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The carbon dioxide Raman spectrum is simulated within an algebraic approach based on curvilinear
coordinates in a local representation. The two main advantages of the present algebraic approach
are a possible connection with configuration space and the correct description of systems with either
local or normal mode character. The system Hamiltonian and polarizability tensor are expanded in
terms of curvilinear coordinates. The curvilinear coordinates are in turn expanded into normal co-
ordinates, obtaining an algebraic representation in terms of normal bosonic operators. A canonical
transformation maps the operators into a local algebraic representation. The final step is an anhar-
monization procedure to local operators. The Raman spectrum of CO2 has been simulated, obtaining
results close to experimental accuracy, and polarizability transition moments for the Raman spectral
lines between 1150 cm−1 and 1500 cm−1 are reported. The comparison between experimental and
simulated spectra has provided six new CO2 experimental vibrational terms. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4889995]

I. INTRODUCTION

Algebraic methods have been for a long time a useful
tool to describe the vibrational spectrum of molecules. Usu-
ally such methods are based on harmonic oscillator bases be-
cause of their direct correspondence with normal modes.1–5 A
remarkable advantage of the algebraic representation is that
it allows the precise identification of the most relevant inter-
actions, in such a way that it is relatively easy to split the
basis set into different subspaces that do not interact among
themselves to a first approximation. These basis subsets are
characterized by a pseudoquantum number called polyad.6–8

This approach has proved specially useful when combined
with canonical Van Vleck perturbation theory.9, 10 In a polyad-
preserving approach the representation of the Hamiltonian is
block diagonal, with each block characterized by the polyad
number and the irreducible representation (irrep) of the sym-
metry group. This scheme remains valid as long as the de-
scription is confined to the low-lying region of the spectrum,
since as energy increases both the polyad and the harmonic
oscillator basis may stop being useful approximations, either
because of large anharmonic effects or the occurrence of dif-
ferent structural minima accessible over potential barriers. In
such situations breaking the polyad may represent a suitable
strategy.2, 3, 11–16 It has recently been shown how a polyad-
breaking effective Hamiltonian is capable of describing the
spectrum of systems with a reaction barrier (e.g., dissociation
or isomerization systems).17–19

The traditional description of molecular vibrations in
terms of normal modes20 involves harmonic collective nuclear

motions, and works reasonably well for molecules without
large mass differences in their constituents. However, when
such mass differences are present, an approach based on local
modes may be more convenient to explain the patterns ap-
pearing in the energy spectrum.21–29 Local modes exhibit a
characteristic pattern of near-degenerate states,30 a fact nicely
explained with the simplest version of the local theory.23 The
basic idea behind local models consists in expressing the
Hamiltonian in terms of a set of oscillators associated with
local coordinates, coupled by kinetic and potential energy
terms. The recognition of the relevance of this approach was
delayed due to the successful description of the overtones of
H2O with an effective spectroscopic Hamiltonian in normal
coordinates including a Darling–Dennison resonance term
due to the near degeneracy of the symmetric and anti sym-
metric stretching normal modes.31 After that work, a quar-
ter of a century elapsed before the local mode concept was
reintroduced.32–35 Local modes are closely related to anhar-
monic effects, a fact that explains the heavy mixing required
in the normal basis to describe the aforementioned patterns.
Hence molecules having hydrogen atoms are appropriate can-
didates to be described in the framework of the local scheme.
The search for a connection between the local and normal
mode descriptions of molecular vibrations led to the establish-
ment of the x-K relations, the connection between the spectro-
scopic parameters of these two descriptions.36–42 In particular,
the equivalence of the local algebraic and the normal Darling–
Dennison Hamiltonians through a SU(2) transformation was
demonstrated by Lehmann and Kellman.43, 44

0021-9606/2014/141(5)/054306/14/$30.00 © 2014 AIP Publishing LLC141, 054306-1
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The Morse and Pöschl-Teller potential wavefunctions are
convenient bases for the local mode description, because both
potentials have analytic solutions in one dimension and can
model stretching or bending vibrations, respectively.45, 46 In-
deed the study of two interacting Morse oscillators is the
prototype to simulate the stretching degrees of freedom of
triatomic molecules from different perspectives,23, 47 includ-
ing classical trajectories obtained with nonlinear dynamics
tools.26, 48–51

From a power expansion of the Hamiltonian in terms of
normal coordinates in configuration space it is possible to ob-
tain an algebraic representation using bosonic operators in
such a way that the optimized spectroscopic parameters al-
low the potential energy surface (PES) to be estimated.1, 2

When large mass differences are involved, a local descrip-
tion may be more useful but not necessarily including all
the degrees of freedom. An example of this mixed approach
treats stretching degrees of freedom as local Morse oscilla-
tors, while bending degrees of freedom are modeled using
harmonic oscillators.52, 53 An attempt to use a local scheme
for every degree of freedom may fail in extracting the correct
PES. However, a scheme encompassing local or normal ap-
proaches may be attractive and useful when dealing with the
PES.

Because of the relation between locality and anharmonic-
ity, Morse functions may be the starting point to model local
oscillators. In particular, this can be done in the framework of
the one dimensional limit of the vibron model, that exploits
the isomorphism between the one dimensional Morse poten-
tial and the U(2) dynamical algebra.54 Phenomenological al-
gebraic local models using a U(2) basis have been extensively
used in the spectroscopic description of the molecular vibra-
tions of semi-rigid molecules.54–63 Phenomenological models
and, in particular, anharmonic spectroscopic effective Hamil-
tonians, provide wavefunctions but a link to the system PES
is missing. Consequently, it is not possible to extract chemical
information from the molecular PES. This problem was over-
come once the coordinate and momenta for the Morse and/or
Pöschl-Teller (PT) functions were realized in terms of the
generators of the U(2) algebra64–66—equivalent expansions
were obtained before in terms of bosonic operators through
a Holstein-Primakov transformation.67, 68 Although these po-
tentials can be treated in a unified form through the U(2)
algebra, the choice depends on their symmetry. This connec-
tion allowed the calculation of force constants and, conse-
quently, the obtainment of a PES used to predict the spec-
tra of isotopologues.68–75 Recently, an alternative approach
to solve the problem of linking with a correct coordinate
space representation in the case of a spectroscopic effective
Hamiltonian has been applied to the case of a polyad-breaking
Hamiltonian.19

The polyad pseudo quantum number implies a linear
combination of normal mode quantum numbers multiplied
by positive weights.7 Thus, the natural way to define a sys-
tem’s polyad is from a normal mode scheme, and a transla-
tion into a local scheme may not be possible. In particular,
this is relevant in systems with a strong normal mode charac-
ter, e.g., CO2 and BF3.73, 76, 77 In such cases normal modes are
the convenient framework for the system’s description. If such

molecules are described as a set of interacting local oscillators
two problems appear. On the first hand, the polyad in terms of
local oscillators may not be well defined73 and, on the sec-
ond hand, a wrong estimate of the molecular force constants
is obtained. This is explained by the fact that non-interacting
local oscillators are not a good zeroth order Hamiltonian. In
order to obtain a correct estimation of the system’s force con-
stants it is necessary to introduce interactions that break the
polyad, as explained in detail in Refs. 76 and 78. In contrast,
when the description can be carried out with interacting local
oscillators, an algebraic description with a good estimation
of the force constants is possible either in a local or normal
mode scheme. From a phenomenological point of view both
approaches are equivalent,79, 80 although only one of the cases
provide realistic force constants.

In recent works it has been proved that it is possible to
conserve the polyad quantum numbers and estimate the PES
for any molecular degree of freedom using an algebraic ap-
proach based on U(2) algebras.76–78 The basic idea is akin to
the basis of previous works that connect the local and normal
approaches: the traditional algebraic description in terms of
bosonic operators associated with normal modes is mapped
with a canonical transformation into bosonic operators iso-
morphic to symmetry adapted local bosonic operators, as
in previous studies connecting the local and normal mode ap-
proaches. Finally, a crucial aspect of the model is that anhar-
monicity is considered replacing local bosonic operators with
ladder operators associated with Morse or Pöschl-Teller func-
tions. This last step is done preserving the connection between
spectroscopic parameters and force constants. In our opinion
this is a major advantage of the present approach.

The natural description of molecular vibrations is in
terms of internal (valence) curvilinear coordinates,81, 82 al-
though variable curvature coordinates have also been con-
sidered (see, e.g., Ref. 83). Symmetry-adapted combina-
tions of these curvilinear coordinates can be expanded into a
power series of the normal coordinates, that are rectilinear by
definition.20 A first-order approximation consists in truncat-
ing the expansion at the linear terms which implies an iden-
tification of the (now rectilinear) symmetry coordinates with
linear combinations of normal coordinates. This approxima-
tion has been considered in previous applications of the U(2)
algebraic approach.74 However, a general approach consider-
ing curvilinear symmetry adapted coordinates is of great inter-
est. In this contribution we review from a general perspective
a local algebraic approach based on U(2) algebras to describe
semi-rigid molecules. Our approach assumes the validity of
the Born-Oppenheimer approximation and the convergence of
the Hamiltonian expansion in terms of either curvilinear coor-
dinates or normal coordinates. As an application, the study of
the vibrational excitations of the molecule of carbon dioxide
(12CO2) in its ground electronic state is presented, considering
non-linear effects in the expansion of curvilinear coordinates
as a function of normal coordinates.

The present approach is applied to the Raman spec-
trum of carbon dioxide, a very relevant molecular species
in the study of the earth’s climate, combustion, planetary at-
mospheres, etc.84 Therefore, both experimental and theoret-
ical spectroscopic studies are needed to complete the most
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currently used spectroscopic databases; e.g., HITRAN,
GEISA, HITEMP, JPL, and CDSD databases. For this reason,
an exhaustive spectral analysis of the absorption spectrum has
been recently carried out.84–86

Due to its importance in different fields, carbon diox-
ide has not only been deeply studied quantum mechanically,
but also using the modern methods of nonlinear classical me-
chanics, which have been extensively applied to the dynam-
ics of molecular resonance spectra.79, 87 In particular, phase
space bifurcations structure involving Fermi-like resonances
has been analyzed,80, 88, 89 and the results have been applied in
particular with application to the CO2 molecule.90 Also catas-
trophe theory has been used to classify the dynamics of spec-
tra involving the 2:1 bend-stretch Fermi resonance in carbon
dioxide.91

The present study includes the analysis of the Raman
spectrum transition probabilities,92 which represents an ex-
igent test for the computed vibrational eigenfunctions. The
expansion of the molecular polarizability tensor as a Taylor
series into either curvilinear or normal coordinates is used
to describe the spectrum. The analysis of the carbon diox-
ide molecule using rectilinear coordinates has already been
reported in a letter form.93 In this work we include previously
neglected nonlinear effects and we present the approach from
a more general perspective, emphasizing the effect of the non-
linear contributions. In addition to this, the CO2 polarizability
transition moments are predicted, and used to simulate the
Raman spectrum close to experimental accuracy. It is ex-
pected that this prediction provides valuable information for
quantitative combustion diagnostics and could also be of help
in the identification of transition signatures with spectroscopic
accuracy. As a bonus, new experimental vibrational bands are
reported, obtained from the comparison of the experimental
and simulated Raman spectra.

The present work is organized as follows. First, the dif-
ferent sets of coordinates used in the proposed formalism are
defined in Sec. II. In Sec. III we present in detail the main
points of the algebraic model. Section IV is devoted to the ap-
plication of our algebraic approach to the CO2 molecule. The
comparison of theoretical and experimental results of the CO2
Raman spectrum, as well as the estimation of the derivatives
of the polarizability tensor, can be found in Sec. V. Finally, in
Sec. VI, a summary and concluding remarks are presented.

II. COORDINATES

For the sake of clarity, the different sets of coordinates
used in the present paper to describe the molecular vibrations
of the CO2 molecule are defined in first place. Three main
types of coordinates will be used.

(i) Curvilinear symmetry coordinates Sα are symmetry-
adapted combinations of the internal (valence) bond-
stretching and angle-bending coordinates. In the stretching
degrees of freedoms case, the coordinates are

S1 ≡ S�+
g

= 1√
2

(�r1 + �r2), (1)

S3 ≡ S�+
u

= 1√
2

(�r1 − �r2), (2)

FIG. 1. Atomic masses and Cartesian coordinates for CO2.

where �ri = ri − re, with i = 1, 2, corresponds to the left and
right CO distances as displayed in Figure 1 with re being the
bond equilibrium distance. The bending coordinates are82

S2a = re eY · r1 × r2

r1r2

, S2b = −re eX · r1 × r2

r1r2

. (3)

Another possibility, used by Tejeda et al.,94 is

S2a = d eY · r1 × r2

r2
e

, S2b = −d eX · r1 × r2

r2
e

, (4)

where d = 1 Å is a normalization length. The advantage of the
latter definition is that its expansion into normal coordinates
is finite. In our analysis we shall consider both definitions. In
this case it is convenient to introduce polar coordinates

S+ = − 1√
2

(S2a + iS2b), S− = 1√
2

(S2a − iS2b), (5)

with the corresponding conjugate momenta

P̂+ = − 1√
2

(P̂2a − iP̂2b), P̂− = 1√
2

(P̂2a + iP̂2b). (6)

(ii) Mass-weighted (rectilinear) normal coordinates Qα ,
which are expressed in terms of the Cartesian displacement
coordinates qi = �ξ i, ξ = x, y, z, and masses m and M of
Figure 1 as

Q1 =
√

m

2
(q6 − q3),

Q2a =
√

mM

2MT

[−(q1 + q4) + 2q7],

Q2b =
√

mM

2MT

[−(q2 + q5) + 2q8],

Q3 =
√

mM

2MT

[−(q3 + q6) + 2q9],

(7)

where MT = 2m + M.
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(iii) Rectilinear symmetry coordinates Qi, which are in-
volved in the bosonic operators associated with the harmonic
oscillators:

Q1 = 1√
m
Q1,

Q2a =
√

2

√
MT

mM
Q2a,

Q2b =
√

2

√
MT

mM
Q2b,

Q3 =
√

MT

mM
Q3,

(8)

given in length units.
Curvilinear symmetry coordinates, Sα , may be written as

a power series of the normal coordinates Qα . This expansion,
up to third order, takes the form

S1 = 1√
m
Q1 + 1

2
√

2

1

re

MT

mM
Q2

2 − 1

4

1

r2
e

MT

mM
√

m
Q1Q2

2,

S2a =
√

2

(
d

re

)√
MT

mM
Q2a + �1

(
d

r2
e

)
1√
m

√
MT

mM
Q1Q2a

+ �2
1√
2r2

e

[
1

m

√
MT

mM
Q2

1Q2a

− M2
T

mM

√
MT

mM
(Q2

2 − Q2
3)Q2a

]
,

S2b =
√

2

(
d

re

)√
MT

mM
Q2b + �1

(
d

r2
e

)
1√
m

√
MT

mM
Q1Q2b

+ �2
1√
2r2

e

[
1

m

√
MT

mM
Q2

1Q2b

− M2
T

mM

√
MT

mM
(Q2

2 − Q2
3)Q2b

]
,

S3 =
√

MT

mM
Q3 − 1

4r2
e

MT

mM

√
MT

mM
Q3Q2

2,

(9)

where Q2
2 = Q2

2a + Q2
2b. These equations are valid for the

considered definitions of the bending coordinate, (3) and (4).
In the case of Eq. (3) definition, one must set d = re, �1
= −1, and �2 = 1; while Eq. (4) definition implies d = 1 Å,
�1 = 1, and �2 = 0. The difference lays in the order of the ex-
pansions. The bending coordinates expansion is complete in
Eq. (4) case, since they are quadratic in the Cartesian
coordinates. In contrast, definition (3) implies an infinite
series.

Finally, in terms of the Qi coordinates of Eq. (8), the ex-
pansion (9) takes the simplified form

S1 = Q1 + 1

4
√

2

1

re

Q2
2 − 1

8

1

r2
e

Q1Q
2
2,

S2a =
(

d

re

)
Q2a + �1

(
d

r2
e

)
1√
2
Q1Q2a

+ �2
1

2r2
e

[
Q2

1 + Q2
3 − 1

2
Q2

2

]
Q2a,

S2b =
(

d

re

)
Q2b + �1

(
d

r2
e

)
1√
2
Q1Q2b

+ �2
1

2r2
e

[
Q2

1 + Q2
3 − 1

2
Q2

2

]
Q2b,

S3 = Q3 − 1

8r2
e

Q3Q
2
2,

(10)

where, again, Q2
2 = Q2

2a + Q2
2b.

III. A GENERAL LOCAL ALGEBRAIC APPROACH

The vibrational Hamiltonian Ĥ in terms of curvilin-
ear internal displacement coordinates Sα can be written as
follows2, 5, 95, 96

Ĥ = 1

2
P̃G(S)P + V (S), (11)

where S and P are column vectors corresponding to the in-
ternal displacement coordinates and their conjugate momenta
Pα = −i¯∂/∂Sα . The G(S) matrix establishes the connec-
tion between internal and Cartesian coordinates, V (S) is the
Born-Oppenheimer potential, and the mass-dependent poten-
tial term has been neglected. The usual approach to obtain
a suitable simplified Hamiltonian consists in expanding both
the G(S) matrix and the potential V (S) as a Taylor series
around the equilibrium configuration, truncating the expan-
sion once an adequate convergence is achieved. In this way
we have for the G(S) matrix

Gij (S) = Go
ij (S) +

∑
α

(
∂Gij

∂Sα

)
o

Sα + . . . , (12)

while for the potential

V (S) = 1

2!

∑
α,β

(
∂2V

∂Sα∂Sβ

)
o

SαSβ

+ 1

3!

∑
α,β,γ

(
∂3V

∂Sα∂Sβ∂Sγ

)
o

SαSβSγ + . . . (13)

Usually a reasonable spectrum description can be achieved
with an expansion of the G(S) matrix elements up to linear
order and of the potential up to quadratic order. The substi-
tution of the expansions (12) and (13) into (11), leads to a
Hamiltonian

Ĥ = Ĥ (P, S), (14)

involving powers of Pα and Sβ as well as cross-product terms.
As already mentioned in Sec. II, the curvilinear coordinates
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Sα may be expanded into rectilinear symmetry coordinates
Qi defined in (8). These coordinates are proportional to the
Qi normal coordinates, a fact that allows us to deal with Qi
heretofore. Hence, the curvilinear coordinate expansion has
the general form82

Sα =
∑

i

Lα
i Qi + 1

2!

∑
i,j

Lα
ijQiQj

+ 1

3!

∑
i,j,k

Lα
ijkQiQjQk + . . . (15)

The corresponding momenta are obtained using the chain rule

Pα =
∑

i

∂Qi

∂Sα

∂T

∂Qi

=
∑

i

∂Qi

∂Sα

pi. (16)

The partial derivatives involved in (16) are computed by in-
version of the system of equations

δαβ =
∑

i

Lα
i

(
∂Qi

∂Sβ

)
+

∑
i,j

Lα
ijQi

(
∂Qj

∂Sβ

)

+ 3

3!

∑
i,j,k

Lα
ijk

(
∂Qi

∂Sβ

)
QjQk + . . . , (17)

which is obtained taking the derivative of (15) with respect
to coordinates Sβ . This set of equations, however, provides a
nonlinear solution for the derivatives. An additional expan-
sion of Qi into powers of the symmetry adapted coordinates
is required in order to obtain an approximation of the form

Pα =
∑

i

(
Mi,α +

∑
r

M
i,α
r Qr +

∑
r,s

M
i,α
rs QrQs + . . .

)
pi,

(18)
where the associated quantum operators are obtained through
a symmetry projection method. Therefore the substitution of
(15) and (18) into (14) yields a Hamiltonian

Ĥ = Ĥ (p̂, Q), (19)

where p̂k = −i¯∂/∂Qk . The identification of the polyad-
preserving interactions (resonances) in coordinate space is a
cumbersome task. However, introducing creation and annihi-
lation operators, i.e., the algebraic representation, vibrational
resonances come out in a concise and natural way.

A suitable algebraic representation of the Hamiltonian
(19) is obtained by the introduction of the bosonic operators
a
†
q�γ (aq�γ ),

a
†
q�γ = ηq� Qq�γ − i

2¯ηq�

pq�γ ,

aq�γ = ηq� Qq�γ + i

2¯ηq�

pq�γ ,

(20)

where � and γ are irrep labels associated with a group chain

G ⊃ H, (21)

q is a multiplicity index, and ηq�’s depend on the reduced
mass μq� and the force constant f

q

�� ,

η2
q� = 1

2¯

√
f

q

�� μq�. (22)

With the introduction of bosonic operators, the Hamiltonian
takes the form

ĤP = ĤP (a†
q�γ , aq�γ ), (23)

where the subindex P means that polyad quantum number
is conserved by neglecting all terms that connect states be-
longing to different polyad. Thus the algebraic representation
greatly simplifies the definition of a polyad preserving Hamil-
tonian from the outset. The spectroscopic parameters in (23)
are related to the molecular geometry and force constants, and
the PES can be estimated from a fit to experimental vibra-
tional levels. A matrix representation of Hamiltonian (23) can
be obtained straightforwardly in the harmonic oscillator basis,
|ν1, ν2, . . . , νs〉, where ν i is defined as the eigenvalue associ-
ated with the number operator ν̂i(q�) = ∑

γ a
†
q�γ aq�γ . An al-

ternative consists in constructing a basis |ν̄1, ν̄2, . . . , ν̄s〉, iso-
morphic to the normal mode basis, defined in terms of number
operators associated with a symmetry adapted basis, the latter
given as a realization in terms of internal coordinates. These
bases turn out to be identical unless there is multiplicity in the
irreps of the normal modes, which in fact is the case for the
CO2 molecule. An efficient and elegant approach to deal with
the general case is described in Refs. 97–100.

The non-diagonal interactions in Hamiltonian (23) de-
fine the polyad and can be identified from the energies of
the fundamentals and overtones of the molecule. In molecules
with a local mode behavior the concept of polyad has a
straightforward translation because the coefficients attached
to the modes associated with a given subspace are the same,
e.g., P = 2(ν1 + ν3) + ν2 in H20, where the same weight
is assigned to both stretching modes. Indeed, the canonical
transformation to local modes provides the polyad P = 2(n1
+ n2) + n3, where n1 and n2 are the local number of quanta
for the stretches. In contrast, for molecules with a strong nor-
mal behavior, e.g., BF3, the polyad P = 4ν1 + 3ν2 + 6ν3
+ 2ν4

73 involves different weights and, consequently, can-
not be translated into a local scheme. In this example this is
due to the large splitting among states that involve the same
set of equivalent local oscillators and by the appearance of
redundant coordinates.73 Therefore, local bases are not well
suited for the description of such molecules. Another argu-
ment that supports this conclusion is that having local oscil-
lators as an initial basis for the description of systems with
a strong normal behavior unavoidably leads to polyad break-
ing in order to obtain a correct estimation of the system force
constants.74, 76–78 In spite of these arguments, we address the
possibility of using a local mode approach in cases where the
normal behavior is strong enough that breaking the polyad
may seem compulsory.

An approach that solves this conundrum relies on apply-
ing to the bosonic operators in the Hamiltonian (23) a canon-
ical transformation of the type

a
†
q�γ =

∑
i

Bi
q�γ c

†
i , (24)

where c
†
i (ci) are bosonic creation (annihilation) operators, and

the coefficients Bi
q�γ correspond to the linear combinations

associated with the symmetry adapted local coordinates of
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the corresponding subspace q. The operators c
†
i (ci) are not lo-

cal operators, but an isomorphism to the true local operators
a
†
i (ai) can be established:

c
†
i ≈ a

†
i . (25)

The true connection between the bosonic operators a
†
q�γ and

the local operators a
†
i implies a Bogoliubov transformation,

involving a combination of creation and annihilation oper-
ators, being the relation (24) true only in the limit of weak
interaction among the oscillators.78 This fact justifies the pro-
posed isomorphism (25).

The transformation (24) preserves the polyad in the
Hamiltonian. Hence the substitution of (24) into (23) leads
to a Hamiltonian of type ĤP = ĤP (c†i , ci), which through the
isomorphism (25), takes the form

ĤP = ĤP (a†
i , ai). (26)

The importance of this Hamiltonian stems from the fact that
is given in a local representation and is polyad-preserving, an
expression that cannot be obtained if the starting point is a
Hamiltonian in coordinate space in the local scheme, unless
the system has a local character. The Hamiltonians (23) and
(26) are equivalent, since they provide the same spectrum, al-
though in different basis connected with a linear transforma-
tion.

Up to this point nothing new has been proposed. How-
ever, this treatment can be further improved considerably
through an anharmonization procedure,73, 76, 77

a
†
i → b

†
i , ai → bi. (27)

where the creation (annihilation) operators b
†
i (bi) are genera-

tors of a U(2) dynamical algebra.74 This anharmonization is
applied both to the basis and to the Hamiltonian, and the op-
erators b

†
i (bi) may be interpreted as ladder operators of Morse

or Pöschl-Teller eigenstates |ψj
v

i
〉, with matrix elements70

b†|�j
v 〉 =

√
(v + 1)(1 − (v + 1)/κ)|�j

v+1〉,
b|�j

v 〉 =
√

v(1 − v/κ)|�j

v−1〉,
(28)

where v is the vibrational number of quanta, v

= 0, 1, 2 . . . j − 1, and κ = 2j + 1 is related to the po-
tential depth. The anharmonization (27) is valid for both
stretching and bending degrees of freedom in semi-rigid
bent molecules.62, 69–75 The anharmonization method for the
bending degrees of freedom of linear and non-rigid molecules
is based on the two dimensional limit of the vibron model,
with a U(3) dynamical algebra, to describe degenerate and
large amplitude bending modes.54, 76, 77, 101–106

We should remark that this approach is a semiempirical
method, which means that in principle we are able to pre-
dict vibrational energy or intensity patterns for systems only
if a minimum number of experimental energies and transi-
tions intensities are available. The description accuracy relies
on the quality of the experimental data. However, the present
approach is connected with configuration space and it allows
predictions via the assessment of force constants and transi-
tion operators.

We should stress that the steps (25) and (27) in our alge-
braic approach do not have in general an analogy in configu-
ration space, only in the local mode limit. In Sec. IV we shall
present the application of this approach to the CO2 molecule,
that has a strong normal character with degenerate (bending)
modes involved.

IV. APPLICATION OF THE ALGEBRAIC
APPROACH TO CO2

In the case of CO2 the expansion of the Hamiltonian (14)
in curvilinear symmetry coordinates, Si, up to quartic order
may be written as follows:77

Ĥ = Ĥs + Ĥb + Ĥsb. (29)

The first term, Ĥs , is the pure stretching contribution

Ĥs = 1

2
g0

�
g
�

g
P 2

�
g
+ 1

2
g0

�
u
�

u
P 2

�
u
+ 1

2
f�

g
�

g
S2

�
g
+ 1

2
f�

u
�

u
S2

�
u

+ 1

4!
f�

g
�

g
�

g
�

g
S4

�
g
+ 1

4!
f�

u
�

u
�

u
�

u
S4

�
u

+ 6

4!
f�

g
�

g
�

u
�

u
S2

�
g
S2

�
u
. (30)

The second term, Ĥb, depends solely on bending coordinates
and momenta

Ĥb = g0+−P+P− + f+−S+S− +
(

∂2g+−
∂S+∂S−

)
0

P+S+S−P−

+ 1

2!

1

2

(
∂2g++
∂S2+

)
0

(P+S+S+P+ + P−S−S−P−)

+ 6

4!
f++−−S2+S2−. (31)

The third term, Ĥsb, embodies stretch-bend interaction terms

Ĥsb =
(

∂g+−
∂S�

g

)
0

S�
g

P+P− +
(

∂g�
g
+

∂S+

)
0

P�
g

(S+P+ + P−S−)

+ 6

3!
f�

g
+−S�

g

S+S− + 1

2

⎛
⎝∂2g+−

∂S2
�

g

⎞
⎠

0

S2
�

g
P+P−

+ 1

2

(
∂2g+−
∂S2

�
u

)
0

S2
�

u
P+P−

+ 1

2

⎛
⎝ ∂2g�

g
�

g

∂S+∂S−

⎞
⎠

0

P 2
�

g
S+S− + 1

2

(
∂2g�

u
�

u

∂S+∂S−

)
0

P 2
�

u
S+S−

+ 12

4!
f�

g
�

g
+−S2

�
g
S+S− + 12

4!
f�

u
�

u
+−S2

�
u
S+S−, (32)

where gαβ are elements of the symmetry-adapted Wilson ki-
netic matrix, ||G|| = gαβ .20

At this level the simplest approximation corresponds to
consider only the linear term in the expansions (10). This ap-
proximation was considered in Refs. 76, 77, and 93 and hence
the truncation in (10) makes curvilinear coordinates equiva-
lent to normal coordinates (8).
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An algebraic representation of the Hamiltonian is ob-
tained through the substitution of the expansion (10) into
(29) and the introduction of bosonic creation and annihilation
operators76, 77

a
†
� = η�Q� − i

2¯η�

p�, a� = η�Q� + i

2¯η�

p�,

� = �g,�u,

a
†
± = η±Q± + i

2¯η±
p∓, a± = −η±Q∓ + i

2¯η±
p±,

(33)

where η� and η± are given by

(η�)2 = 1

2¯

√
f��μ�; � = �g,�u,

(η+)2 = (η−)2 = η2 = 1

2¯

√
f+−
g0+−

,

(34)

with μ�
g
= 1/go

�
g
�

g
= m, μ�

u
= 1/go

�
u
�

u
= (2/M

+ 1/m)−1, and the force constants f�
g
�

g
= frr + frr ′

and f�
u
�

u
= frr − frr ′ . If the linear approximation in

Eq. (10) is considered, the resulting algebraic Hamiltonian
is equivalent to the Hamiltonian expressed in configuration
space in normal coordinates and it is usually diagonalized in
a harmonic oscillator basis. The same approach can be fol-
lowed when considering higher-order terms in the coordinate
expansion. In this case, though the Hamiltonian interaction
parameters are the same, the PES force constants change
when the link between the phase space and the algebraic
space is established.

Following the approach previously presented in Sec. III,
we define an algebraic polyad-preserving Hamiltonian with
local creation and annihilation operators. This goal cannot be
achieved starting from configuration space due to the strong
normal character of CO2 stretching degrees of freedom. This
issue is addressed by introducing the canonical transformation
in the stretching coordinates

a
†
�

g
= 1√

2
(c†1 + c

†
2), a†

�
u
= 1√

2
(c†1 − c

†
2), (35)

where c
†
i (ci) are bosonic operators isomorphic to the ith

bosonic local operators a
†
i (ai). Taking into account this iso-

morphism, the resulting Hamiltonian takes the form

Ĥ = ω̃s

2∑
k=1

(a†
kak + aka

†
k) + λs

2∑
k 
=j=1

a
†
kaj + αs

1

(
n̂2

1 + n̂2
2

)

+αs
2

(
a
†2
1 a2

2 + a
†2
2 a2

1 + 4n̂1n̂2

)
+αs

3(n̂1a
†
2a1 + n̂2a

†
1a2 + H.c.)

+ ω̃bn̂ + αb
1 n̂

2 + αb
2 �̂

2 + αsb
1 {(a†

1 + a
†
2)a+a− + H.c.}

+αsb
2 (n̂1 + n̂2)n̂ + αsb

3 (a†
1a2 + a

†
2a1)n̂, (36)

with the definitions

n̂k = a
†
kak; k = 1, 2,

�̂ = a
†
+a+ − a

†
−a− = n̂+ − n̂−, (37)

n̂ = a
†
+a+ + a

†
−a− = n̂+ + n̂−,

where n̂k is the number of quanta for the kth stretching os-
cillator, n̂ is the total number of bending quanta, and �̂ is
the vibrational angular momentum.101 In Eq. (36) we have
restricted the interactions to those that preserve the polyad
number P = 2(n�

g
+ n�

u
) + (n+ + n−), which splits the to-

tal space into subspaces of states connected through the trans-
fer of two bending quanta to one stretching quantum. The
expressions of the spectroscopic parameters in terms of the
structure and force constants in the linear approximation of
Eq. (10) are detailed in Appendix A of Ref. 77. The diagonal-
ization of the Hamiltonian operator (36) can be carried out in
a harmonic oscillator local basis

|n1n2n+n−〉 = 1√
n1!n2!n+!n−!

(a†
1)n1 (a†

2)n2 (a†
+)n+(a†

−)n−|0〉.

(38)

Instead, we propose a local mode approach for the
stretches in terms of Morse oscillators, together with the in-
corporation of anharmonic effects for the bending degrees
of freedom. This goal is achieved through the introduction
of the anharmonization procedure (27). Hence, the operators
{b†i (bi); i = 1, 2} are interpreted as Morse potential ladder op-
erators with matrix elements (28).

The bending operators a
†
±(a±) undergo an equivalent an-

harmonization procedure

a
†
± → b

†
±, a± → b±, (39)

but now the operators b
†
±(b±) are given as a linear combi-

nation of generators of the U(3) dynamical algebra,55, 101, 104

with matrix elements76

b
†
±|[N ]; n�〉 =

√(
n ± �

2
+ 1

) (
1 − n

N

)
|[N ]; (n + 1)�±1〉,

b±|[N ]; n�〉 =
√(

n ± �

2

) (
1 − n − 1

N

)
|[N ]; (n − 1)�∓1〉,

(40)

where n and � have the same meaning as in Eq. (37),
and N is the total number of bosons (totally symmetric ir-
rep of the U(3) group) related with the bending degree of
freedom anharmonicity. Note that in the large N limit of
Eq. (40) the results for a harmonic 2D oscillator matrix el-
ements are recovered. Hence the application of the anhar-
monization procedures (27) and (39) yields the following

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  18.85.28.26

On: Sat, 24 Jan 2015 18:04:59



054306-8 Lemus et al. J. Chem. Phys. 141, 054306 (2014)

Hamiltonian,

Ĥ = ω̃s

2∑
i=1

(b†i bi + bib
†
i ) + λs

2∑
i 
=j=1

b
†
i bj + αs

1

(
n̂2

s,1 + n̂2
s,2

)

+αs
2

(
b
†2
1 b2

2 + b
†2
2 b2

1 + 4n̂s,1n̂s,2

)
+αs

3(n̂s,1b
†
2b1 + n̂s,2b

†
1b2 + H.c.)

+ ω̃bn̂ + αb
1 n̂

2 + αb
2 �̂

2 + αsb
1 {(b†1 + b

†
2)b+b− + H.c.}

+αsb
2 (n̂s,1 + n̂s,2)n̂ + αsb

3 (b†1b2 + b
†
2b1)n̂, (41)

with the definition

n̂s,i = b
†
i bi, i = 1, 2. (42)

The connection between spectroscopic parameters and force
constants is assumed to be identical to the connection pre-
viously obtained making use of a harmonic oscillator ba-
sis. This Hamiltonian, although not obtained from a scheme
of interacting local Morse oscillators, may be interpreted
as modeling three interacting oscillators: a 2D oscilla-
tor (U(3) model, bending degrees of freedom) and two
1D Morse oscillators (U(2) model, stretching degrees of
freedom).

The matrix representation of the Hamiltonian (41) can be
obtained in a U(2) × U(3) × U(2) basis

|[Ns = 2j ], [N ]; v1v2; n�〉 = |ψj
v1

〉 ⊗ ∣∣ψj
v2

〉 ⊗ |N ; n�〉, (43)

although a symmetry adapted basis combined with a normal
mode scheme is generally preferred.98–100 In general, the di-
agonalization leads to eigenvectors of the form∣∣ψ�γ

P,j

〉 =
∑

ν1,ν2,ν3

C
P,j,�γ
ν1,ν2,ν3

|P ; ν1, ν2, ν3; �, γ 〉 (44)

with the basis set

|P ; ν1, ν2, ν3; �, γ 〉
=

∑
v1,v2,n

B
P ;ν1,ν2,ν3;�,γ
v1,v2,n

|ψj
v1

〉 ⊗ ∣∣ψj
v2

〉 ⊗ |N ; n�〉, (45)

where P is the polyad, � and γ label the irreducible rep-
resentations and their components associated with the chain
D∞h ⊃ Cs with Cs = {E, σ (xz)}, while the set {ν1, ν2, ν3}
corresponds to an approximate normal-mode labeling.98 The
value of the vibrational angular momentum � is implicit in
the symmetry labels � and γ . The B coefficients in (45) stem
from the symmetry projection procedure,98 while the C com-
ponents in (44) are provided by the diagonalization. We stress
that the |ψ�γ

P,j 〉 eigenstates (44) are obtained from an anhar-
monization procedure without counterpart in configuration
space. We follow the usual scheme where each state is labeled
as (ν1, ν2, ν3) according to its maximal squared component
(CP,j,�γ

ν1,ν2,ν3
)2 in the expansion (44). However, with this method

the eigenstates may also be labeled in a local scheme, through
the expansion (45). In cases with a heavy mixing of the basis
elements, ambiguity arises and quite a few states may carry
the same quantum labels.77, 93

Truncating the expansion (10) at the linear approxima-
tion in the coordinates, the vibrational spectrum of the 12CO2
molecule has been described in Refs. 76 and 77 using the
Hamiltonian (41). The spectroscopic parameters were opti-
mized with an iterative nonlinear least square method.107, 108

The fit included 101 experimental vibrational levels109, 110

(encompassing terms up to polyad P = 9) with an rms devia-
tion of 0.53 cm−1. The optimal values of the boson numbers
Ns and N were found to be Ns = 160 and N = 150.77 From
that work, the value of the force constant associated with
the Fermi interaction was estimated to be fq1qa

q
a
= −0.9551

aJÅ−3, in close agreement with Chedin results.111 This value
was obtained from its relation with the spectroscopic param-
eter αsb

1 = −36.002 cm−1 given by

αsb
1

∣∣
lin

= − 1√
2

(
∂g+−
∂S�

g

)
0

¯2η2

2η�
g

−
¯2η�

g√
2

(
∂g+�

g

∂S+

)
0

+ 1√
2

6

3!

f�
g
+−

2η�
g

(2η)2 , (46)

where

g0+− = − g0
q

a
q

a
= −g0

q
b
q

b
;

g0
q

a
q

a
= g0

q
b
q

b
= 4

M
+ 2

m
;

(
∂g+−
∂S1

)
0

= 2
√

2

re

(
1

m
+ 2

M

)
;

(
∂g�

g
+

∂S+

)
0

=
√

2

Mre

,

(47)

with an equilibrium distance re = 1.16 Å.112

In phenomenological algebraic models a test of the qual-
ity of the wavefunctions is recommended since a good en-
ergy fit does not necessarily guarantee the wavefunctions
quality.19, 113 Indeed, the computation of line intensities with
the resulting wavefunctions is a sensitive indicator of the qual-
ity of the description. This situation will be discussed in de-
tail in Sec. V, where we introduce the description of the CO2
Raman spectrum.

The aforementioned results were obtained under the lin-
ear approximation in the coordinates expansion. A ques-
tion which arises is the effect of the neglected nonlinear
terms. The inclusion of these terms is expected to modify
both the PES and the polarizability function. To go beyond
the linear approximation in Eq. (10) implies that the asso-
ciated momenta are modified. Concerning the Hamiltonian
the first step consists in obtaining the corresponding expan-
sion in the momenta associated with (10). To this end, as
discussed in Sec. III, from the chain rule (16), using (17)
and truncating (18) up to first order in coordinates, the fol-
lowing expansions are obtained up to linear terms in the
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coordinates

P1 = p1 − �1

re

√
2

({Q2a, p2a} + {Q2b, p2b}),

P2a = − 1

2
√

2

1

d
Q2ap1 + 1

d

(
re − �1√

2
Q1

)
p2a,

P2b = − 1

2
√

2

1

d
Q2bp1 + 1

d

(
re − �1√

2
Q1

)
p2b,

P3 = p3,

(48)

where we have introduced the anticommutator {Q, p} = (Qp
+ pQ)/2 to indicate the symmetrization process for the mo-
mentum pi. Therefore, the substitution of the expansions (10)
and (48) into (29) provides a new Hamiltonian associated
with curvilinear coordinates. We then proceed to get the al-
gebraic representation of the form (41), following the anhar-
monization approach described in Sec. II. We should stress
that relations between the spectroscopic parameters and the
structure and force constants differ from the ones obtained in
Ref. 77 once the nonlinear terms are considered in the Pα and
Sβ expansions in terms of normal coordinates. For example,
the new expression for the spectroscopic parameter associated
with the Fermi interaction takes the form

αsb
1 = αsb

1

∣∣
lin

+ �1
¯2η1

2
√

2re

g0
�

g
�

g
− 1

2
√

2re

1

8η�
g
η2

f�
g
�

g

+�1f+−

{
2d2

√
2r3

e

1

8η2η�
g

}

+ g0+−

{
−

√
2 re

4d2
¯2η�

g
+ �1

√
2

2

re

d2η�
g

¯2η2

}
. (49)

Here the force constants are derivatives with respect to curvi-
linear coordinates. The first term corresponds to the three con-
tributions in the linear approximation (46), while the others
come from the first and third terms in (30), and the first and
second terms in (31). The force constants involved f+− and
f�

g
�

g
are expected to be consistent with this description in

the sense that they should be extracted from analogue ex-
pressions of the spectroscopic parameters for ω̃s and ω̃b in
Appendix A of Ref. 77. These force constants however are
of lower order and consequently, as a first approximation,
we may use the previous results f�

g
�

g
= 17.188 aJÅ−2 and

f+− = −0.5835 aJÅ−2, which are consistent with the coordi-
nates definition (3). Considering d = re, the expression (49)
gives the Fermi constant value fq1qa

q
a
= −1.138 aJÅ−3 or

f�
g
+− = 1.61 aJÅ−3 with the relation f�

g
+− = −√

2fq1qa
q

a
.

Our estimation increases the absolute value of the Fermi force
constant from fq1qa

q
a
= −0.955 aJÅ−3 obtained through the

linear approximation77 to fq1qa
q

a
= −1.138 aJÅ−3. Never-

theless, its value is still similar to Chedin’s force constant
value.111

V. THE RAMAN SPECTRUM

Line intensities in a Raman spectrum for a gas sample
are given by the transition moments of the molecular polariz-
ability tensor α. In the particular case of the CO2 molecule,
the non-vanishing components of the α tensor have symme-
tries �+

g (trace) and �+
g ⊕ �g ⊕ �g (anisotropy). The sharp,

polarized, Q-branches in the vibrational Raman spectrum of
CO2 in the ∼1300 cm−1 region are totally symmetric (�+

g )
transitions and their intensities are mainly due to the trace of
the α tensor (mean-polarizability). For the trace scattering of
a gas sample at thermal equilibrium, the differential cross sec-
tion can be expressed in the SI system as follows:94

(
∂σ

∂�

)trace

i→f

=
(

π

ε0

)2 (ν0 + νi − νf )4

Zvib(T )
gif |Mif |2

× exp (−hcνi/kBT ), (50)

where ε0 is the vacuum permittivity, ν0 is the wavenumber of
the exciting radiation ν0 = 19 430 cm−1,92 ν i and ν f are the
wavenumbers of initial and final states, and gif is the vibra-
tional degeneracy of the energy levels involved in the tran-
sition. Zvib(T ) = ∑

j gj e
−ν

j
/k

B
T is the vibrational partition

function at the temperature T of the gas sample, where gj
is the degeneracy of the jth state with ν j energy, and Mif =
〈νi |ᾱ|νf 〉 is the transition moment of the mean molecular po-
larizability ᾱ between the vibrational states |ν i〉 and |ν f〉.

The computation of the cross section (50) involves the
evaluation of Mif, which requires the previous knowledge of
the molecular polarizability surface, that can be expressed as
a Taylor series expansion on the vibrational coordinates

ᾱ�+
g

= ᾱ0 +
(

∂ᾱ

∂S�+
g

)
0

S�+
g

+ 1

2

(
∂2ᾱ

∂S2
�+

g

)
0

S2
�+

g

+ 1

2

(
∂2ᾱ

∂S2
�+

u

)
0

S2
�+

u

+ 1

2

(
∂2ᾱ

∂S2
2a

)
0

(
S2

2a + S2
2b

) + 1

2

(
∂3ᾱ

∂S�+
g
∂S2

2a

)
0

× S�+
g

(
S2

2a + S2
2b

)
+ 1

2

(
∂3ᾱ

∂S�+
g
∂S2

�+
u

)
0

S�+
g
S2

�+
u
, (51)

where the ᾱ derivatives are unknown. The last term in
Eq. (51) turns out to be negligible and, consequently, it will
be omitted.94 These derivatives may be determined through
ab initio calculations,112, 114 but they can be also obtained
from a fit to experimental transition moments.94, 115

In the linear approximation the expansion in terms of nor-
mal coordinates takes the same form as (51), substituting Sα

by Qα . This case was previously considered by the authors to
estimate the derivatives of the polarizability as well as to cal-
culate the Raman spectrum.93 In the present work we inves-
tigate nonlinearity effects in this analysis. If nonlinear terms
are taken into account, substituting Eq. (10) in the expression
(51), the following expansion in terms of normal coordinates
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is obtained for the polarizability
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∂ᾱ
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(52)

where

Q2
2 = Q2

2a + Q2
2b,

Xs = Q2
2 − 2

(
Q2

1 + Q2
3

)
, (53)

Xp =
√

2Q2
2re − Q1

(
Q2

2 − 8r2
e

)
.

The next step requires computing the matrix elements
of the mean molecular polarizability ᾱ between the system
wavefunctions (44). This calculation is akin to the calculation
of Hamiltonian matrix elements. We first introduce an alge-
braic representation of ᾱ introducing the a† bosonic operators
(33) followed by the canonical transformation (35) and the
identification (25). Finally the anharmonization procedures
(27) and (39) are applied. In this way the matrix elements
of ᾱ in the basis (43) are well defined, and the transition mo-
ments Mif = |〈νi |ᾱ|νf 〉| can be calculated using the expan-
sion (51) and the wavefunctions (44). The comparison of the
calculated Mcalc

if with those M
exp

if derived from the experi-
mental transition intensities (50),94, 116 allows us to obtain es-
timates of the molecular polarizability derivatives of Eq. (51).
To achieve this task the following root mean square deviation
is defined:93

rms =
√∑

β

[
log

∣∣Mexp

β

∣∣ − log
∣∣Mcalc

β

∣∣]2
, (54)

where the summation runs over all or part of the experimen-
tally known transition pairs. The rms deviation is minimized
by a suitable selection of the polarizability derivatives, using
the set of values in Ref. 94 as an initial guess for the fitting
procedure. In the previous work93 the subindex β included
the first six transitions presented in Table I. In this work it
was necessary to consider the first nine transitions in order to
reach convergence. The first three columns of Table I are the
experimental and calculated frequencies of the Raman transi-
tions, and the normal mode label assignment for the involved
states. The last two columns of the table are the experimental
matrix elements M

exp

if
94, 116 and the results of the present work

after the minimization of Eq. (54).
The fit to experimental transition moments allows the

calculation of the derivatives of ᾱ with respect to curvilin-
ear symmetry coordinates. These derivatives are shown in
the left side panel of Table II. For the sake of comparison,
we include experimental values and the derivatives obtained

TABLE I. Experimental and fitted transition moments |M
if

| = |〈ν
i
|ᾱ|ν

f
〉| of the mean polarizability of CO2. Only the first nine transitions were involved in

the fit.

ν (cm−1)a ν (cm−1)b |ν
i
〉 −→ |ν

f
〉 transitionc |M

if
| = |〈ν

i
|ᾱ|ν

f
〉|d |M

if
| = |〈ν

i
|ᾱ|ν

f
〉|e

1285.4 1286.29 |0; 000; �+
g 〉 −→ |2; 100; �+

g 〉 5.58 5.59
1388.2 1387.54 |0; 000; �+

g 〉 −→ |2; 020; �+
g 〉 6.79 6.89

2548.4 2549.53 |0; 000; �+
g 〉 −→ |4; 120; �+

g 〉 0.088 0.084

2671.1 2671.11 |0; 000; �+
g 〉 −→ |4; 200; �+

g 〉 0.114 0.116
2797.1 2795.98 |0; 000; �+

g 〉 −→ |4; 120; �+
g 〉 0.026 0.026

4673.3 4673.17 |0; 000; �+
g 〉 −→ |4; 002; �+

g 〉 0.050f 0.050
1265.1 1266.04 |1; 010; �

u
〉 −→ |3; 110; �

u
〉 5.4 5.41

1409.5 1408.54 |1; 010; �
u
〉 −→ |3; 030; �

u
〉 7.2 7.06

2514.1 2515.01 |1; 010; �
u
〉 −→ |5; 130; �

u
〉 0.095 0.098

2671.9 2671.93 |1; 010; �
u
〉 −→ |5; 210; �

u
〉 . . . 0.109

2833.3 2831.93 |1; 010; �
u
〉 −→ |5; 130; �

u
〉 ≤ 0.03 0.016

aExperimental transition wavenumbers from Ref. 94.
bCalculated wavenumbers from the fit of Ref. 77.
cThe vibrational states are labeled by the ket |P; ν1, ν2, ν3; �〉 where P is the polyad number, (ν1, ν2, ν3) are the quantum numbers in the normal-mode representation and � is the
symmetry of the vibrational wavefunction.
dExperimental values from Ref. 94 in 10−42 CV−1 m2, otherwise is indicated.
eFitted and predicted transition moments in 10−42 CV−1 m2 obtained from this work.
fExperimental value from Ref. 116.
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TABLE II. Derivatives of the CO2 mean polarizability with respect to Eq. (4) symmetry coordinates (left panel) and dimensionless normal coordinates (right
panel).

Dimensionless normal coordinates

DerivativeeSymmetry coordinates

Derivative (units)a Linearb Expt.c Nonlineard (10−42 CV−1m2) Linearf Expt.c Nonlinearg

(∂ᾱ/∂S1)0(10−30 CV−1 m) 3.15 3.15 3.181 ᾱ′
1 12.44 12.43 12.56

(∂2ᾱ/∂S2
1 )0(10−20 CV−1) 2.549 2.9 2.634 ᾱ′′

11 0.398 0.45 0.411

(∂2ᾱ/∂S2
3 )0(10−20 CV−1) 0.447 0.50 0.448h ᾱ′′

33 0.144 0.15h 0.144

(∂2ᾱ/∂S2
2a)0(10−20 CV−1) 0.8395 0.36 − 0.060 ᾱ′′+− 1.925 2.81 2.12

(∂3ᾱ/∂S1∂S2
2a)0(10−10 CV−1 m−1) − 1.21 − 1.7 − 1.2 ᾱ′′′

1+− − 0.110 − 0.06 − 0.061

aPolarizability derivatives as defined in Eq. (51).
bFrom Ref. 93 using the rectilinear coordinates approximation.
cExperimental values from Ref. 94.
dPresent work results, obtained with a fit to experimental polarizability transition moments shown in Table I.
ePolarizability derivatives in terms of dimensionless normal coordinates as defined in Ref. 94.
fResults obtained transforming the second column derivatives to the rectilinear coordinate approximation.93

gThis work, transformed from polarizability derivatives in fourth column.
hBest choice of the two experimental values of Ref. 94, according to the ab initio CCSD(T) value of Ref. 114.

using the linear approximation.93 In general, there is a good
agreement between our results and the experimental polar-
izability derivatives, in particular for the first three deriva-
tives (∂ᾱ/∂S1), (∂2ᾱ/∂S2

1 ), and (∂2ᾱ/∂S2
3 ). For the deriva-

tive (∂3ᾱ/∂S1∂S2
2a), a slightly different value is obtained, but

significant discrepancies appear in the bending polarizabil-
ity derivatives (∂2ᾱ/∂S2

2a). While the experimental value is
(∂2ᾱ/∂S2

2a) = 0.36 × 10−20CV−1, we have obtained −0.06
× 10−20CV−1, which seems to indicate that the linear approx-
imation is a better result. However, we have to take into ac-
count that the derivatives (51) in Ref. 94 were obtained from
the derivatives with respect to dimensionless normal coordi-
nates and, consequently, a much better physical comparison is
expected to be obtained by calculating such derivatives. The
connection between both sets of derivatives is established us-
ing the expansion (15) and the chain rule to obtain

ᾱ′
1 ≡ ∂ᾱ

∂Q1

= 1√
m

∂ᾱ

∂S1

, (55)

ᾱ′′
11 ≡ ∂2ᾱ

∂Q2
1

= 1

m

∂2ᾱ

∂S2
1

, (56)

ᾱ′′
33 ≡ ∂2ᾱ

∂Q2
3

= MT

mM

∂2ᾱ

∂S2
3

, (57)

ᾱ′′+− ≡ ∂2ᾱ

∂Q2
2a

= 2

(
d

re

)2
MT

mM

{
re

2
√

2d2

∂ᾱ

∂S1

+ ∂2ᾱ

∂S2
2a

}
,

(58)

ᾱ′′′
1+− ≡ ∂3ᾱ

∂Q1∂Q2
2a

= 2

(
d

re

)2
MT

m
√

mM

{
− 1

4d2

∂ᾱ

∂S1

+ re

2
√

2d2

∂2ᾱ

∂S2
1

+�1

√
2

re

∂2ᾱ

∂S2
2a

+ ∂3ᾱ

∂S1∂S2
2a

}
. (59)

The derivatives with respect to the dimensionless normal
coordinates used in Ref. 94 and reported in the right panel of
Table II are obtained multiplying the result of Eq. (59) times
a product

∏
i(
√

2bi), where the product runs over the coordi-
nates involved in the derivatives, and

b2
i = h

8π2νi

, (60)

where ν i is the harmonic frequency (Hz) of the ith mode.
In the right panel of Table II we compare our results with

the mean polarizability derivatives with respect to dimension-
less normal coordinates obtained by Tejeda et al. in Ref. 94.
As in the previous case, the first three derivatives are close to
the experimental values, which means that nonlinear effects
are basically negligible. In contrast, nonlinear effects turn out
to be significant for the derivatives with respect to the bend-
ing coordinate, ᾱ′′+−, and ᾱ′′

1+−. In the linear approximation
the derivative ᾱ′′+− is 31% smaller than the experimental value
of Tejeda et al., but once nonlinear terms are incorporated the
derivative becomes closer to the expected value, lowering the
error to 25%. This improvement cannot be appreciated in
the left panel of Table II. This fact is explained by the appear-
ance of the derivative ∂ᾱ/∂S1 in (58), which is not present in
the linear approximation. It turns out that this term is not neg-
ligible compared with ∂2ᾱ/∂S2

2a , giving rise to the result for
ᾱ′′+− displayed in Table II. In turn, the derivative ᾱ′′′

1+− comes
to a good agreement with the experiment.

The results displayed in Table II for the derivatives show
the sensitiveness of the polarizability with respect to nonlin-
ear effects, specially in the bending coordinates case. The dif-
ference between our results and the ones obtained by Tejeda
et al.94 can be attributed to the different approach followed
to obtain the eigenstates. In Ref. 94 the derivatives with re-
spect to the normal coordinates were fitted using perturba-
tion theory through the eigenfunctions of Chedin’s results.
It is worth mentioning that if the latter procedure is applied
to our calculated transition moments in Table I, a value of
ᾱ′′+− = 2.28 × 10−42 C m2 V−1 is obtained, very close to the
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FIG. 2. Experimental and simulated Raman spectrum of CO2.

value 2.12 × 10−42C m2 V−1 of our fit. This is an indication
of the consistency of the methodology employed in this work.

We now use the expansion (51) to simulate the Ra-
man spectrum of CO2 at high temperature. In Figure 2 we
present the calculated spectrum of carbon dioxide at 1743 K
in the range of energies 1150–1460 cm−1, along with the
experimental one.92 The procedure followed to simulate the
spectrum consists in calculating the transition moments be-
tween all pairs of vibrational states with the same symmetry
such that their energy difference falls in the range of ener-
gies experimentally scanned. Then, scattering cross sections
are calculated through Eq. (50) and the transition lines are
convoluted using a Gaussian profile up to the experimental
bandwidth (1.2 cm−1). In order to find new experimental vi-
brational terms, calculated line positions in Figure 2 were
replaced by experimental values when available. This
procedure allowed us to identify unassigned lines in the ex-
perimental spectrum and, with the help of the computed fre-
quencies and intensities, to obtain a number of new exper-
imental vibrational terms, with an estimated uncertainty of
0.8 cm−1. The new experimental vibrational terms, with en-
ergies around 5000 cm−1, are given in Table III, labeled ac-
cording to Ref. 117. Three of them are compared with other
experimental vibrational terms118 not used in the current fit,
to check the predictions of the current algebraic model.

TABLE III. New experimental vibrational terms of CO2 obtained in the
present work from the analysis of the Raman spectrum, labelled follow-
ing the notation of Ref. 117. The estimated accuracy of the new levels is
0.8 cm−1.

ν (cm−1) ν1, ν
�
2, ν3 Ref. 119

4557.7 (1 55 0)2 4557.595
4677.0 (2 33 0)2 4676.791
4800.9 (1 55 0)1 4801.365
5115.3 (2 44 0)3
5218.7 (1 66 0)2
5330.6 (4 00 0)3
5345.6 (2 44 0)2
5436.5 (3 22 0)2
5644.9 (3 22 0)1
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FIG. 3. Simulated Raman spectrum of CO2 at 100, 300, and 1000 K.

Finally, to illustrate the predictive power of our analysis
we display in Figure 3 the simulated Raman CO2 spectrum
at temperatures T = 100, 300, and 1000 K. We provide a ta-
ble which includes the calculated transitions in the frequency
range 1100–1500 cm−1.119 For each transition and symmetry,
the calculated lower and upper vibrational term values, the
frequency, and the polarizability transition moment are given.
The transition line assignment has been performed according
to Ref. 77.

VI. CONCLUSIONS

In this work a general algebraic approach to describe the
vibrational spectrum of semirigid molecules with either nor-
mal or local vibrational dynamics has been presented. The
main feature of our approach is that the PES can be estimated
for semirigid molecules using a local basis with preservation
of the polyad, allowing the consideration of anharmonic ef-
fects from the outset.

The algebraic method has been applied to the vibrational
spectrum of the CO2 molecule. Although this molecule has
already been studied within this approach, the results are ex-
tended to include the effect of curvilinear coordinates. Carbon
dioxide is an example where the general approach presented
in Sec. III is applied in its wider sense, since CO2 has a lin-
ear geometry and presents a normal mode behavior. The cur-
rent approach could be extended to more complex molecular
systems, presenting either a local-mode or a normal-mode be-
havior.

Since the CO2 molecule is linear, the local-mode de-
scription is introduced via a canonical transformation in the
stretching degrees of freedom that, after an anharmonization
procedure, gives rise to the U(2) × U(3) × U(2) model. The
model basis set is built as the direct product of two 1D lo-
cal Morse potential wavefunctions for the stretching and a 2D
quasi-rigid bender wavefunction. The Morse functions are in-
troduced through an anharmonization procedure in the local
basis, while the U(3) model appears because of the anharmo-
nization in the 2D harmonic oscillator. The inclusion of non-
linear terms in the coordinates expansion changes the force
constant of the Fermi interaction, departing from Chedin’s
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value, a fact that is explained due to non-perturbative effects
in (49).

The polarizability function is expanded in terms of curvi-
linear symmetry coordinates, and then transformed into an
expansion in terms of (rectilinear) normal coordinates through
Eq. (15). This allows us to obtain its algebraic representation
by the introduction of normal mode bosonic operators. As was
done for the Hamiltonian, the anharmonization procedure is
applied, making possible to compute Raman transition matrix
elements using algebraic eigenstates.

The CO2 Raman spectrum has been simulated close to
the experimental accuracy through a fit of the derivatives of
the mean polarizability with respect to the curvilinear symme-
try coordinates. The obtained polarizability function deriva-
tives with respect to the stretching coordinates agree satis-
factorily with previous results based on a linear expansion.
Nonlinear effects appear chiefly in the derivatives with respect
to the bending coordinates, with new values that improve the
agreement with experimental results.

The eigenstates provided by the diagonalization of
Hamiltonian with the spectroscopic parameter values in
Ref. 77 and the computed polarizability derivatives allow
us to reproduce most of the available experimental Raman
intensities. This is a stringent test for the calculated wave-
functions opening up the possibility of simulations of high
temperature Raman spectra of CO2 for combustion flames
diagnostics. With this aim, a supplementary table119 with a
set of computed frequencies in the range 1100–1500 cm−1

and polarizability transition moments is provided. Finally, by
comparing the experimental and simulated Raman CO2 spec-
tra, a number of new experimental vibrational terms around
5000 cm−1 are reported.

The present work is the result of a continuous effort,
that lasts a couple of decades, trying to establish a connec-
tion between the modeling of molecular spectra using alge-
braic methods based on unitary algebras and the traditional
approach in configuration space.

The application of the algebraic approach to the vibra-
tional spectrum of carbon dioxide is a clear example of a
case where a normal mode behavior hinders a description in
terms of local oscillators in configuration space, and how this
is solved in the suggested algebraic framework.

The CO2 analysis involves testing the system wavefunc-
tions through the description of the Raman spectrum, includ-
ing a systematic and general approach to take into account
nonlinear effects. Hence, the present work clearly demon-
strates the possibility of taking advantage of algebraic meth-
ods based on unitary algebras to provide a spectroscopic de-
scription of molecules, keeping a connection with coordinates
and momenta. Still a significant endeavor is needed to obtain
at the quantum mechanical level the connection with configu-
ration space for non-rigid molecular species.
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