eq. (6), except
that its expansion centre is fixed at re and it is defined by a
different integer power, p,

y
eq
p (r)= r p−rep

r p+rep
. (8)

The exponent coefficient function in Eq. (7) is then defined by
the expression

βMLR(r) = βref
p,q(r)

= y ref
p (r) β∞+ �1− y ref

p (r)�
Nβ
i=0

βi y
ref
q (r)i, (9)

in which

β∞= lim
r→∞

βMLR(r)≡ ln


2De

uLR(re)


(10)

and the expansion variable y ref
q (r) is again defined by Eq. (6),

while the variable y ref
p (r) has that same form, but is defined

by the same power p used to characterize the radial distance
variable of Eq. (8), rather than by q (although one could choose
to set q = p). The three dimensionless radial variables are
defined as they are because of the effect of the integer powers
p and q on the long-range behaviour of the exponential term
in Eq. (7).40

The pre-factor to the exponential term in Eq. (7) is defined
by the expression

uLR(r)=
mlast
m=m1

Dm(ρ r) Cm

rm
(11)

in which the powers {m} characterize the inverse-power terms
that theory dictates define the limiting long-range behaviour of
the particular molecular state, and the associated coefficients
Cm are (usually) known from theory. In the present work,
the “damping functions” Dm(ρ r) are represented by the
“s = −1 generalized Douketis-type functions” recommended
by Ref. 40, and the system-dependent parameter used to
account for the sizes of the overlapping electron clouds of
the interacting atoms is defined (following Refs. 40 and 41) as
ρ= ρNaH= 0.69. For the interaction of ground-state H and Na
atoms, the leading terms in Eq. (11) correspond to m= 6, 8, and
10, and we use the excellent values for those Cm coefficients
reported by Mitroy and Bromley16 to define the long-range tail
function uLR(r) of our MLR potential for ground-state NaH.

The free fitting parameters in the MLR model are De, re,
and the βi expansion parameters of Eq. (9), while the values of
Nβ, p, q, and rref are set manually and the Cm coefficients are
fixed at their theoretical values.16 The only firm constraint on
the values of the integer powers p and q is that the power p must
be larger than the difference between the last and first powers
in the (damped or undamped) inverse-power sum of Eq. (11),
p > (mlast−mi), in order to prevent the long-range behaviour
of the exponential term in Eq. (7) from affecting that defined
by the expansion of Eq. (11). However, as with the EMO
potential form, “small” values of q (q . 2) sometimes tend to
lead potential functions that behave badly in the extrapolation
region(s) outside the “data range,” while too-large values make
the y ref

q (r) expansion variable somewhat “stiff,” so that larger
values of the power Nβ are required to give an equivalently
“good” potential energy function.

D. BOB radial strength function forms

Following Ref. 42, the radial strength functions charac-
terizing the atom-dependent potential-energy and centrifugal
BOB corrections of Eqs. (2) and (3) are expanded in the same
form utilized for the exponent coefficient-function of the MLR
potential,

SA
ad(r) = yeq

pad(r) uA
∞+ [1− yeq

pad(r)]
NA

ad
i=0

uA
i y

eq
qad(r)i, (12)

RA
na(r) = yeq

pna(r) tA
∞+ [1− yeq

pna(r)]
NA

na
i=0

tA
i y

eq
qna(r)i. (13)

Since NaH is not an ion, tA∞ = tB∞ = 0 for both the X 1Σ+ and
A 1Σ+ states.42 Moreover, since we adopt the convention of
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defining the absolute zero of energy as the energy of ground
state atoms at infinite separation, by definition, uA

∞ = uB
∞ = 0

for all molecular states that dissociate to that limit, and since
Na has only one stable isotope, this is also true for the A 1Σ+

state.42 Within this convention, the values of uA/B
0 (X) define

the isotopologue-dependence of the ground state well depth.
However, since Na has only one isotope, uNa

0 (X)= 0, and since
the NaD data for the X 1Σ+ state span only a small fraction
(.23%) of the well, we cannot expect to be able to determine
the H/D isotope dependence of that well depth from these
data, so we also fixed uH

0 (X)= 0. However, our fitted value of
uH

0 (A) (see below) provides the best current estimate of the
H/D electronic isotope shift for the A−X system.

Other than the general caveat that too small values may
lead to unphysical behaviour in the extrapolation regions
outside the “data range,” while too large values may tend to
a need for higher polynomial orders in Eqs. (12) and (13),42

there are no explicit constraints on the values of pna, qna, qad.
However, since pad defines the limiting inverse-power long-
range behaviour of the SA

ad(r) functions, it should normally
be set equal to the power of the leading term in Eq. (11),
pad=m1 to ensure that the effective adiabatic potentials V (α)

ad
have the same limiting long-range functional behaviour for all
isotopologues.

V. RESULTS

A. Preliminary X 1Σ+ single-state analysis

Because of the unusual shape of the A 1Σ+-state potential
function, we began our analysis with fits that treated all of
its vibration-rotation levels as independent term values. This
allowed us to optimize our representation of the potential
energy and centrifugal BOB functions for the X 1Σ+ state,
independent of any assumptions about a representation for the
A 1Σ+ state. Moreover, since the highest observed levels of the
A 1Σ+ state lie more than 1000 cm−1 below its asymptote, and
the distance between the potential asymptotes is the accurately
known atomic excitation energy of Na, this will have no
significant effect on the determination of the ground-state
dissociation energy.

The lower panel of Fig. 2 shows how our quality-of-fit
parameter dd varies with the order of the MLR exponent
polynomial N = Nβ and the location of expansion the centre
rref for two different combinations of the expansion coefficient
powers p and q. As expected, we see that for any choice
of rref increasing Nβ improves the quality-of-fit, and that
both families of models seem to be converging to the same
optimum value of dd. Following the arguments presented at
the end of Sec. IV C, all of the cases considered here involve

FIG. 2. Lower panel: dependence of dd on the expo-
nent polynomial order N = Nβ and the expansion centre
location rref for expansion function variables defined by
{p, q} = {6, 3} and {6, 4}, in single-state fits to data for
the X 1Σ+ state. Upper panel: fitted values ofDe and their
associated 95% confidence limit uncertainties for cases
considered in the lower panel.
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FIG. 3. Test of the long-range extrapolation behaviour of selected optimized
model potential energy functions for the X 1Σ+ state of NaH. In the symbols
N

rref
p,q, N = Nβ indicates the exponent polynomial expansion order, rref is the

expansion centre location, while p and q are the integers defining the radial
variables of Eqs. (7)–(9).

p> (mlast−m1)= 4 (in particular, p= 5 or 6), and the values of q
are all >2. However, there are no obvious trends with p or q.43

In addition to minimizing dd for the smallest possible
number of parameters, a key criterion in selecting an optimum
potential function model is that it should behave sensibly in
the extrapolation interval past the outer end of the data region.
A simple way of testing for that is to examine the behaviour
of a plot of

�
Ceff

6 (r)≡ r6[D−VMLR(r)]	 vs. 1/r2. The structure
of Eq. (11) means that as 1/r2→ 0 (r → ∞), plots of this
type must approach an intercept of Ctheory

6 with a slope of
Ctheory

8 , where Ctheory
m are the values of the fixed coefficients

defining the two leading terms in the expansion of Eq. (11).
Figure 3 shows that all of the potentials considered there do
have this expected limiting behaviour, but that the models for
which p= 5 tend to dip down and approach the limiting slope
from below. This is unphysical, since the leading deviation
from the limiting (linear) behaviour should show positive
curvature, due to the positive (attractive) Ctheory

10 term in the
long-range potential. We therefore select a MLR function
with N = Nβ = 12, p= 6, q = 4, and rref = 3.0 (circled points
on Fig. 2) as our recommended model for the potential energy
function of the X 1Σ+ state of NaH.

The upper panel of Fig. 2 shows that the model-
dependence of the fitted values of the ground-state well
depth De is far larger than the uncertainties in virtually any
of the values yielded by the individual fits.43 In order to
obtain the best possible estimate of the overall uncertainties in
the physically interesting parameters De and re, we therefore
adopted the averaging-over-models procedure of Eqs. (6)–(8)
of Ref. 44 (or Eqs. (21)-(23) of Ref. 15). On averaging over
the results for the 63 cases for which the value of dd was no
more than 1% larger than that for the recommended model
(points below the +1% line in the lower panel of Fig. 2),
we obtain unc{De} = 4.3 cm−1 and unc{re} = 0.000 001 5 Å.
Extending this averaging to include result for the 82 models

whose dd values were within 2% of that for the recommended
model (points below the +2% line in the lower panel of Fig. 2)
only changed unc{De} in its second decimal place and raised
unc{re} to 0.000 002 0 Å. The shaded region in the upper panel
of Fig. 2 indicates the band of uncertainty associated with
averaging over the 63 models associated with the 1% limit.43

With an optimum X-state potential function model
selected based on the fits to NaH data alone described above,
we undertook a preliminary attempt to determine the number
of BOB terms required to simultaneously explain those data.
This study showed that either three or four potential-energy
BOB terms and one centrifugal BOB term would be required.
However, because of the expected high degree of correlation
between the numbers and values of the BOB parameters for
the X and A states, the delineation of optimum BOB models
for the X 1Σ+ state had to await the global two-state analysis
described below.

B. Two-state analysis and determining the A 1Σ+ state
potential energy function

Using the recommended model for the X 1Σ+-state
potential determined above, we then proceeded to perform
full two-state, 2-isotopologue fits to determine an optimum
model for the A 1Σ+ potential energy function. As discussed
at the beginning of Sec. IV C, we have chosen to use an EMO
function to represent the potential function for this state.
While the values of De, re, and the well-shape parameters
βi are all determined automatically using our least-squares
fitting program DPotFit,14 as with the X 1Σ+-state fits described
above, optimum values for the expansion centre rref and power
q defining the dimensionless radial variable of Eq. (6) were
determined manually. One general finding was that for q = 2
or 3, all of the fitted EMO potentials had an inflection point
on the inner wall above the potential asymptote, which led
to a spurious inner maximum and potential function turnover
in the short-range extrapolation region, so those models were
physically unacceptable. This was also true for the q = 4,

FIG. 4. Dependence of dd on the exponent polynomial order N = Nβ and
the expansion centre location rref for two choices of the expansion function
parameter q for the A 1Σ+ state in two-state fits with the X 1Σ+− state model
fixed, but its parameters free.
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Nβ = 17 models for rref < 2.9 Å. However, the remaining
Nβ = 17, q = 4 models, all of the q = 4, Nβ = 15 and 16
models, and all of the q= 5 models considered, had physically
sensible short-range walls with strictly positive curvature.

Figure 4 shows how the quality-of-fit parameter dd for
the global fit varies with the EMO exponent polynomial order
N = Nβ and with the expansion variable parameters q and
rref. As is seen there, the q = 5 models (solid points joined by
dashed lines) require more βi expansion parameters to achieve
a given quality of fit than do those for q= 4 (open filled points
joined by solid lines), and do not even approach the q = 4
results for the range of N = Nβ values considered. Because
of the close convergence of the Nβ = 16 and 17 models at
their common dd minima, we choose the Nβ = 16, q= 4 EMO
function for rref = 3.0 Å as our recommended potential energy
function for the X 1Σ+ state of NaH. Figure 4 is a much simpler
picture than is the full version of Fig. 2,43 because the EMO
potential has only one integer expansion-variable parameter
to vary, while the MLR form has two. Moreover, since the
distance between their potential asymptotes is determined by
the precisely known Na(3s→ 3p) atomic excitation energy,45

both the value of and the uncertainty in the A 1Σ+ well depth
are determined by those for the X 1Σ+ state, so the analog of
the upper panel of Fig. 2 would carry little new information.

The final stage of the analysis consisted of our optimizing
the forms of the expansion variables and numbers of expansion
parameters defining the BOB functions for the two states.
This was a relatively straightforward procedure, since the
fact that their effects are quite small relative to those of
the potential function parameters means that at worst, only
order-of-magnitude trial parameters are required to initiate
stable, unique least-squares fits (indeed, trial parameter values
of 0.0 usually suffice!). Note, however that the limited
vibrational range of the deuteride data does not allow a
physically significant determination of distinct well depths
for the deuterium isotopologues, so the values of uH

0 for the
two states are 100% correlated. In particular, either one (or
their difference) could serve to define the single experimental
observable, the electronic isotope shift. In the analysis reported
here, we chose arbitrarily to fix uH

0 (X)= 0.0, which means that
all of this isotope shift is attributed to the isotopologue-
dependence of the A-state well depth. However, this ansatz
could readily be changed if additional data were obtained that
would allow a reliable independent determination of one of the
deuteride well depths. Since the centrifugal BOB corrections
for the two states both affect high-J electronic data in similar
ways, one might expect these functions to also be fairly highly
correlated. However, a trial-and-error procedure quickly led
to an optimum model here too.

The parameters defining our recommended analytic
potential energy functions for the X 1Σ+ and A 1Σ+ states
of NaH are presented in Table II. Numbers in parentheses
are 95% confidence limit uncertainties in the last digits
shown, obtained by application of the averaging-over-models
procedure described above to models whose dd values lie
within 1% of the minimum value. After application of the
“sequential rounding and refitting” (SRR) scheme of Ref. 46
minimized the numbers of digits required to define the model
with no significant loss of accuracy (<0.04% increase in

dd), the final fit to 5263 data, and yielded dd = 1.216. A
Fortran subroutine for generating the effective potential energy
and centrifugal potential functions for either isotopologue
in either state is included with the supplementary material
accompanying this manuscript.33 This supplementary material
also includes listings of the eight leading “band constants”
(the vibrational energies and first 7 rotational constants) for
all vibrational levels of both isotopologues supported by these
two potentials, together with sample input data files for the
standard vibrational-eigenvalue/Franck-Condon “LEVEL.”47

The lower panel of Fig. 5 compares our spectroscopically
accurate empirical potential energy functions for the X 1Σ+

and A 1Σ+ states of NaH with the ab initio potentials of
Aymar, Deiglmayr, and Dulieu9 (points). On the scale of this

TABLE II. Parameters defining the recommended MLR potential energy
function for the X 1Σ+ state of NaH, the EMO function for the A 1Σ+ state,
and the associated BOB functions, as determined from the present DPF
analysis. The analysis also relied on the X 1Σ+-state dispersion coefficients
of Mitroy and Bromley:16 C6 = 3.575 02 × 105, C8 = 5.417 96 × 106,
and C10 = 1.129 20 × 108, all in units [cm−1 Åm], the damping function
scaling parameter ρAB = 0.69, and the value of the Na(3s 2S → 3p 2P1/2)
excitation energy (taken from the NIST www site45) that defines the energy
of the potential asymptote VLIM(A 1Σ+). Units of energy and length are cm−1

and Å.

X 1Σ+ A 1Σ+

VLIM 0.0 16 956.170 25
Te 0.0 22 712.570 25 (12 200)
De 15 797.4 (43) 10 041.0 (43)
re 1.887 023 (15) 3.1927 (5)
{p, q}/{q} {6,4} {4}
rref [3.0] [3.0]
β0 0.065 821 61 0.362 068 4
β1 −4.167 161 9 0.131 948
β2 −5.775 325 0.155 548
β3 −6.258 71 0.089 81
β4 −6.342 91 0.410 19
β5 −6.2056 −0.2531
β6 −5.0814 −2.8482
β7 −2.205 −0.0395
β8 −1.678 13.606
β9 −8.36 2.618
β10 −14.93 −39.17
β11 −11.18 −8.34
β12 −3.1 66.76
β13 . . . 10.8
β14 . . . −61.7
β15 . . . −5.
β16 . . . 24.
{pad, qad}/{q} {6, 4} {3, 3}
u0 0.0 −2.26 (124)
u1 17.36 −8.
u2 28.2 21.4
u3 69.2 70.
u4 −220. . . .
u∞ [0.0] [0.0]
{pna, qna} {3, 3} {3, 3}
t0 [0.0] [0.0]
t1 0.000 05 0.000 16
t2 −0.003 . . .
t∞ [0.0] [0.0]
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FIG. 5. Lower panel: comparison of the ab initio potentials of Aymar et al.
(round points) with the present empirical potentials (solid red and blue
curves). The horizontal line segments indicate the energies of the observed
vibrational levels used in the analysis, while the diagram inserts provide ad-
ditional detail near the potential minima. Upper panel: predicted uncertainties
in the fitted potentials due to the uncertainties in the parameters determined
by the fit.

figure, the degree of agreement is remarkably good, although
the minimum and inner wall of the ab initio potential for
the A-state appear to lie at slightly smaller distances than
are dictated by the experimental data. Indeed, the ab initio
estimates of the equilibrium distances for the X and A states,
1.87 Å and 3.16 Å,9 are both about 1% smaller than our
recommended empirical values. The upper panel of Fig. 5
then shows the 95% confidence limit uncertainties in the
final potentials, as calculated from the parameter uncertainties
and correlation matrix of the fit using standard expressions
(see, e.g., Eq. (7) of Ref. 46). As would be expected, the
uncertainty in the A-state potential goes through a maximum
in the extrapolation region between the outer turning point of
the highest observed level and the asymptote. This does not
occur for the ground state, as the outer end of its data region
lies at relatively large r where the overall interaction energy is
going to zero. As may be expected, the uncertainties in both
potentials become quite large beyond the inner ends of their
respective data regions which lack the limiting constraint of
having to approach an asymptote.

VI. CONCLUSION AND DISCUSSION

A global DPF analysis of all available data for the
A 1Σ+−X 1Σ+ systems of NaH and NaD has yielded accurate

analytical potential energy functions and Born-Oppenheimer
breakdown functions for these two states that (on average)
reproduce all of the data within the experimental uncertainties.
Figure 5 shows that these potential functions are in excellent
agreement with the best available ab initio calculations for
these states. It is particularly gratifying to see the close
agreement of our fitted A-state EMO function with the ab
initio points in the extrapolation region past the outer turning
point for vA = 25, which marks the outer end of the A-state
data region, as this demonstrates the ability of this functional
form to accommodate the abrupt change of potential function
character associated with the avoided crossing that takes this
state to the Na(3p)+H(1s) limit (see Fig. 1) and gives rise
to the abrupt cutoff of the ∆Gv+1/2 plot seen in Fig. 6. These
new potentials, together with new ab initio dipole moment
and transition moment functions, are now being used to
generate comprehensive rotational-vibrational and rotational-
vibrational-electronic line lists for the X state and the A−X
systems of NaH and NaD.48

Our analysis confirms that v = 21 (bound by 18.9 cm−1)
is indeed the last bound level of the ground state of NaH
and predicts that v = 30 (bound by 1.26 cm−1) is the highest
vibrational level of ground-state NaD. While the uncertainty
inDe may make the significance of these estimates somewhat
uncertain, the scattering lengths implied by our potentials for
ground-state NaH and NaD are 0.392 and 7.76 Å, respectively.
Similarly, our analysis predicts that the highest vibrational
levels of the A 1Σ+ states of NaH and NaD are v = 32 (bound
by 26.8 cm−1) and v = 45 (bound by 4.5 cm−1), respectively,
and our estimates of the energies and rotational constants
of all unobserved levels of both states are included in the
supplementary material associated with this paper.33

Table III compares our present estimate of the potential
energy well depth of ground-state NaH with selected previous
values. It is noteworthy that our value differs from that of
Huang et al. by far more than the sum of their uncertainties,
although they were based on very similar data sets. We
believe that this improvement illustrates the strength of our

FIG. 6. Birge-Sponer plots for the observed vibrational levels of NaH(X 1Σ+)
(red square points) and of NaH(X 1Σ+) (blue triangular points) and predicted
values for the unobserved higher levels of the latter (open round points).



044305-10 Walji, Sentjens, and Le Roy J. Chem. Phys. 142, 044305 (2015)

TABLE III. Comparison of present NaH(X 1Σ+) well depth (shown in bold font) with some previous values.

Reference De/cm−1 Method

Present work (2013) 15 797.4± 4.3 Direct fit of data to analytic potential functions
Huang et al.30 15 815± 5 Polynomial Birge-Sponer extrapolation from v′′ = 21
Aymar et al.9 15 671.3 Ab initio points: see Fig. 5
Stwalley et al.39 15 900± 100 Add ab initio tail to vibrational energy at v′′ = 19
Nedelec and Giroud49 15 785± 20 Polynomial Birge-Sponer extrapolation from v = 19
Giroud and Nedelec50 16 300± 500 Polynomial Birge-Sponer extrapolation from v = 16
Pankhurst19 17 410 Linear Birge-Sponer extrapolation from v′′ = 8
Hori8 18 100 Polynomial Birge-Sponer extrapolation from v′′ = 20

DPF procedure. As illustrated by the upper panel of figure 2,
our final estimate of the uncertainty in De is almost an order
of magnitude larger than the uncertainty yielded by the final
fit to our particular recommended model. This is a common
effect of taking model-dependence into account. However, this
averaging over models responsible for less than half of our
estimated uncertainties in the physically significant A-state
parameters Te, re, and u0.

A widely noted fact about the A 1Σ+ states of all alkali
hydrides is that their vibrational spacings and Bv values
initially increase with v , a property that reflects the broader-
than-quadratic shape of their potential minima, which in
turn is associated with the influence of the transient ion-pair
character of their attractive outer walls (see Fig. 1) and the
associated (distant) avoided crossing with the ground state.
However, Figs. 5 and 6 illustrate another interesting property,
which is that over much of its well, the vibrational spacings
of the A 1Σ+ state of NaH are approximately constant, even
though Fig. 5 shows that its shape is strongly anharmonic. This
provides an unusual physical illustration of the separate roles
of vibrational and rotational data in determining a potential
energy function, which are so clearly delineated by the two
equations of the semiclassical RKR inversion procedure:11 the
vibrational spacings only depend on, and hence determine,
how the width of the potential well increases with energy, and
not its overall shape, so that over a substantial energy range a
pure harmonic oscillator and a strongly anharmonic potential
energy function can have approximately the same vibrational
spectrum.
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