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Mixed representations—polynomials in{ 1/2) at lowv, near-dissociation expansio(l$DES) in

(vp—v) at highv—are tested for their ability to fit a comprehensive and precise data set fér the
state of b. The combined functions for the vibronic energy and the rotational constai, are
rendered smooth at the point of switchover through two approaches: the use of Lagrange’s method
of undetermined multipliers to incorporate exactly satisfied constraints for continuity in the
functions and their first derivatives, and the use of a smooth switching function. As compared with
a previously reported pure NDE analy$isppadooet al, J. Chem. Physl04, 903 (1996, both
approaches yield significantly reduced chi-square and a more realistic extrapolafgrirom the

highest analyzed levelvE 35) to dissociation. The switching-function method has a number of
advantages over the constraint method, and is thus recommended as the preferred approach for
fitting to mixed representations. @003 American Institute of Physics.

[DOI: 10.1063/1.1539849

I. INTRODUCTION polynomials, exponential polynomials, and rational polyno-
] ) ) mials. These NDEs are far more efficient in the highe-
From the dawn of quantum mechanics, diatomic molecugion  and have been used to represent the full range of ob-
lar energies have been represented most simply in terms Qfeq levels, in some cases extending down=d 522 1n
the harmonic oscillator-rigid rotor model, in which the vibra- | ¢ ,ch study, key to the present work, Appagoal e

t!onal energies are propoonngl to=(v+3) and the rotg examined the performance of both polynomials and NDEs in
tional to k=J(J+1). Perturbation treatments of deviations fitting a large, precise data set covering: 0—35 of theA

from this model naturally expressed the corrections to th(?1u 31) state of j. Their comparisons came down solidly in

energy terms of these same variables, and initially the COlz. or of NDES.

rectlor_ls were represented In terms of a few coeff|c_|ents .W'th In addition to their high efficiency, NDEs are touted for
sometimes unwieldy labelsBy the early 1970s diatomic . L : . .

) " . their superior interpolating and extrapolating ability across
spectroscopists were fitting comprehensive data sets spape- ions not covered by experimental data. However, they can
ning large ranges af to double polynomials ix and «, with 'gb h ) "y pth q ft.h t ¥
the number of terms determined empirically from the data in,[.nls eb ave, efpe%'f__l y as el ongrslo h € ctc;]rr(ta;:hmrll\l;é\c-
questior? However, when the range ofspanned by the data lons become larger-or example, g. L Shows that the

approaches the dissociation limit, the polynomialscibe-  [0F Bv from Appadooet al,’® which contains 12 adjustable
come inefficient for representing the vibrational dependence?arameters' e_xh|b|ts an improbable behavpr In thf region
requiring many terms and extra care and attention to mattefd€tween the highest observed level and the @ssqmatlon limit.
concerning computational precision. For example, a 198®n the other hand, the dashed curve, which is computed
analysis of theD— X fluorescence spectrum of tequired from a six-term NDE obtglngd as dlscyssed below, displays a
15 vibrational parameters and eight rotational parameters t§'0ré reasonable behavior in this region.
represent” levels 0—-99, which covered 99.7% of tXestate Some time ago, we suggested that one can reap the best
energetically’ A later work on this sam state, with much @nd avoid the worst from polynomials and NDEs by simply
more abundant and precise data extending t0108, re- fitting the data to both simultaneously—polynomials at low
quired 15 vibrational and 15 rotational parameters for just and NDEs at higi*~*° From the several cases examined,
the region 0—89, and then an additional 11 vibrational and 18ve concluded that the traditional polynomials in+ ;) were
rotational parameters for the higher levéls. optimal for about the lowest third of the levels (covering

In 1980 Le Roy and Lam pioneered the use of “top- about3 of the potential well energeticaliyand NDEs for the
down” expressions for representing diatomic spectroscopi¢emaining two-thirds. The number of parameters needed to
constants in terms of the theoretically predicted behavior ofepresent the data adequately was about the same as for ei-
these properties in the dissociation limitn this approach ther pure representation, but the fitting was actually easier,
the constants are given by “near-dissociation expansionsbecause the coefficients of the two functions were not highly
(NDES), in which the argument ig=(vp—v), with v be-  correlated. Also, since both functions were now of lower
ing the(noninteger value of the vibrational quantum number order, their extrapolating ability was better. Furthermore, the
at dissociation. Deviations from limiting behavior are ac-polynomials gave directly the important equilibrium con-
commodated by various empirical functionsygfincluding  stants,T., w., B., and their errors. The one added compli-
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FIG. 1. B, (cm 1) at highv for the A state of }. Circles indicate levels

included in the experimental data analyzed in Ref. 16, while the solid curve

is the prediction of the rotational NDE from that study. Thesymbols are -1600
values determined by Yukiyet al. (Ref. 23. The dashed curve is from the

present analysis by mixed polynomial/NDE representatids$Rs).

ti th dtoi th traint hi FIG. 2. Potential curve for thé state of }, referenced to the dissociation
calion was the need to Impose Smoothness constraints, w _'ﬁ it 12 547.354 cm? above the minimum of th& state. Wave functions

we did by using Lagrange’s method of undetermined multi-are shown for the highest analyzedevel in Ref. 16 and for the level that
pliers to require thaT, andB, and their first derivatives be is optimal for switchover in the MXR fits of the present work.

continuous at the switchover poinvd). Since the con-
straints are exactly satisfied in this method, this effectively
decreased the number of free parameters by four. Howeveiepresents the sum of weighted, squared residuals, then the
the resulting variance penalty was a modedi%. least-squared_S) equations are normally obtained by setting
The previous tests of this mixed fitting approach in-the partial derivatives of with respect to each adjustable
volved data sets that were either sparse or imprecise, or botRarameter equal to zero. if there are constraints, expressed in
The analysis by Appadoet al® of an extensivé9552 liney  terms of the adjustable parametg@sas G(f) =0, we sub-
and precis€0.005 cm'!) data set lays the groundwork for a tract a,(dGy/3B;) from each equation, for each constraint,
much more instructive test of this method, and that is thevhere ay is the Lagrange multiplier for théth constraint.
subject of this paper. In the following sections, | describe thelhus, for example, if there are two constrain®,=0 and
results obtained using both the original approach of conG2=0, the equation for thi¢th parameter is obtained from
strained fitting, and an appealing alternative of a smooth  .g iG, G,
switching function. Both methods easily better the precision B ala_ﬁ- —azg—ﬂ_zo
of the Appadoo NDE, yielding a chi-square as much as 30% ] ] )
smaller. This is found to be due mainly to reduced systematic In nonlinear fitting, the least-squares equations are
error in the lows region. At the same time, the extrapolating solved iteratively’®?° With constraints included, each itera-
ability at highv is better, as shown in Fig. 1, and, as alreadytion involves(1) solving for the multiplierse, and(2) using
noted, the fitting is easier. In fact, | was able to achieve mosthese values to compute the adjustments to the estimates of
of the results presented below working in double precisiorthe parameterg. The computations proceed until some con-
(64 bitg and using the “lazy” approach to nonlinear least- vergence criterion is satisfied. In the methods commonly
squares fitting: Define the fit function in a function routine used to implement the iterative algorithm, the matrix
and let the program take all required derivativesA=X"WX is computed and inverted. The elementsXcére
numerically’’ The best fits did require more adjustable pa-the partial derivatives of the fit function with respect to the
rameters than the 26 of the Ref. 16 NDE—8 more in the casparameters, evaluated at théth data point, X;
of the examples summarized below. However, because the fit (9F/dg;); . The weight matrixW is diagonal, of dimen-
parameters are less correlated, the number of decimal digigon equal to the number of data points, with elements
needed to summarize these results is essentially the same as In linear LS, under the usual assumptions of unbiased,
required for the Appadoo NDE. normally distributed data, the parameter variances are the
For reference, Fig. 2 illustrates the potential curve fordiagonal elements of the variance-covariance malfix
the A state of }, with wave functions shown for the highest which is proportional toA ™. If we assume that the statisti-
level analyzed in Ref. 16 and for the level that turns out to becal data errorsr; are known, and define the weights as
the optimal switchover level for the mixed-representation= oi’z, thenV=A"1, andSis an estimate of chi-square for

@

(MXR) fits. the fit. If the fit model is correcty? should be about equal to
the number of degrees of freedamwhich is the number of
II. THEORY AND COMPUTATIONAL METHODS data points minus the number of adjustable parameters.

Equivalently, the reduced chi-squang?= x?/v, should be
about 1. In the alternative view that the data errors are un-
The mathematics of constrained fitting was treated irknown or known only in a relative sensghich is more

Refs. 24 and 25 and will be reviewed only briefly hereSIf often the approach taken in physical scion& v becomes

A. Nonlinear least-squares with constraints
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an estimate Ofr)z/l, the variance for data of unit weight. Then andB, agree in value and slope at some chosen switchover
V=o§lA‘1. In those cases where the data errdhmughtto  v=vg. The alternative approach explored for the first time

be known, buty? differs significantly from unity, the conser- here is the use of a switching function to accomplish this

vative approach is to take the larger of the two possible estask. | have achieved good success with the simple
timaztes of V.3° This meansV=A"1 if X§<1 and V hyperbolic-tangent-type function

=x?A"1 if >1. Where parameter standard errors are re- -

po)ﬁtved below, this approerl)ch is used. Fs=[1+expa(v—vg))] Y, (7)

In nonlinear LS, much of the above is not rigorously and have experimented with no others in this work. Letting,
true, and nonlinear parameters may not even have a definédr example,B,, represent the polynomial expression for
variance®* However, as long as the statistical errors are relaB,, and B, the long-range expression, the fitted quantity
tively small, say <10% of the parameter values, the becomes
asymptotic error estimates remain useful predictors of the
parameter distributions. These estimates are obtained exactly B,=7s(Byp—Buir) + By - ()
as above, for both constrained and unconstraifi@ma)  |n this approach, the required coding beyond that needed for
nonlinear LS fitting. just NDE fitting is trivial, whereas a modicum of effort is

Errors in functions of the parameters are calculated frontequired to implement the constraint procedure.
the full expression for the propagation of error for correlated  As was noted earlier, most of the results discussed here
variables¥ If H=H(p), then were obtained by simply defining the relations among the

o2=hTVh 2) data variables and the fit parameters in a function routine and

H ’ . . . . . .
estimating the derivatives numerically. The advantage of this
where theith element ofh is (7H/J3;). Quantities of inter-  method is operator convenience and efficiency, as there are
est include the spectroscopic paramet&sand B,, the  nonlinear driver routines readily available and easy to
RKR potential, and the quantum-mechanically computed espse?%:3* Most of the coding work is just that needed to get
timates ofT,, B,, and the centrifugal distortion constants, the data into the program and the results out. The disadvan-
all of which are functions o .** tage is numerical instability if the derivatives are not ob-
tained with sufficient precision. Most of the computations
utilized double precision and part in&6r 10’ changescen-

To keep this test simple and clean, | have treated the dat@al) to estimate the derivatives. Quadruple precision and pa-
exactly as done by Appadoet al, except for the use of rameter changes $@imes smaller were used in some of the
MXRs in place of NDEs forT, and B, . Accordingly, for  error propagation calculations, to check the double precision
most of the computations | have used their final reportedesults.
expressions and values for all the centrifugal distortion con-  The numerical RKR, Schainger, and perturbation com-
stants [CDCs, D,, H,, etc., represented ak.(v), m  putations employed standard techniques, like those used by
=2-7 in Ref. 18, including the empirically defined; and  Appadooet al,® but independently devised=>>*¢An inte-
its coefficientk,. For the NDE segments @&, andT,, | gration mesh size of 0.0005 A was used to generate the nu-
used the same exponential polynomial correction functiormerical wave functions and compute the CDCs.
for B,, and a simple polynomialrather than the rational
polynomial of Ref. 16 for T,. Thus, these NDEs wergn
terms ofy=vp—v)

B, =X1y**Fs, ©)

and

B. Computational approach

llI. RESULTS AND DISCUSSION

Initially, subsets of the data from=0 up were fitted to
polynomials in ¢ + 3), while subsets frona =35 down were
T,=D— Xy, (4) fitted to NDEs. These fits were used to determine the num-
bers of parameters needed to represent the data with either
representation separately, and to obtain initial values of the
B 1 parameters for the MXR fitting. As bands were added one by
Fp=e€x 241 Py | (5 one to the data set, these fits also revealed some sharp in-
creases in chi-square for the bands containing R and P lines
and (see below*’ Forvg in the range 15-21, 8—10 polynomial
. coefficients were needed for boit) andB,, , while about six
Fe=1+2, py" (6)  correction parameters were needed in the NDEs for each
=2 function. Convergence was easily achieved when the full
Values for the constants,, X,, andD were also taken from data set was then fitted to the combined functions with con-
Ref. 16. In one other deviation from the model of Appadoo,straints(MXCs). By repeating the MXC fits for variouss,
| found that a third coefficient was justified for the | found absolute minimum variance nears=16. The
Q-doubling constant, which was thus expressed as a quawitching-function fitstMXS) were then initiated with final
dratic function of ¢ +3) for the full range of. results from the MXC fits and again readily converged. The
In the constrained fitting, the four constraints are theparamete in Eq. (7) was varied manually, starting with
requirements that the polynomial and NDE for eachTof =4 (a sharp switchover it yielded a shallow minimum in

with
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X2 neara=1 and was frozen at that value in further compu-TABLE I. Spectroscopic parameters for tAestate of , from MXS fit with
tations. Again, the absolute minimum with respec as |t_erat|ve adjustment of centrifugal d‘|s‘tort|on constants. Dissociation limit
hi dg —16 h | | f.p dbgo;v h fixed at 12 547.354 cnt above the minimum of thX state(Ref. 16 mak-

achieved neaws= 16, so that value was also fixed in further ing De=1639.904 cm* for the A state. Switching’ (vg)=16.

fitting. It is noteworthy thaiG, is 66% of the well depth at

v=16, so this result is consistent with our earlier observaParametér Vibrational Rotationd
tions about the optimal choice ofs. co(To/By) 10 907.449 733) 0.027 394 75)
Both approaches, MXC and MXS, achieved significantc,(w./e,) 92.852 4(63) 2.694 27 (819x 104
lowering of chi-square from the NDE fit of Appadoo c: —1.469 4434 322 —8.62x10°°
et al’®>—by about 24% and 28%, respective[for refer- G ~0.01753 7.260&10°
ence, the relative statistical error in chi-square is’}%#, or C4 _4‘.112221;;12075 322;322?;(1?0,8
1.4% in the present cageBand-by-band comparisons of the CZ 4%10° 5 8x10°°
statistics for the Appadoo NDE and the MXR fits indicate c;, —3.5x10°8 1.366x1071°
that most of the gains of the latter are achieved in the low<cs —2.9% 10:j2
v-region. These gains do come with a price: a greater num>-(°/;C 5%%0354%6 7665720556
ber of parameters needed for the MXR fi®3 vs 25.38 l‘;ZD P1 3732 81;2104 0.013 841 34
However, the information content is comparable, as shown, 3.272 2x10°4 713867314104
by the number of decimal digits needed to convey the results, —1.537x10°° 2.2835<10°°
adequately after rounding. For the MXR fits, that number isPs 4.156 061 19;7 —3.77 19;7
about 150(see beloy, as compared with 250 reported in Pé _g'%ff;,l?l 2.6x10
Ref. 16; but the NDE results from the latter study can be?zd ' 3.36x10°5

rounded more aggressively with no loss of reliability, using

the round-and-refit approaéﬁf‘o again leading to a-150- aUnits cm * for polynomial coefficients an¥,;, cm 2 for o2, dimension-
digit representation less for others. All parameters have been rounded and refitted systemati-

. cally to preserve their reliability*® Where given, figures in parentheses
The results from both MXR fits were used to compute represent standard errors, in terms of final digits.

(1) the statistical errors i, and B,; (2) RKR potential  "Q-doubling constant, Q,=11.2x10""+7.3x10 (v +1/2)+3.2
curves for theA state and their statistical error; af@) from 10 °(v+1/2)%. Coefficient of 7th-order CDCk;=0.0383 (6).

these RKR curves, the_quan_tum_me(:hanical value§’vof dégtiamngt)éaf\ll);eri(;r?ct:g?gieriSé\éirel:w;?; §f6t.mit weight. Assuming these have
B,, D,, andH, and their statistical errorS.These compu-  ,—g gos cmil, 18 this gives reduced chi-squayé=1.34.

tations reveale@A) changes i, andB,, from the Appadoo

et al. analysis that exceeded the statistical errors by an order

of magnitude in some regions;(B) smaller but still statis- from the fit parameters up tw~ 30, beyond which the RKR
tically significant differences between tAg andB, values curve was adjusted to maintain a smooth repulsive bréhch.
from the two MXR fits; and(C) statistically significant Similar results were observed for tBestate of b in Ref. 33.
changes inD, andH, from the Ref. 16 values. The CDC The statistical errors iQ, (computed directly from the fit
computations also revealed significant “noise” in the and ~ parameters D, , andH, are illustrated in Fig. 5. The results
H, values computed from the MXC results. This behavior isfor the latter two are commensurate with the observed stabil-
tentatively attributed to high-order discontinuities in the
RKR potential curve stemming from discontinuities T
andB, beyond the first derivative included in the constraints.
This effect represents a limitation for the MXC approach in
precise work. It did not occur in the MXS-based computa-
tions.

The changes D, andH, are large enough to warrant
adjustment and further iteration in the analysiggfandB,, .
Although the primary purpose of the present work is to test
the efficacy of mixed representations rather than to provide
new constants for tha state?! it is still desirable to verify
that errors in the CDCs are not responsible for artifactually
low chi-square in the present fits. Accordingly, | have re-
peated the MXS analysis with iterative adjustment of the
CDCs. After about 10 cycles the maximum cycle-to-cycle
changes in the latter were all less tharl part in 10
(0.002% forD,,, rising to 0.1% forM,), and the variance
was actually 2% lower than that of the original MXS “it.
Rounded results of this fit are given in Table I. The changes
in T,, B,, and the CDCs are illustrated in Figs. 3 and 4.

The statistical errors computed 1@, and B, via Eq. FIG. 3. Changes i, (cm™%) andB,(10 7 cm™1) from the analysis of

(2), by prppagating the error through the RKR and que_mtumrable I, and the statistical error batwhshed curvésThe plotted quantities
computations, agree well with estimates computed directlyare the new values minus those of Ref. 16.
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1 reported only phenomenological CDCs oy, andH,, ne-
glecting the contributions from higher-order terms, which are

: =2 significant for their range of observed

"-‘ 11% The band-by-band statistical examination of the data
' - mentioned earlier suggested that the R/P data from Ref. 16
are inferior in quality to the Q-only data; and even the latter
seem to deteriorate in the highregion. Also, some of the
largest residuals among the fitted data belonged to lines that
were multiply assigned. To check on the possible signifi-
cance of these matters, | conducted an iterative analysis like
that of Table | on a data set which had been edited for re-
moval of 50 of the offending multiple assignments, with
downweighting by a factor of four for all the R/P lines as
well as the Q lines for >30. These changes in the data set
- produced only minor changes in the spectroscopic constants.
- However, the fit variance was a factor of two smaller, sug-
- gesting that the high quality data from Ref. 16 are actually
better (r=0.004 cm!) than assumed thef8.

ADy(%)

04

Q
94° s 00g,
o490 090000000, v -

FIG. 4. Change$%) in the first four CDCs, from the analysis of Table I. V. CONCLUSION
Plotted quantities are the new values minus those of Ref. 16. Note different . . . . .
scales for the two quantities plotted in each frame—solid points and lines ~ Mixed representation€MXRs)—polynomials in ¢ + 3)

for D, andL, . for low v, near-dissociation expansions in4{—uv) for
high—have been tested in their ability to fit an extensive and

. o ) . ) precise data set for tha state of . Smoothness i, and
ity of these quantities in the final cycles of the iterative re-B was ensured by fitting with exactly satisfied constraints
finement summarized in Table | and in fact served as aguidemxc), and by use of a switching functiofMXS). Both
line in those calculations. approaches yielded significantly lowgf than achieved by

In the previous work, no effort was made to correct theyne NDE previously reported for this data $&though they
RKR curves for thelr inherent semiclassical origin, so therequired eight additional parameters. However, the param-
systematic errors in the quantum comput®g andB, areé  giers of the MXRs show much less mutual correlation, so
also of interest. The values for the former were as much afing o an increased number of them presented no compu-
0.05 cm'%, which is an order of magnitude greater than itStational difficulties.
statistical error. FoB, the systgmatiq errors were less t.ha.n Mixed representations have the advantage of yielding
107° cm™* belowv =30, but this again exceeds the statisti- giracily the common physical parameters associated with
cal error by more than an order of magnitude. Beyend o the lows region and the dissociation regiéhFurther,
=30 the computed, drops off from the fitted value more gjnce poth parts of the MXR are of lower order than would
strongly, as a direct consequence of the left-branch smootlyg required to fit the data to either a pure polynomial or a
ing. The d|ﬁer¢nces,. WhI'Ch are.too small to see on the Scalﬁure NDE, they are “safer” for extrapolating across data
of Fig. 1, are in a direction to improve az%reement with thegaps. In the present tests, the MXC approach yielded noisy
more recent estimates from Yukiyet al,™ though atv  computedD, andH, values. The constraints also were an
=35 the computed, st|I5I exceleds the estimate from the j,convenience in the estimation of numerical derivatives re-
latter authors by 1.810°°> cm™. While this difference is g ired to propagate the fit error into the various computed
probably significant, it is difficult to make quantitative com- properties. No such problems arose in the MXS approach,
parisons with the results from Ref. 23, because the authot§nich also gave lower chi-square. Thus, the MXS method
appears preferable for both its ease of application and its
performance.

10.0001 QI I I L The use of MXRs for theA state of } has changed the
® spectroscopic constants of observed levels by amounts that
S 1.000F . are appreciable in a statistical sense but small for most prac-
=2 e . tical applications. The changes Ty andB, (Fig. 3) display
g 0.100L* & oot ] an oscillatory behavior as a function of Some of this is
g ., Ho g likely due to representation error in the original CDCs,
- Loo000 _ which were fitted to NDE s before incorporation in the fits to
. . D: determin_eTU andB, . However,_some is also probably due
0.001 L *Tanmganet | | | to the_ _dn‘ferent order_s of functions used to represent .these
oo 10 20 30 40 quantities here and in Ref. 16, and may be an inevitable

FIG. 5. Statistical errors ib, , H,, andQ, from MXS analysis. Note the

logarithmic ordinate.

L]

consequence of the approximation of highly smooth quanti-
ties by empirical polynomial-based functions. For the highest
levels analyzed by Appadoet al,'® there is a suggestion of
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