Dissociation energies and potential energy functions for the ground $X^1\Sigma^+$ and “avoided-crossing” $A^1\Sigma^+$ states of NaH

Sadru-Dean Walji, Katherine M. Sentjens, and Robert J. Le Roy

Citation: The Journal of Chemical Physics 142, 044305 (2015); doi: 10.1063/1.4906086

View online: https://doi.org/10.1063/1.4906086

View Table of Contents: http://aip.scitation.org/toc/jcp/142/4

Published by the American Institute of Physics

Articles you may be interested in

Direct-potential-fit analyses yield improved empirical potentials for the ground $X^1\Sigma_g^+$ state of Be$_2$
The Journal of Chemical Physics 140, 064315 (2014); 10.1063/1.4864355

Spectroscopic determination of the ground-state dissociation energy and isotopic shift of NaD
The Journal of Chemical Physics 147, 024301 (2017); 10.1063/1.4991036

Dealing with the exponential wall in electronic structure calculations
The Journal of Chemical Physics 146, 194107 (2017); 10.1063/1.4983207

Dissociation energy of the ground state of NaH
The Journal of Chemical Physics 133, 044301 (2010); 10.1063/1.3458914

Accurate analytic potentials for Li$_2$(X$^1\Sigma_g^+$) and Li$_2$(A$^1\Sigma_u^+$) from 2 to 90 Å, and the radiative lifetime of Li(2p)
The Journal of Chemical Physics 131, 204309 (2009); 10.1063/1.3264688

An accurate analytic potential function for ground-state N_2 from a direct-potential-fit analysis of spectroscopic data
The Journal of Chemical Physics 125, 164310 (2006); 10.1063/1.2354502
Dissociation energies and potential energy functions for the ground $X^1\Sigma^+$ and “avoided-crossing” $A^1\Sigma^+$ states of NaH

Sadru-Dean Walji, Katherine M. Sentjens, and Robert J. Le Roy

Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

(Received 9 December 2014; accepted 5 January 2015; published online 28 January 2015)

I. INTRODUCTION

Alkali hydrides are among the simplest diatomic molecules, and as such, they are of great interest as testing grounds for theory. The one with the smallest reduced mass is LiH, for which 80 years of experimental studies1–3 culminated the direct-potential fit (DPF) analysis by Coxon and Dickinson4 which yielded quantum-mechanically accurate analytic potential energy function and Born-Oppenheimer breakdown (BOB) correction functions that explain all of the available data for all four isotopologues (on average) to within the experimental uncertainties. The next smallest alkali hydride is NaH, and determining analogous quantum-mechanically accurate potential energy and BOB correction functions for it was the objective of the present work.

While NaH has piqued interest as an observable molecule in cool stars in recent years,5,6 it has been the object of study since the early 1930s.7,8 As is illustrated by Fig. 1, the potential energy functions of the lower $^1\Sigma^+$ states of the alkali halides are governed by a series of avoided crossings as the outer walls of each of the lowest $^1\Sigma^+$ states in turn each takes on a substantial degree of ionic character.2,9 In particular, the avoided crossings between the X- and A-state potentials give rise to the unusual shapes of the A-state potential minima that are more quartic than quadratic, which is the reason that their vibrational spacings and B_v values initially increase with v. In addition, the analogous avoided crossings with the C states have the effect of causing the A-state potentials to be abruptly cut off in order to allow them to approach the $H(1s) + \text{alkali}(np)$ asymptotes from below.

All previous empirical analyses of data for the $A^1\Sigma^+ - X^1\Sigma^+$ system of NaH were based on classical Dunham expansion fits,10 sometimes followed by application of the first-order semiclassical Rydberg-Klein-Rees (RKR) inversion procedure11,12 to obtain potential function points. In contrast, the present paper uses the fully quantum-mechanical “DPF” procedure of Refs. 13–15 to determine analytic potential energy functions for both the $X^1\Sigma^+$ and $A^1\Sigma^+$ states that incorporate the correct theoretically known long-range behaviour,16 together with centrifugal and potential energy BOB functions for both states.

II. OVERVIEW OF PREVIOUS WORK

NaH was first observed in 1930 by Hori who reported absorption bands of the $A^1\Sigma^+ - X^1\Sigma^+$ system spanning four vibrational levels of the X state and 18 levels of the A state.7 In a paper on the NaH emission spectrum published the next year, he reported data for an additional band that he believed to be $0 \leftarrow 0$, increased all of his previous the A-state v^\prime values by one unit8 and extended the range of the observed bands to span what was later shown to be17 the range $v^\prime(A) = 3–20$ for $v^\prime(X) = 0–3$. The first NaD data were obtained by Olsson in 1934,17 with observational bands for $v^\prime(X) = 0–1$ and $v^\prime(A) = 7–17$, which he reported together with new NaH measurements for $v^\prime(X) = 0–1$ and $v^\prime(A) = 7–17$. His first-order semiclassical analysis showed that Hori’s revised v^\prime numbering for NaH had to be increased by 3 units. Following Pesl et al.,16 we have used uncertainties of ± 0.3 cm$^{-1}$ to weight most of the 2430 NaH transitions reported by Hori7,8 and Olsson17 and ± 0.05 cm$^{-1}$ for Olsson’s 604 NaD transitions.17

After a decade of inactivity during World War II, work on this system resumed with Pankhurst’s 1949 report19 of high temperature emission spectra of bands with $v^\prime(X) = 3–8$ and $v^\prime(A) = 1–7$ which had estimated line position uncertainties of ± 0.1 cm$^{-1}$, a factor of three smaller than that for those for the earlier work.7,8,17 Unfortunately, most of his data have been lost, and all we were left with is a Deslandres table of band origins, a list of A-state rotational constants, and tables of combination differences for $v^\prime(X) = 3–8$ and $v^\prime(A) = 1–7$ with $J = 1–32$. While the latter comprise remarkable sets of pseudo-microwave $S(J)$ data spanning a large range of J values for a wide range of $v^\prime(X)$ and $v^\prime(A)$ levels, they seem to have been overlooked in some later studies.18
After a further interregnum of 30 years, work on this system began in earnest in 1980 with Orth and Stwalley’s observation of the \((\nu', \nu'') = (0, 6) \rightarrow (0, 8) \) and \((1, 6) \rightarrow (1, 8) \) bands in emission.\(^{13}\) Although their \(\pm 0.1 \) cm\(^{-1} \) line position uncertainties were the same as those of Panikhurst,\(^{19}\) they did provide the first direct observation of the lowest vibrational level of the \(A^1\Sigma^+ \) state. A year later, the first microwave data for this system were reported by Sastry et al.\(^{21}\) While their data consisted of only the \(R(0) \) line for each of \(\nu''(\text{NaH}) = 0 \rightarrow 3 \), the \(R(1) \) and \(R(2) \) lines for \(\nu''(\text{NaD}) = 0 \) and the \(R(2) \) line for \(\nu''(\text{NaD}) = 1 \rightarrow 3 \), its very high precision led to much improved low-order Dunham constants and the first examination of Born-Oppenheimer breakdown effects and deviations from first-order semiclassical reduced-mass scaling for this system. In 1987, this work was extended by Leopold et al.\(^{22}\) who measured \(R(J) \) transitions for \(J = 0 \rightarrow 6 \) in \(v = 0 \), for \(J = 0 \rightarrow 7 \) in \(v = 1 \), and for \(J = 0 \rightarrow 5 \) in \(v = 3 \). Their work led to the determination of low-order molecular constants that were “…typically an order of magnitude more accurate than the best values previously available ….”\(^{22}\)

The first infrared vibrational measurements for NaH were performed in 1988 by Magg and Jones using a tunable diode laser spectrometer.\(^{23}\) The \(\pm 0.001 \) cm\(^{-1} \) uncertainties of their data for 19 transitions of the vibrational fundamental and 7 transitions of the first hot band meant that when combined with the pure rotational data they yielded “… the most complete set of accurate values of the (low-order) ground-state Dunham parameters …” to date.\(^{23}\) A year later, Maki and Olson\(^{24}\) measured the infrared spectrum of NaH using a Fourier transform spectrometer and extended the data set to include transitions in the \(3 \rightarrow 2 \) band with uncertainties of \(\pm 0.002 \) cm\(^{-1} \). This led to the determination of a further-improved set of Dunham constants and the first systematic determination of BOB parameters for this system. However, as with all such parameter-expansion analyses, it was impossible to delineate between true BOB effects and those due to breakdown of first-order semiclassical reduced-mass scaling.

Since 1990, all experimental studies of NaH or NaD have involved measurements of their ultraviolet \(A^1\Sigma^+ - X^1\Sigma^+ \) spectra. First of all, in 1993, Rafi et al.\(^{25}\) reported new measurements of \(\nu''(X) = 0 \) bands for \(\nu'(A) = 13 \rightarrow 22 \) and of \(\nu''(X) = 1 \) bands for \(\nu'(A) = 12 \rightarrow 25 \), in the form of band origins and \(A \)-state \(B_v \) and \(D_v \) rotational constants. Although their original line lists were lost,\(^{26}\) since these measurements are the only observations of levels lying above \(\nu'(A) = 20 \), we chose to include their band origin data and to use their rotational constants to construct a set of synthetic pure rotational \(\Delta J = 1 \rightarrow 6 \) \(A \)-state transitions for each of their bands, which we included in our data set. The uncertainties we associated with these synthetic data were \(\pm 0.2 \) cm\(^{-1} \), which is roughly the size of the uncertainties that Rafi et al.\(^{25}\) had assigned to their band origins. Three years later, Lochbrunner et al.\(^{27}\) reported measurements of NaH band absorption from \(\nu''(X) = 0 \rightarrow 3 \) into \(\nu'(A) = 2 \rightarrow 15 \) and of NaD bands for \(\nu''(X) = 0 \rightarrow 2 \) into \(\nu'(A) = 5 \rightarrow 17 \). However, their results were only reported in the form of lists of band origins and \(B_v' \) and \(D_v' \) values and a new set of Dunham coefficients. Fortunately, the data for their \((\nu', 0) = (8, 0) \rightarrow (15, 0) \) bands were obtained privately for inclusion in the later analysis of Pesl et al.\(^{18,28}\) but the data for their nine \(\nu'(A) > 0 \) NaH bands and all of their twenty-five NaD bands are represented here only by their band origins. However, the precision of their results was only at the same \(\pm 0.3 \) cm\(^{-1} \) level as the early data of Hor\(^{1,7,8}\) The first high resolution (\(\pm 0.006 \) cm\(^{-1} \)) electronic data for this system were those of Bahns et al. who reported the measurement of 141 transitions from \(\nu(X) = 0 \) and 1 into \(\nu(A) = 5 \rightarrow 9 \) with \(J'' = 0 \rightarrow 30.\(^{29}\) Additional high-precision (\(\pm 0.001 \rightarrow 0.02 \) cm\(^{-1} \)) UV data were later obtained by Pesl et al.\(^{18}\) who applied a new variant of Doppler spectroscopy to laser-induced fluorescence from NaH molecules formed by reactive scattering of crossed beams of Na\(_2\) and H atoms. They observed 280 transitions from bands for \(\nu''(X) = 2 \rightarrow 8 \) and \(\nu'(A) = 6 \rightarrow 9 \) and combined their results with all accessible earlier data to obtain a further improved sets of Dunham constants and RKR turning points.

Most recently, Huang et al.\(^{30}\) used fluorescence depletion spectroscopy and stimulated emission pumping to delineate the properties of levels in the upper portion of the ground-state potential well. However, their analysis ignored the information about the \(A^1\Sigma^+ \) state that was contained in their data. In particular, they added the differences between their pump and probe laser frequencies to estimates of \(X^1\Sigma^+ \) state term values for the lower levels of their pump transitions that were calculated from the spectroscopic constants of Pesl et al.\(^{18}\) and fitted the resulting set of term values to conventional Dunham \((\nu + 1/2)\) polynomials for \(G_v \) and \(B_v \) (ignoring centrifugal distortion). Their observation and inclusion of data for \(\nu(X) = 21 \) certainly made their \(X\)-state
analysis the most comprehensive to date. However, their neglect of the older data and of the information about the $A^1\Sigma^+$ state and their reliance on term values generated from previously reported molecular constants\cite{10, 11} rather than on the actual data on which they were based were weaknesses of their approach.

In all previous studies of this system, the analyses were based on historic parameter-fitting Dunham-type treatments,\cite{10, 31} and with two exceptions,\cite{21, 24} when isotope effects were considered at all it was assumed that they could be accounted for by first-order semiclassical reduced-mass scaling.\cite{10, 11} In contrast, the present work reports the first DPF analysis of this system, which is fully quantum-mechanical, and whose basic results are analytic expressions for the potential energy curves and any relevant BOB functions for the state(s) in question. BOB effects are particularly important in molecules with small reduced mass, especially hydrides, and a combined-isotopologue DPF analysis allows them to be taken into account properly. In addition, the $A^1\Sigma^+$ of the alkali hydrides is known to have an abnormal "truncated" potential energy curve, and for such cases, no finite Dunham expansions can readily represent all of its level energies, while a DPF analysis using an appropriate model potential form can. The purpose of this paper is therefore to present a combined-isotopologue DPF analysis of all available data for this system that yields highly accurate and compact analytic representations of the potential energy curves for the $X^1\Sigma^+$ and $A^1\Sigma^+$ of NaH.

III. SELECTION AND TREATMENT OF DATA

The properties and sources of the data used in the present analysis are summarized in Table I. The uncertainties shown there were taken from the appropriate experimental paper and were used for all lines from that source, with the following exceptions. In the case of the electronic band data, if a line had a discrepancy much larger than its neighbours and another line in that data set had the same energy, its uncertainty was multiplied by a factor of three. This modification affected 58 of the Hori NaH data and 11 of the Olsson NaD data. Similarly, if a relatively large discrepancy occurred for a line associated with the highest observed J-level in a given branch, its uncertainty was multiplied by a factor of two. This second adjustment only affected 3 of the Hori data.\cite{24} Finally, if a line had a discrepancy from our best-fit model of more than 8 times the average uncertainty for its band group, we concluded that it was an outlier (possibly mis-assigned) and de-weighted it out of the final fits. This led to removal of 1 Hori NaH datum, 13 Olsson NaD data, 5 Pesl\textit{ et al.} NaH data, 4 of the Pankhurst "combination difference" pure rotational data, and 15 of the Bahns\textit{ et al.} data, including the three assigned to $v' = 10$ and 12 for which the discrepancies of >10 cm$^{-1}$ show that they were completely mis-identified. Moreover, while all of the synthetic $A^1\Sigma^+$-state pure rotational Rafi\textit{ et al.} data were consistent with our best models (within the assumed 0.2 cm$^{-1}$ uncertainties), the discrepancies of his band origins for $v(A) = 0$–20 led us to assign them uncertainties of ±1 cm$^{-1}$, while the much larger

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Type</th>
<th>Uncertainty (cm$^{-1}$)</th>
<th>$v(A^1\Sigma^+)$</th>
<th>$v(X^1\Sigma^+)$</th>
<th>J range</th>
<th>No. Data</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaH</td>
<td>Electronic</td>
<td>0.3–0.9</td>
<td>3–20</td>
<td>0–3</td>
<td>0–37</td>
<td>1905</td>
<td>Hori\cite{24}</td>
</tr>
<tr>
<td></td>
<td>Electronic</td>
<td>0.3</td>
<td>4–13</td>
<td>0–1</td>
<td>0–24</td>
<td>524</td>
<td>Olsson\cite{17}</td>
</tr>
<tr>
<td></td>
<td>Electronic</td>
<td>1.0</td>
<td>1–7</td>
<td>3–8</td>
<td>0</td>
<td>27</td>
<td>Pankhurst\cite{19}</td>
</tr>
<tr>
<td></td>
<td>Pure rotational</td>
<td>0.1</td>
<td>...</td>
<td>3–8</td>
<td>0–32</td>
<td>149</td>
<td>Pankhurst\cite{19}</td>
</tr>
<tr>
<td></td>
<td>Pure rotational</td>
<td>0.1</td>
<td>1–7</td>
<td>...</td>
<td>0–32</td>
<td>186</td>
<td>Pankhurst\cite{19}</td>
</tr>
<tr>
<td></td>
<td>Electronic</td>
<td>0.1</td>
<td>0–1</td>
<td>6–8</td>
<td>0–33</td>
<td>261</td>
<td>Orh\cite{20}</td>
</tr>
<tr>
<td></td>
<td>Pure rotational</td>
<td>7 \times 10$^{-6}$</td>
<td>...</td>
<td>0–3</td>
<td>0–1</td>
<td>4</td>
<td>Sastry\cite{21}</td>
</tr>
<tr>
<td></td>
<td>Pure rotational</td>
<td>(3–15 \times 10$^{-6}$)</td>
<td>...</td>
<td>0–3</td>
<td>0–8</td>
<td>27</td>
<td>Leopold\cite{22}</td>
</tr>
<tr>
<td></td>
<td>Vib-rotational</td>
<td>0.001–0.009</td>
<td>...</td>
<td>0–2</td>
<td>0–15</td>
<td>26</td>
<td>Magg\cite{23}</td>
</tr>
<tr>
<td></td>
<td>Vib-rotational</td>
<td>0.001–0.002</td>
<td>...</td>
<td>0–3</td>
<td>0–21</td>
<td>58</td>
<td>Maki\cite{24}</td>
</tr>
<tr>
<td></td>
<td>Electronic</td>
<td>1.0</td>
<td>12–20</td>
<td>0–1</td>
<td>0</td>
<td>17</td>
<td>Rafi\cite{25}</td>
</tr>
<tr>
<td>Synthetic MW</td>
<td>0.2</td>
<td>13–25</td>
<td>0–1</td>
<td>0–6</td>
<td>144</td>
<td>Rafi\cite{25}</td>
<td></td>
</tr>
<tr>
<td>Electronic</td>
<td>0.3–0.6</td>
<td>8–15</td>
<td>0</td>
<td>0–25</td>
<td>298</td>
<td>Lochbrunner\cite{27}</td>
<td></td>
</tr>
<tr>
<td>Electronic</td>
<td>0.3–0.4</td>
<td>2–9</td>
<td>1–3</td>
<td>0</td>
<td>9</td>
<td>Lochbrunner\cite{27}</td>
<td></td>
</tr>
<tr>
<td>Electronic</td>
<td>0.006 & 0.31</td>
<td>3–9</td>
<td>0–1</td>
<td>0–22</td>
<td>126</td>
<td>Bahn\cite{20}</td>
<td></td>
</tr>
<tr>
<td>Electronic</td>
<td>0.001–0.017</td>
<td>2–8</td>
<td>6–9</td>
<td>1–29</td>
<td>275</td>
<td>Pesl\cite{18}</td>
<td></td>
</tr>
<tr>
<td>Electronic “pump”</td>
<td>3.0</td>
<td>7–12</td>
<td>0 & 9</td>
<td>0–14</td>
<td>50</td>
<td>Huang\cite{20}</td>
<td></td>
</tr>
<tr>
<td>Electronic “probe”</td>
<td>2.0</td>
<td>7–12</td>
<td>10–21</td>
<td>1–14</td>
<td>277</td>
<td>Huang\cite{20}</td>
<td></td>
</tr>
<tr>
<td>Vib-rotational</td>
<td>1.0</td>
<td>...</td>
<td>0, 9–21</td>
<td>1–14</td>
<td>286</td>
<td>Huang\cite{20}</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4642</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NaD	Electronic	0.05–0.15	7–17	0–1	0–29	591	Olsson\cite{17}
	Pure rotational	0.000007	...	0–3	1–3	5	Sastry\cite{21}
	Electronic	0.30–0.50	4–17	0–4	0	25	Lochbrunner\cite{27}
Total:					621		
Total overall:					5263		
discrepancies (increasing from ~4 to ~60 cm⁻¹) for his 7 ν(A) = 21–25 band origins led us to deweight them completely out of the final data set. All of the other older (pre 2010) data retained in our analysis were weighted by the uncertainties shown in column-3 of Table I, while numbers shown in its column-7 are the numbers of each type of data used in the final analysis.

The present work utilizes the data of Huang et al. in a much more direct way than they did. First of all, following their approach, we use the differences between their pump and probe transition energies to define a set of 286 pseudo-vibration rotation transitions from levels with ν(X) = 0 and J = 0–14 into those with ν(X) = 9–21. However, rather than represent the properties of the lower levels of the X state by a previously reported set of Dunham expansion parameters, we have relied in our inclusion of all of the earlier data for this system to define the lower portion of that potential energy well. Moreover, rather than neglect information about the A state, we have also included their 50 “pump” transitions from ν(X) = 0 and 9 into ν(A) = 7–12 and their 277 ν(A) = 7–12 into ν(X) = 9–21 “probe” transitions as separate data. As shown in Table I, we have assigned uncertainties of 1.0, 3.0, and 2.0 cm⁻¹ to these three components of their data, within which they are in good agreement with our best models. Listings of our entire data set and of the differences between those data and our recommended model are included in the supplementary material associated with this paper.

IV. DIRECT-POTENTIAL-FIT DATA ANALYSIS

A. The radial Hamiltonian

Most spectroscopic data may be described in terms of differences between eigenvalues of potential energy function(s) for the electronic state(s) involved in the transition. However, for species of small reduced mass, especially hydrides, BOB effects give rise to differences between the effective potential energy functions for different isotopologues and introduce isotopologue-dependent corrections to the “mechanical” centrifugal potential. The present work uses Watson’s formulation of this problem, in which the effective radial Schrödinger equation for isotopologue-α of a diatomic molecule A-B may be written in the form

\[\hat{\mathcal{H}} \psi_{v,J}(r) = \left\{ -\frac{\hbar^2}{2\mu_\alpha} \frac{d^2}{dr^2} + \left[V_{ad}^{(1)}(r) + \Delta V_{ad}^{(\alpha)}(r) \right] \right\} \psi_{v,J}(r)
+ \left[\frac{1}{2\mu_\alpha} \frac{J(J+1)}{r^2} + \left[1 + g^{(\alpha)}(r) \right] \right] \psi_{v,J}(r)
= E_{v,J} \psi_{v,J}(r). \] (1)

}\]

Here, \(V_{ad}^{(1)}(r) \) is the effective adiabatic internuclear potential for a chosen reference isotopologue (denoted \(\alpha = 1 \)), \(\Delta V_{ad}^{(\alpha)}(r) \) is the difference between the effective adiabatic potential for isotopologue-\(\alpha \) and that for the chosen reference isotopologue, \(\mu_\alpha \) is the normal reduced mass of atoms A and B with masses \(M_A^{(\alpha)} \) and \(M_B^{(\alpha)} \), and \(g^{(\alpha)}(r) \) is the effective non-adiabatic correction term to the centrifugal potential for isotopologue \(\alpha \). As was shown by Watson, \(\Delta V_{ad}^{(1)}(r) \) and \(g^{(\alpha)}(r) \) may each be written a sum of terms associated with the two atoms.

We find it most convenient to express those terms using the mass-difference and mass-ratio representation of Ref. 36,

\[\Delta V_{ad}^{(\alpha)}(r) = \frac{\Delta M_A^{(\alpha)}}{M_A^{(\alpha)}} S_{ad}^A(r) + \frac{\Delta M_B^{(\alpha)}}{M_B^{(\alpha)}} S_{ad}^B(r), \] (2)

\[g^{(\alpha)}(r) = \frac{M_A^{(1)}}{M_A^{(\alpha)}} S_{ad}^A(r) + \frac{M_B^{(1)}}{M_B^{(\alpha)}} S_{ad}^B(r), \] (3)

in which \(\Delta M_A^{(\alpha/B)} = M_A^{(1/B)} - M_A^{(\alpha)} \) is the difference between the masses of atom A or B in isotopologue-\(\alpha \) and in the reference isotopologue, \(S_{ad}^{A/B}(r) \) represents the “adiabatic” potential-energy BOB correction function for atom A or B, and \(R_{ad}^{A/B}(r) \) is the (dimensionless) “non-adiabatic” centrifugal BOB radial strength function for atom A or B.

B. Data analysis procedure

The present analysis involved application of a standard DPF procedure. Observed transition energies are compared to eigenvalue differences generated by solving Eq. (1) using parameterized analytic trial potential energy and BOB functions, and a standard non-linear least-squares procedure is used to optimize those parameters. The partial derivatives of the eigenvalues with respect to the parameters of the model required by this procedure are readily calculated using the standard Hellmann-Feynman theorem expression:

\[\frac{\partial E_{v,J}}{\partial \phi} = \left\{ \left[\psi_{v,J}(r) \right] \frac{\partial \phi(r)}{\partial \phi_J} \left[\psi_{v,J}(r) \right] \right\}. \]

The preliminary trial potential-function parameters required to initiate such fits may be generated by fitting the chosen functional form to a set of turning points generated by application of the semiclassical “RKR” inversion procedure to a conventional set of molecular constants, or by ab initio calculations.

For a given model, we characterize the quality of fit by the “dimensionless root-mean-square deviation,” which is one for which \(\overline{d}d \leq 1 \). However, if \(\overline{d}d \) is persistently significantly greater than unity for a particular subset of the data, independent of the number of free parameters in the model, it usually means that the estimated uncertainties for that group of data are too small and should be increased. This was the basis of the data-weighting/data-selection procedure described in Sec. III.

C. The potential energy function form

It is well known that the outer walls of the potential energy wells of the \(A^1Σ^+ \) states of all of the alkali hydrides change shape abruptly, just before they rise past the energy of the alkali \(nP_{1/2} \) atomic state because of an avoided crossing between a strongly attractive \(Σ^+ \) “diabatic” ion-pair state and a \(Σ^+ \) van der Waals state that dissociates to the alkali \(nP_{1/2} + H(^3S) \) threshold (see Fig. 1). Because this unusual behaviour would seem to preclude normal merging to inverse-power-sum long-range behaviour, we have chosen to represent the potential energy function for this state by an “Expanded Morse Oscillator” (EMO) function. This function has the form of a simple Morse potential whose exponent coefficient is a
function of distance

\[V_{\text{EMO}}(r) = \sum_{e=1}^{N_p} \beta_e \left(1 - e^{-\beta_{\text{EMO}}(r - r_e)} \right)^2, \]

(4)
in which \(\Sigma_e \) is the well depth, \(r_e \) is the equilibrium internuclear distance, and the exponent coefficient

\[\beta_{\text{EMO}}(r) = \sum_{i=0}^{N_p} \beta_i \ y_{q}^{(i)}(r)^i \]

(5)
is expressed as a power series in a dimensionless variable

\[y_{q}^{(i)}(r) = r^q - r_{REF}^{q} \]

(6)
that is defined by a selected expansion centre \(r_{REF} \) and power \(q \).

The free fitting parameters of this potential form are \(\Sigma_e, r_e \), and the expansion coefficients \(\beta_i \) of Eq. (5), while the values of \(N_p, q \), and \(r_{REF} \) are optimized manually. There are no rules governing the choice of \(q \) and \(r_{REF} \) other than that experience shows that “too small” values of the former (\(q \leq 2 \)) sometimes lead to potential functions that behave badly in the extrapolation region(s) outside the “data range,” the region bounded by the inner and outer turning points of the highest vibrational level involved in the analysis, and that we would normally expect the latter to lie within this “data range.” The geometric mean of those two turning points is usually a good initial trial value for \(r_{REF} \).

In contrast with the \(\Lambda \, ^1\Sigma^+ \) state, the potential energy function for the \(X \, ^1\Sigma^+ \) state of NaH is expected to show the normal merging to inverse-power-sum long-range behaviour, so we represent it by the Morse/Long-Range (MLR) function that has the general form of a Morse-type potential with two key differences: (i) the exponent distance factor \((r - r_e) \) is replaced by a dimensionless variable that is also linear in \(r \) near \(r_e \), but approaches a constant as \(r \to \infty \), and (ii) there is a pre-factor in front of the exponential term that defines the long- and very-short-range behaviour of the potential. This function has the form

\[V_{\text{MLR}}(r) = \sum_{e=1}^{N_p} \beta_{\text{MLR}}(r_e) \left(1 - \frac{u_{\text{MLR}}(r)}{u_{\text{MLR}}(r_e)} \right)^2, \]

(7)
in which \(\Sigma_e \) and \(r_e \) are as defined above, while the radial distance variable has the same form as that of Eq. (6), except that its expansion centre is fixed at \(r_e \) and it is defined by a different integer power, \(p \),

\[\beta_{\text{MLR}}(r) = \beta_{\text{MLR}}^{(p)}(r) \]

(8)
The exponent coefficient function in Eq. (7) is then defined by the expression

\[\beta_{\text{MLR}}^{(p)}(r) = y_{p}^{(q)}(r) \beta_\infty + \left(1 - y_{p}^{(q)}(r) \right) \sum_{i=0}^{N_p} \beta_i \ y_{q}^{(i)}(r)^i, \]

(9)
in which

\[\beta_\infty = \lim_{r \to \infty} \beta_{\text{MLR}}(r) = \ln \left(\frac{2 \Sigma_e}{\beta_{\text{MLR}}(r_e)} \right) \]

(10)
and the expansion variable \(y_{p}^{(q)}(r) \) is again defined by Eq. (6), while the variable \(y_{q}^{(i)}(r) \) has that same form, but is defined by the same power \(p \) used to characterize the radial distance variable of Eq. (8), rather than by \(q \) (although one could choose to set \(q = p \)). The three dimensionless radial variables are defined as they are because of the effect of the integer powers \(p \) and \(q \) on the long-range behaviour of the exponential term in Eq. (7).\(^{40}\)

The pre-factor to the exponential term in Eq. (7) is defined by the expression

\[u_{\text{MLR}}(r) = \sum_{m=m_{\text{ref}}}^{m_{\text{last}}} D_m(r) \frac{C_m}{r^m} \]

(11)
in which the powers \(\{ m \} \) characterize the inverse-power terms that theory dictates define the limiting long-range behaviour of the particular molecular state, and the associated coefficients \(C_m \) are (usually) known from theory. In the present work, the “damping functions” \(D_m(r) \) are represented by the \(\gamma_s = -1 \) generalized Douketis-type functions recommended by Ref. 40, and the system-dependent parameter used to account for the sizes of the overlapping electron clouds of the interacting atoms is defined (following Refs. 40 and 41) as \(p = \rho_{\text{NaH}} = 0.69 \). For the interaction of ground-state H and Na atoms, the leading terms in Eq. (11) correspond to \(m = 6, 8, \) and 10, and we use the excellent values for those \(C_m \) coefficients reported by Mitroy and Bromley\(^{16}\) to define the long-range tail function \(u_{\text{MLR}}(r) \) of our MLR potential for ground-state NaH.

The free fitting parameters in the MLR model are \(\Sigma_e, r_e \), and the \(\beta_i \) expansion parameters of Eq. (9), while the values of \(N_p, p, q \), and \(r_{REF} \) are set manually and the \(C_m \) coefficients are fixed at their theoretical values.\(^{16}\) The only firm constraint on the values of the integer powers \(p \) and \(q \) is that the power \(p \) must be larger than the difference between the last and first powers in the (damped or undamped) inverse-power sum of Eq. (11), \(p > (m_{\text{last}} - m_{\text{ref}}) \), in order to prevent the long-range behaviour of the exponential term in Eq. (7) from affecting that defined by the expansion of Eq. (11). However, as with the EMO potential form, “small” values of \(q (q \leq 2) \) sometimes tend to lead potential functions that behave badly in the extrapolation region(s) outside the “data range,” while too-large values make the \(y_{p}^{(q)}(r) \) expansion variable somewhat “stiff,” so that larger values of the power \(N_p \) are required to give an equivalently “good” potential energy function.

D. BOB radial strength function forms

Following Ref. 42, the radial strength functions characterizing the atom-dependent potential-energy and centrifugal BOB corrections of Eqs. (2) and (3) are expanded in the same form utilized for the exponent-coefficient function of the MLR potential,

\[\tilde{S}_{\text{ad}}(r) = y_{p}^{(q)}(r) u_{\infty}^{A} + \left(1 - y_{p}^{(q)}(r) \right) \sum_{i=0}^{N_p} u_{i}^{A} y_{q}^{(i)}(r)^i, \]

(12)
\[\tilde{R}_{\text{ad}}(r) = y_{p}^{(q)}(r) t_{\infty}^{A} + \left(1 - y_{p}^{(q)}(r) \right) \sum_{i=0}^{N_p} t_{i}^{A} y_{q}^{(i)}(r)^i. \]

(13)
Since NaH is not an ion, \(t_{\infty}^{A} = \beta_{\infty} = 0 \) for both the \(X \, ^1\Sigma^+ \) and \(\Lambda \, ^1\Sigma^+ \) states.\(^{42}\) Moreover, since we adopt the convention of
defining the absolute zero of energy as the energy of ground state atoms at infinite separation, by definition, \(u_A^\infty = u_B^\infty = 0 \) for all molecular states that dissociate to that limit, and since Na has only one stable isotope, this is also true for the \(A^1\Sigma^+ \) state. Within this convention, the values of \(u_A^0(X) \) define the isotopologue-dependence of the ground state well depth. However, since Na has only one isotope, \(u_{Na}^0(X) = 0 \), and since the NaD data for the \(X^1\Sigma^+ \) state span only a small fraction (\(\leq 23\% \)) of the well, we cannot expect to be able to determine the H/D isotope dependence of that well depth from these data, so we also fixed \(u_{H}^0(A) \) (see below) provides the best current estimate of the H/D electronic isotope shift for the \(A-X \) system.

Other than the general caveat that too small values may lead to unphysical behaviour in the extrapolation regions outside the “data range,” while too large values may tend to a need for higher polynomial orders in Eqs. (12) and (13), there are no explicit constraints on the values of \(p_{na}, q_{na}, p_{ad} \). However, since \(p_{ad} \) defines the limiting inverse-power long-range behaviour of the \(\tilde{S}_{ad}(r) \) functions, it should normally be set equal to the power of the leading term in Eq. (11), \(p_{ad} = m_1 \) to ensure that the effective adiabatic potentials \(V_{ad}^{(\alpha)}(r) \) have the same limiting long-range functional behaviour for all isotopologues.

V. RESULTS
A. Preliminary \(X^1\Sigma^+ \) single-state analysis

Because of the unusual shape of the \(A^1\Sigma^+ \)-state potential function, we began our analysis with fits that treated all of its vibration-rotation levels as independent term values. This allowed us to optimize our representation of the potential energy and centrifugal BOB functions for the \(X^1\Sigma^+ \) state, independent of any assumptions about a representation for the \(A^1\Sigma^+ \) state. Moreover, since the highest observed levels of the \(A^1\Sigma^+ \) state lie more than 1000 cm\(^{-1}\) below its asymptote, and the distance between the potential asymptotes is the accurately known atomic excitation energy of Na, this will have no significant effect on the determination of the ground-state dissociation energy.

The lower panel of Fig. 2 shows how our quality-of-fit parameter \(\overline{dd} \) varies with the order of the MLR exponent polynomial \(N = N_\beta \) and the location of expansion the centre \(r_{ref} \) for two different combinations of the expansion coefficient powers \(p \) and \(q \). As expected, we see that for any choice of \(r_{ref} \) increasing \(N_\beta \) improves the quality-of-fit, and that both families of models seem to be converging to the same optimum value of \(\overline{dd} \). Following the arguments presented at the end of Sec. IV C, all of the cases considered here involve

![FIG. 2. Lower panel: dependence of \(\overline{dd} \) on the exponent polynomial order \(N = N_\beta \) and the expansion centre location \(r_{ref} \) for expansion function variables defined by \(\{ p, q \} = \{ 6, 3 \} \) and \(\{ 6, 4 \} \), in single-state fits to data for the \(X^1\Sigma^+ \) state. Upper panel: fitted values of \(D_e \) and their associated 95\% confidence limit uncertainties for cases considered in the lower panel.](image-url)
Fig. 3. Test of the long-range extrapolation behaviour of selected optimized model potential energy functions for the $X^1\Sigma^+$ state of NaH. In the symbols $N_\text{ref}^\text{opt} = N_\text{ref}$ indicates the exponent polynomial expansion order, r_ref is the expansion centre location, while p and q are the integers defining the radial variables of Eqs. (7)–(9).

$p > (m_{\text{max}} - m_1) = 4$ (in particular, $p = 5$ or 6), and the values of q are all > 2. However, there are no obvious trends with p or q.\(^{43}\)

In addition to minimizing $|dd|$ for the smallest possible number of parameters, a key criterion in selecting an optimum potential function model is that it should behave sensibly in the extrapolation interval past the outer end of the data region. A simple way of testing for that is to examine the behaviour of a plot of $\{C_6^\text{eff}(r) \equiv r^6[D - V_{\text{MLR}}(r)]\}$ vs. $1/r^2$. The structure of Eq. (11) means that as $1/r^2 \to 0$ ($r \to \infty$), plots of this type must approach an intercept of C_6^theory with a slope of C_m^theory, where C_6^theory and C_m^theory are the values of the fixed coefficients defining the two leading terms in the expansion of Eq. (11). Figure 3 shows that all of the potentials considered there do have this expected limiting behaviour, but that the models for which $p = 5$ tend to dip down and approach the limiting slope from below. This is unphysical, since the leading deviation from the limiting (linear) behaviour should show positive curvature, due to the positive (attractive) C_6^theory term in the long-range potential. We therefore select a MLR function with $N = N_\beta = 12$, $p = 6$, $q = 4$, and $r_\text{ref} = 3.0$ (circled points on Fig. 2) as our recommended model for the potential energy function of the $X^1\Sigma^+$ state of NaH.

The upper panel of Fig. 2 shows that the model-dependence of the fitted values of the ground-state well depth Ξ_e is far larger than the uncertainties in virtually any of the values yielded by the individual fits.\(^{43}\) In order to obtain the best possible estimate of the overall uncertainties in the physically interesting parameters Ξ_e and r_e, we therefore adopted the averaging-over-models procedure of Eqs. (6)–(8) of Ref. 44 (or Eqs. (21)–(23) of Ref. 15). On averaging over the results for the 63 cases for which the value of $|dd|$ was no more than 1% larger than that for the recommended model (points below the $+1\%$ line in the lower panel of Fig. 2), we obtain $\text{unc}\{\Xi_e\} = 4.3$ cm$^{-1}$ and $\text{unc}\{r_e\} = 0.0000015$ Å. Extending this averaging to include result for the 82 models whose $|dd|$ values were within 2% of that for the recommended model (points below the $+2\%$ line in the lower panel of Fig. 2) only changed $\text{unc}\{\Xi_e\}$ in its second decimal place and raised $\text{unc}\{r_e\}$ to 0.000002 Å. The shaded region in the upper panel of Fig. 2 indicates the band of uncertainty associated with averaging over the 63 models associated with the 1% limit.\(^{43}\)

With an optimum X-state potential function model selected based on the fits to NaH data alone described above, we undertook a preliminary attempt to determine the number of BOB terms required to simultaneously explain those data. This study showed that either three or four potential-energy BOB terms and one centrifugal BOB term would be required. However, because of the expected high degree of correlation between the numbers and values of the BOB parameters for the X and A states, the delineation of optimum BOB models for the $X^1\Sigma^+$ state had to await the global two-state analysis described below.

B. Two-state analysis and determining the $A^1\Sigma^+$ state potential energy function

Using the recommended model for the $X^1\Sigma^+$-state potential described above, we then proceeded to perform full two-state, 2-isotopologue fits to determine an optimum model for the $A^1\Sigma^+$ potential energy function. As discussed at the beginning of Sec. IV C, we have chosen to use an EMO function to represent the potential function for this state. While the values of Ξ_e, r_e, and the well-shape parameters β_i are all determined automatically using our least-squares fitting program DPotFit,\(^{14}\) as with the $X^1\Sigma^+$-state fits described above, optimum values for the expansion centre r_{ref} and power q defining the dimensionless radial variable of Eq. (6) were determined manually. One general finding was that for $q = 2$ or 3, all of the fitted EMO potentials had an inflection point on the inner wall above the potential asymptote, which led to a spurious inner maximum and potential function turnover in the short-range extrapolation region, so those models were physically unacceptable. This was also true for the $q = 4$, 5, and 6 cases.
$N_\beta = 17$ models for $r_{\text{ref}} < 2.9$ Å. However, the remaining $N_\beta = 17$, $q = 4$ models, all of the $q = 4$, $N_\beta = 15$ and 16 models, and all of the $q = 5$ models considered, had physically sensible short-range walls with strictly positive curvature.

Figure 4 shows how the quality-of-fit parameter \dd for the global fit varies with the EMO exponent polynomial order $N = N_\beta$ and with the expansion variable parameters q and r_{ref}. As is seen there, the $q = 5$ models (solid points joined by dashed lines) require more β_i expansion parameters to achieve a given quality of fit than do those for $q = 4$ (open filled points joined by solid lines), and do not even approach the $q = 4$ results for the range of $N = N_\beta$ values considered. Because of the close convergence of the $N_\beta = 16$ and 17 models at their common \dd minima, we choose the $N_\beta = 16$, $q = 4$ EMO function for $r_{\text{ref}} = 3.0$ Å as our recommended potential energy function for the $X^1\Sigma^+$ state of NaH. Figure 4 is a much simpler picture than is the full version of Fig. 2,43 because the EMO potential has only one integer expansion-variable parameter to vary, while the MLR form has two. Moreover, since the distance between their potential asymptotes is determined by the precisely known Na(3s → 3p) atomic excitation energy,46 both the value of and the uncertainty in the $A^1\Sigma^+$ well depth are determined by those for the $X^1\Sigma^+$ state, so the analog of the upper panel of Fig. 2 would carry little new information.

The final stage of the analysis consisted of our optimizing the forms of the expansion variables and numbers of expansion parameters defining the BOB functions for the two states. This was a relatively straightforward procedure, since the fact that their effects are quite small relative to those of the potential function parameters means that at worst, only order-of-magnitude trial parameters are required to initiate stable, unique least-squares fits (indeed, trial parameter values of 0.0 usually suffice!). Note, however, that the limited vibrational range of the deuteride data does not allow a physically significant determination of distinct well depths for the deuterium isotopologues, so the values of u^H_0 for the two states are 100% correlated. In particular, either one (or their difference) could serve to define the single experimental observable, the electronic isotope shift. In the analysis reported here, we chose arbitrarily to fix $u^H_0(X) = 0.0$, which means that all of this isotope shift is attributed to the isotopologue-dependence of the A-state well depth. However, this ansatz could readily be changed if additional data were obtained that would allow a reliable independent determination of one of the deuteride well depths. Since the centrifugal BOB corrections for the two states both affect high-J electronic data in similar ways, one might expect these functions to also be fairly highly correlated. However, a trial-and-error procedure quickly led to an optimum model here too.

The parameters defining our recommended analytic potential energy functions for the $X^1\Sigma^+$ and $A^1\Sigma^+$ states of NaH are presented in Table II. Numbers in parentheses are 95% confidence limit uncertainties in the last digits shown, obtained by application of the averaging-over-models procedure described above to models whose \dd values lie within 1% of the minimum value. After application of the “sequential rounding and refitting” (SRR) scheme of Ref. 46 minimized the numbers of digits required to define the model with no significant loss of accuracy ($<0.04\%$ increase in \dd), the final fit to 5263 data, and yielded $\dd = 1.216$. A Fortran subroutine for generating the effective potential energy and centrifugal potential functions for either isotopologue in either state is included with the supplementary material accompanying this manuscript.33 This supplementary material also includes listings of the eight leading “band constants” (the vibrational energies and first 7 rotational constants) for all vibrational levels of both isotopologues supported by these two potentials, together with sample input data files for the standard vibrational-eigenvalue/Franck-Condon “LEVEL.”47

The lower panel of Fig. 5 compares our spectroscopically accurate empirical potential energy functions for the $X^1\Sigma^+$ and $A^1\Sigma^+$ states of NaH with the ab initio potentials of Aymar, Deiglmayr, and Dulieu9 (points). On the scale of this

Table II. Parameters defining the recommended MLR potential energy function for the $X^1\Sigma^+$ state of NaH, the EMO function for the $A^1\Sigma^+$ state, and the associated BOB functions, as determined from the present DPF analysis.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$X^1\Sigma^+$</th>
<th>$A^1\Sigma^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLIM</td>
<td>0.0</td>
<td>16 956.170 25</td>
</tr>
<tr>
<td>T_e</td>
<td>0.0</td>
<td>22 712.570 25</td>
</tr>
<tr>
<td>$\langle p, q \rangle / \langle q \rangle$</td>
<td>(6.4)</td>
<td>[4]</td>
</tr>
<tr>
<td>r_{ref}</td>
<td>[3.0]</td>
<td>[3.0]</td>
</tr>
<tr>
<td>β_0</td>
<td>0.065 821 61</td>
<td>0.362 068 84</td>
</tr>
<tr>
<td>β_1</td>
<td>0.131 948</td>
<td>0.131 948</td>
</tr>
<tr>
<td>β_2</td>
<td>0.155 548</td>
<td>0.155 548</td>
</tr>
<tr>
<td>β_3</td>
<td>0.089 81</td>
<td>0.089 81</td>
</tr>
<tr>
<td>β_4</td>
<td>0.410 19</td>
<td>0.410 19</td>
</tr>
<tr>
<td>β_5</td>
<td>0.029 55</td>
<td>0.029 55</td>
</tr>
<tr>
<td>β_6</td>
<td>0.284 82</td>
<td>0.284 82</td>
</tr>
<tr>
<td>β_7</td>
<td>0.039 5</td>
<td>0.039 5</td>
</tr>
<tr>
<td>β_8</td>
<td>13 606</td>
<td>13 606</td>
</tr>
<tr>
<td>β_9</td>
<td>2.618</td>
<td>2.618</td>
</tr>
<tr>
<td>β_{10}</td>
<td>4.373</td>
<td>4.373</td>
</tr>
<tr>
<td>β_{11}</td>
<td>0.000 20</td>
<td>0.000 20</td>
</tr>
<tr>
<td>β_{12}</td>
<td>66.76</td>
<td>66.76</td>
</tr>
<tr>
<td>β_{13}</td>
<td>10.8</td>
<td>10.8</td>
</tr>
<tr>
<td>β_{14}</td>
<td>0.000 20</td>
<td>0.000 20</td>
</tr>
<tr>
<td>β_{15}</td>
<td>0.000 20</td>
<td>0.000 20</td>
</tr>
<tr>
<td>β_{16}</td>
<td>24.0</td>
<td>24.0</td>
</tr>
</tbody>
</table>

Units of energy and length are cm$^{-1}$ and Å.
VI. CONCLUSION AND DISCUSSION

A global DPF analysis of all available data for the $A^1\Sigma^+ - X^1\Sigma^+$ systems of NaH and NaD has yielded accurate analytical potential energy functions and Born-Oppenheimer breakdown functions for these two states that (on average) reproduce all of the data within the experimental uncertainties. Figure 5 shows that these potential functions are in excellent agreement with the best available \textit{ab initio} calculations for these states. It is particularly gratifying to see the close agreement of our fitted A-state EMO function with the \textit{ab initio} points in the extrapolation region past the outer turning point for $v_A = 25$, which marks the outer end of the A-state data region, as this demonstrates the ability of this functional form to accommodate the abrupt change of potential function character associated with the avoided crossing that takes this state to the Na(3p) + H(1s) limit (see Fig. 1) and gives rise to the abrupt cutoff of the $\Delta G_{+\Sigma^+}$ plot seen in Fig. 6. These new potentials, together with new \textit{ab initio} dipole moment and transition moment functions, are now being used to generate comprehensive rotational-vibrational and rotational-vibrational-electronic line lists for the X state and the $A-X$ systems of NaH and NaD.18

Our analysis confirms that $v = 21$ (bound by 18.9 cm\(^{-1}\)) is indeed the last bound level of the ground state of NaH and predicts that $v = 30$ (bound by 1.26 cm\(^{-1}\)) is the highest vibrational level of ground-state NaD. While the uncertainty in Σ_c may make the significance of these estimates somewhat uncertain, the scattering lengths implied by our potentials for ground-state NaH and NaD are 0.392 and 7.76 Å, respectively.

Similarly, our analysis predicts that the highest vibrational levels of the $A^1\Sigma^+$ states of NaH and NaD are $v = 32$ (bound by 26.8 cm\(^{-1}\)) and $v = 45$ (bound by 4.5 cm\(^{-1}\)), respectively, and our estimates of the energies and rotational constants of all unobserved levels of both states are included in the supplementary material associated with this paper.33

Table III compares our present estimate of the potential energy well depth of ground-state NaH with selected previous values. It is noteworthy that our value differs from that of Huang \textit{et al.} by far more than the sum of their uncertainties, although they were based on very similar data sets. We believe that this improvement illustrates the strength of our
TABLE III. Comparison of present NaH(X Σ^+) well depth (shown in bold font) with some previous values.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Δ_v/cm$^{-1}$</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present work (2013)</td>
<td>15 797.4 ± 4.3</td>
<td>Direct fit of data to analytic potential functions</td>
</tr>
<tr>
<td>Huang et al. 30</td>
<td>15 815 ± 5</td>
<td>Polynomial Birge-Sponer extrapolation from $\nu'' = 21$</td>
</tr>
<tr>
<td>Aymar et al. 9</td>
<td>15 671.3</td>
<td>Add ab initio points: see Fig. 5</td>
</tr>
<tr>
<td>Stwalley et al. 39</td>
<td>15 900 ± 100</td>
<td>Polynomial Birge-Sponer extrapolation from $\nu = 19$</td>
</tr>
<tr>
<td>Nedelec and Giroud49</td>
<td>15 785 ± 20</td>
<td>Polynomial Birge-Sponer extrapolation from $\nu = 16$</td>
</tr>
<tr>
<td>Giroud and Nedelec50</td>
<td>16 300 ± 500</td>
<td>Linear Birge-Sponer extrapolation from $\nu'' = 8$</td>
</tr>
<tr>
<td>Pankhurst18</td>
<td>17 410</td>
<td>Polynomial Birge-Sponer extrapolation from $\nu'' = 20$</td>
</tr>
<tr>
<td>Hori8</td>
<td>18 100</td>
<td></td>
</tr>
</tbody>
</table>

DPF procedure. As illustrated by the upper panel of figure 2, our final estimate of the uncertainty in Δ_v is almost an order of magnitude larger than the uncertainty yielded by the final fit to our particular recommended model. This is a common effect of taking model-dependence into account. However, this averaging over models responsible for less than half of our fit to our particular recommended model. This is a common effect of taking model-dependence into account. However, this averaging over models responsible for less than half of our estimated uncertainties in the physically significant A-state parameters T_e, r_e, and μ_0.

A widely noted fact about the $A \Sigma^+$ states of all alkali hydrides is that their vibrational spacings and B_v values initially increase with ν, a property that reflects the broader-than-quadratic shape of their potential minima, which in turn is associated with the influence of the transient ion-pair character of their attractive outer walls (see Fig. 1) and the associated (distant) avoided crossing with the ground state. However, Figs. 5 and 6 illustrate another interesting property, which is that over much of its well, the vibrational spacings of the $A \Sigma^+$ state of NaH are approximately constant, even though Fig. 5 shows that its shape is strongly anharmonic. This provides an unusual physical illustration of the separate roles of vibrational and rotational data in determining a potential energy function, which are so clearly delineated by the two equations of the semiclassical RKR inversion procedure, 11 the vibrational spacings only depend on, and hence determine, how the width of the potential well increases with energy, and not its overall shape, so that over a substantial energy range a pure harmonic oscillator and a strongly anharmonic potential energy function can have approximately the same vibrational spectrum.

ACKNOWLEDGMENTS

We are very grateful to Professor Klaas Bergmann and Dr. Frank Pesl for providing us with the accumulated data file used in their 2000 analysis and to Professor Y.-H. Huang for helpful communications regarding aspects of his published data set. We are also very grateful to the late Professor Jim Mitroy of Charles Darwin University (Australia) for providing us with his unpublished values of the dispersion coefficients between a H atom and an excited Na(2P^+) atom and for many other helpful communications over the years. His untimely death was a significant loss for science. This research was supported by the Natural Sciences and Engineering Research Council of Canada through a “Discovery Grant” held by R.J.L.

5J. Tennyson, in 68th International Symposium on Molecular Spectroscopy at the Ohio State University, Columbus, Ohio, 2013, Paper TB05.

17E. Olsson, Z. Phys. 93, 206 (1934).

26M. A. Baig, private communication (2013).

28J. Pesl, Private Communication (2012); we are grateful to Dr. Pesl for providing us with these unpublished data of Lochbrunner et al. (Ref. 27).

31J. L. Dunham, Phys. Rev. 41, 713-720 (1932); 41, 721-731 (1932).

32Our initial analyses found that in Huang et al.’s original data set, 30 the transition energies for the (10,16) band appeared to be systematically displaced by approximately 10 cm$^{-1}$. Dr. Huang has kindly provided us with the correct values for these data (T.-J. Huang, private communication (2012)), and they were used in the present analysis.
See supplementary material at http://dx.doi.org/10.1063/1.4906086 for ASCII files containing: (i) a list of all of the data used in the present work, (ii) a list of [calc.-obs] values for our final recommended model, (iii) tabulations of the vibrational energies and rotational constants all bound levels of the $X^1\Sigma^+$ and $X^1\Sigma^+$ states of NaH and NaD that were generated from our final recommended potential energy functions, (iv) a digital listing of the complete fitted parameters set from Table II, together with a band-by-band summary of the final set of RMS discrepancies, (v) sample data files for use in performing bound-state/Franck-Condon calculations using Program LEVEL, (vi) a Fortran subroutine for generating the recommended MLR(X) and DELR(A) potential energy functions, and (vi) the full version of Fig. 2 including the results for four families of \{p,q\} cases.

