
J. Chem. Phys. 118, 3532 (2003); https://doi.org/10.1063/1.1539849 118, 3532

© 2003 American Institute of Physics.

On the efficient representation of
comprehensive, precise spectroscopic data
sets: The  state of 

Cite as: J. Chem. Phys. 118, 3532 (2003); https://doi.org/10.1063/1.1539849
Submitted: 26 August 2002 . Accepted: 02 December 2002 . Published Online: 04 February 2003

Joel Tellinghuisen

ARTICLES YOU MAY BE INTERESTED IN

Iodine Revisited
The Journal of Chemical Physics 55, 288 (1971); https://doi.org/10.1063/1.1675521

Comprehensive analysis of the A–X spectrum of I2: An application of near-dissociation theory

The Journal of Chemical Physics 104, 903 (1996); https://doi.org/10.1063/1.470814

Resolution of the visible-infrared absorption spectrum of I2 into three contributing transitions

The Journal of Chemical Physics 58, 2821 (1973); https://doi.org/10.1063/1.1679584

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/2002358258/x01/AIP/Zurich_JCP_PDF_June2019/Zurich_JCP_PDF_June2019.jpg/4239516c6c4676687969774141667441?x
https://doi.org/10.1063/1.1539849
https://doi.org/10.1063/1.1539849
https://aip.scitation.org/author/Tellinghuisen%2C+Joel
https://doi.org/10.1063/1.1539849
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.1539849
https://aip.scitation.org/doi/10.1063/1.1675521
https://doi.org/10.1063/1.1675521
https://aip.scitation.org/doi/10.1063/1.470814
https://doi.org/10.1063/1.470814
https://aip.scitation.org/doi/10.1063/1.1679584
https://doi.org/10.1063/1.1679584


On the efficient representation of comprehensive, precise spectroscopic
data sets: The A state of I 2

Joel Tellinghuisen
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Mixed representations—polynomials in (v11/2) at lowv, near-dissociation expansions~NDEs! in
(vD2v) at highv—are tested for their ability to fit a comprehensive and precise data set for theA
state of I2. The combined functions for the vibronic energyTv and the rotational constantBv are
rendered smooth at the point of switchover through two approaches: the use of Lagrange’s method
of undetermined multipliers to incorporate exactly satisfied constraints for continuity in the
functions and their first derivatives, and the use of a smooth switching function. As compared with
a previously reported pure NDE analysis@Appadooet al., J. Chem. Phys.104, 903 ~1996!#, both
approaches yield significantly reduced chi-square and a more realistic extrapolation ofBv from the
highest analyzed level (v535) to dissociation. The switching-function method has a number of
advantages over the constraint method, and is thus recommended as the preferred approach for
fitting to mixed representations. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1539849#

I. INTRODUCTION

From the dawn of quantum mechanics, diatomic molecu-
lar energies have been represented most simply in terms of
the harmonic oscillator-rigid rotor model, in which the vibra-
tional energies are proportional tox5(v1 1

2) and the rota-
tional to k5J(J11). Perturbation treatments of deviations
from this model naturally expressed the corrections to the
energy terms of these same variables, and initially the cor-
rections were represented in terms of a few coefficients with
sometimes unwieldy labels.1 By the early 1970s diatomic
spectroscopists were fitting comprehensive data sets span-
ning large ranges ofv to double polynomials inx andk, with
the number of terms determined empirically from the data in
question.2 However, when the range ofv spanned by the data
approaches the dissociation limit, the polynomials inx be-
come inefficient for representing the vibrational dependence,
requiring many terms and extra care and attention to matters
concerning computational precision. For example, a 1980
analysis of theD→X fluorescence spectrum of I2 required
15 vibrational parameters and eight rotational parameters to
representv9 levels 0–99, which covered 99.7% of theX state
energetically.3 A later work on this sameX state, with much
more abundant and precise data extending tov5108, re-
quired 15 vibrational and 15 rotational parameters for just
the region 0–89, and then an additional 11 vibrational and 15
rotational parameters for the higher levels.4

In 1980 Le Roy and Lam pioneered the use of ‘‘top-
down’’ expressions for representing diatomic spectroscopic
constants in terms of the theoretically predicted behavior of
these properties in the dissociation limit.5 In this approach
the constants are given by ‘‘near-dissociation expansions’’
~NDEs!, in which the argument isy5(vD2v), with vD be-
ing the~noninteger! value of the vibrational quantum number
at dissociation. Deviations from limiting behavior are ac-
commodated by various empirical functions ofy, including

polynomials, exponential polynomials, and rational polyno-
mials. These NDEs are far more efficient in the high-v re-
gion, and have been used to represent the full range of ob-
served levels, in some cases extending down tov50.6–22 In
one such study, key to the present work, Appadooet al.16

examined the performance of both polynomials and NDEs in
fitting a large, precise data set coveringv50 – 35 of theA
(1u

3P) state of I2. Their comparisons came down solidly in
favor of NDEs.

In addition to their high efficiency, NDEs are touted for
their superior interpolating and extrapolating ability across
regions not covered by experimental data. However, they can
misbehave, especially as the orders of the correction func-
tions become large.7 For example, Fig. 1 shows that the NDE
for Bv from Appadooet al.,16 which contains 12 adjustable
parameters, exhibits an improbable behavior in the region
between the highest observed level and the dissociation limit.
On the other hand, the dashed curve, which is computed
from a six-term NDE obtained as discussed below, displays a
more reasonable behavior in this region.

Some time ago, we suggested that one can reap the best
and avoid the worst from polynomials and NDEs by simply
fitting the data to both simultaneously—polynomials at low
v and NDEs at high.24–26 From the several cases examined,
we concluded that the traditional polynomials in (v1 1

2) were
optimal for about the lowest third of thev levels ~covering
about 2

3 of the potential well energetically! and NDEs for the
remaining two-thirds. The number of parameters needed to
represent the data adequately was about the same as for ei-
ther pure representation, but the fitting was actually easier,
because the coefficients of the two functions were not highly
correlated. Also, since both functions were now of lower
order, their extrapolating ability was better. Furthermore, the
polynomials gave directly the important equilibrium con-
stants,Te , ve , Be , and their errors. The one added compli-
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cation was the need to impose smoothness constraints, which
we did by using Lagrange’s method of undetermined multi-
pliers to require thatTv andBv and their first derivatives be
continuous at the switchover point (vS). Since the con-
straints are exactly satisfied in this method, this effectively
decreased the number of free parameters by four. However,
the resulting variance penalty was a modest;1%.

The previous tests of this mixed fitting approach in-
volved data sets that were either sparse or imprecise, or both.
The analysis by Appadooet al.16 of an extensive~9552 lines!
and precise~0.005 cm21) data set lays the groundwork for a
much more instructive test of this method, and that is the
subject of this paper. In the following sections, I describe the
results obtained using both the original approach of con-
strained fitting, and an appealing alternative of a smooth
switching function. Both methods easily better the precision
of the Appadoo NDE, yielding a chi-square as much as 30%
smaller. This is found to be due mainly to reduced systematic
error in the low-v region. At the same time, the extrapolating
ability at highv is better, as shown in Fig. 1, and, as already
noted, the fitting is easier. In fact, I was able to achieve most
of the results presented below working in double precision
~64 bits! and using the ‘‘lazy’’ approach to nonlinear least-
squares fitting: Define the fit function in a function routine
and let the program take all required derivatives
numerically.27 The best fits did require more adjustable pa-
rameters than the 26 of the Ref. 16 NDE—8 more in the case
of the examples summarized below. However, because the fit
parameters are less correlated, the number of decimal digits
needed to summarize these results is essentially the same as
required for the Appadoo NDE.

For reference, Fig. 2 illustrates the potential curve for
the A state of I2, with wave functions shown for the highest
level analyzed in Ref. 16 and for the level that turns out to be
the optimal switchover level for the mixed-representation
~MXR! fits.

II. THEORY AND COMPUTATIONAL METHODS

A. Nonlinear least-squares with constraints

The mathematics of constrained fitting was treated in
Refs. 24 and 25 and will be reviewed only briefly here. IfS

represents the sum of weighted, squared residuals, then the
least-squares~LS! equations are normally obtained by setting
the partial derivatives ofS with respect to each adjustable
parameter equal to zero. if there are constraints, expressed in
terms of the adjustable parametersb asGk(b)50, we sub-
tract ak(]Gk /]b j ) from each equation, for each constraint,
whereak is the Lagrange multiplier for thekth constraint.
Thus, for example, if there are two constraints,G150 and
G250, the equation for thejth parameter is obtained from

]S

]b j
2a1

]G1

]b j
2a2

]G2

]b j
50. ~1!

In nonlinear fitting, the least-squares equations are
solved iteratively.28,29 With constraints included, each itera-
tion involves~1! solving for the multipliersa, and~2! using
these values to compute the adjustments to the estimates of
the parametersb. The computations proceed until some con-
vergence criterion is satisfied. In the methods commonly
used to implement the iterative algorithm, the matrix
AÄXTWX is computed and inverted. The elements ofX are
the partial derivatives of the fit function with respect to the
parameters, evaluated at theith data point, Xi j

5(]F/db j ) i . The weight matrixW is diagonal, of dimen-
sion equal to the number of data points, with elementswi .

In linear LS, under the usual assumptions of unbiased,
normally distributed data, the parameter variances are the
diagonal elements of the variance-covariance matrixV,
which is proportional toA21. If we assume that the statisti-
cal data errorss i are known, and define the weights aswi

5s i
22, thenV5A21, andS is an estimate of chi-square for

the fit. If the fit model is correct,x2 should be about equal to
the number of degrees of freedomn, which is the number of
data points minus the number of adjustable parameters.
Equivalently, the reduced chi-square,xn

25x2/n, should be
about 1. In the alternative view that the data errors are un-
known or known only in a relative sense~which is more
often the approach taken in physical science!, S/n becomes

FIG. 1. Bv (cm21) at high v for the A state of I2. Circles indicate levels
included in the experimental data analyzed in Ref. 16, while the solid curve
is the prediction of the rotational NDE from that study. The1 symbols are
values determined by Yukiyaet al. ~Ref. 23!. The dashed curve is from the
present analysis by mixed polynomial/NDE representations~MXRs!.

FIG. 2. Potential curve for theA state of I2, referenced to the dissociation
limit 12 547.354 cm21 above the minimum of theX state. Wave functions
are shown for the highest analyzedv level in Ref. 16 and for the level that
is optimal for switchover in the MXR fits of the present work.
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an estimate ofsy1
2 , the variance for data of unit weight. Then

V5sy1
2 A21. In those cases where the data error isthoughtto

be known, butxv
2 differs significantly from unity, the conser-

vative approach is to take the larger of the two possible es-
timates of V.30 This meansV5A21 if xv

2,1 and V
5xv

2A21 if .1. Where parameter standard errors are re-
ported below, this approach is used.

In nonlinear LS, much of the above is not rigorously
true, and nonlinear parameters may not even have a defined
variance.31 However, as long as the statistical errors are rela-
tively small, say ,10% of the parameter values, the
asymptotic error estimates remain useful predictors of the
parameter distributions. These estimates are obtained exactly
as above, for both constrained and unconstrained~normal!
nonlinear LS fitting.

Errors in functions of the parameters are calculated from
the full expression for the propagation of error for correlated
variables.32 If H5H(b), then

sH
2 5hTVh, ~2!

where theith element ofh is (]H/]b i). Quantities of inter-
est include the spectroscopic parametersTv and Bv , the
RKR potential, and the quantum-mechanically computed es-
timates ofTv , Bv , and the centrifugal distortion constants,
all of which are functions ofv.33

B. Computational approach

To keep this test simple and clean, I have treated the data
exactly as done by Appadooet al., except for the use of
MXRs in place of NDEs forTv and Bv . Accordingly, for
most of the computations I have used their final reported
expressions and values for all the centrifugal distortion con-
stants @CDCs, Dv , Hv , etc., represented asKm(v), m
52 – 7 in Ref. 16#, including the empirically definedK7 and
its coefficientk7 . For the NDE segments ofBv and Tv , I
used the same exponential polynomial correction function
for Bv , and a simple polynomial~rather than the rational
polynomial of Ref. 16! for Tv . Thus, these NDEs were~in
terms ofy5vD2v)

Bv5X1y4/3FB, ~3!

and

Tv5D2X0y10/3FG , ~4!

with

FB5expS (
i 51

pi
1yi D , ~5!

and

FG511(
i 52

piy
i . ~6!

Values for the constantsX1 , X0 , andD were also taken from
Ref. 16. In one other deviation from the model of Appadoo,
I found that a third coefficient was justified for the
V-doubling constant, which was thus expressed as a qua-
dratic function of (v1 1

2) for the full range ofv.
In the constrained fitting, the four constraints are the

requirements that the polynomial and NDE for each ofTv

andBv agree in value and slope at some chosen switchover
v[vS . The alternative approach explored for the first time
here is the use of a switching function to accomplish this
task. I have achieved good success with the simple
hyperbolic-tangent-type function

FS5@11exp~a~v2vS!!#21, ~7!

and have experimented with no others in this work. Letting,
for example,Bvp represent the polynomial expression for
Bv , and Bv lr the long-range expression, the fitted quantity
becomes

Bv5FS~Bvp2Bv lr !1Bv lr . ~8!

In this approach, the required coding beyond that needed for
just NDE fitting is trivial, whereas a modicum of effort is
required to implement the constraint procedure.

As was noted earlier, most of the results discussed here
were obtained by simply defining the relations among the
data variables and the fit parameters in a function routine and
estimating the derivatives numerically. The advantage of this
method is operator convenience and efficiency, as there are
nonlinear driver routines readily available and easy to
use.29,34 Most of the coding work is just that needed to get
the data into the program and the results out. The disadvan-
tage is numerical instability if the derivatives are not ob-
tained with sufficient precision. Most of the computations
utilized double precision and part in 106 or 107 changes~cen-
tral! to estimate the derivatives. Quadruple precision and pa-
rameter changes 103 times smaller were used in some of the
error propagation calculations, to check the double precision
results.

The numerical RKR, Schro¨dinger, and perturbation com-
putations employed standard techniques, like those used by
Appadooet al.,16 but independently devised.33,35,36An inte-
gration mesh size of 0.0005 Å was used to generate the nu-
merical wave functions and compute the CDCs.

III. RESULTS AND DISCUSSION

Initially, subsets of the data fromv50 up were fitted to
polynomials in (v1 1

2), while subsets fromv535 down were
fitted to NDEs. These fits were used to determine the num-
bers of parameters needed to represent the data with either
representation separately, and to obtain initial values of the
parameters for the MXR fitting. As bands were added one by
one to the data set, these fits also revealed some sharp in-
creases in chi-square for the bands containing R and P lines
~see below!.37 For vS in the range 15–21, 8–10 polynomial
coefficients were needed for bothTv andBv , while about six
correction parameters were needed in the NDEs for each
function. Convergence was easily achieved when the full
data set was then fitted to the combined functions with con-
straints~MXCs!. By repeating the MXC fits for variousvS ,
I found absolute minimum variance nearvS516. The
switching-function fits~MXS! were then initiated with final
results from the MXC fits and again readily converged. The
parametera in Eq. ~7! was varied manually, starting witha
54 ~a sharp switchover!; it yielded a shallow minimum in
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x2 neara51 and was frozen at that value in further compu-
tations. Again, the absolute minimum with respect tovS was
achieved nearvS516, so that value was also fixed in further
fitting. It is noteworthy thatGv is 66% of the well depth at
v516, so this result is consistent with our earlier observa-
tions about the optimal choice ofvS .

Both approaches, MXC and MXS, achieved significant
lowering of chi-square from the NDE fit of Appadoo
et al.16—by about 24% and 28%, respectively.@For refer-
ence, the relative statistical error in chi-square is (2/n)1/2, or
1.4% in the present case.# Band-by-band comparisons of the
statistics for the Appadoo NDE and the MXR fits indicate
that most of the gains of the latter are achieved in the low-
v-region. These gains do come with a price: a greater num-
ber of parameters needed for the MXR fits~33 vs 25!.38

However, the information content is comparable, as shown
by the number of decimal digits needed to convey the results
adequately after rounding. For the MXR fits, that number is
about 150~see below!, as compared with 250 reported in
Ref. 16; but the NDE results from the latter study can be
rounded more aggressively with no loss of reliability, using
the round-and-refit approach,39,40 again leading to a;150-
digit representation.

The results from both MXR fits were used to compute
~1! the statistical errors inTv and Bv ; ~2! RKR potential
curves for theA state and their statistical error; and~3! from
these RKR curves, the quantum-mechanical values ofTv ,
Bv , Dv , andHv and their statistical errors.33 These compu-
tations revealed~A! changes inTv andBv from the Appadoo
et al. analysis that exceeded the statistical errors by an order
of magnitude in somev regions;~B! smaller but still statis-
tically significant differences between theTv andBv values
from the two MXR fits; and~C! statistically significant
changes inDv and Hv from the Ref. 16 values. The CDC
computations also revealed significant ‘‘noise’’ in theDv and
Hv values computed from the MXC results. This behavior is
tentatively attributed to high-order discontinuities in the
RKR potential curve stemming from discontinuities inTv
andBv beyond the first derivative included in the constraints.
This effect represents a limitation for the MXC approach in
precise work. It did not occur in the MXS-based computa-
tions.

The changes inDv andHv are large enough to warrant
adjustment and further iteration in the analysis ofTv andBv .
Although the primary purpose of the present work is to test
the efficacy of mixed representations rather than to provide
new constants for theA state,41 it is still desirable to verify
that errors in the CDCs are not responsible for artifactually
low chi-square in the present fits. Accordingly, I have re-
peated the MXS analysis with iterative adjustment of the
CDCs. After about 10 cycles the maximum cycle-to-cycle
changes in the latter were all less than;1 part in 104

~0.002% forDv , rising to 0.1% forM v), and the variance
was actually 2% lower than that of the original MXS fit.42

Rounded results of this fit are given in Table I. The changes
in Tv , Bv , and the CDCs are illustrated in Figs. 3 and 4.

The statistical errors computed forGv and Bv via Eq.
~2!, by propagating the error through the RKR and quantum
computations, agree well with estimates computed directly

from the fit parameters up tov'30, beyond which the RKR
curve was adjusted to maintain a smooth repulsive branch.43

Similar results were observed for theD state of I2 in Ref. 33.
The statistical errors inQv ~computed directly from the fit
parameters!, Dv , andHv are illustrated in Fig. 5. The results
for the latter two are commensurate with the observed stabil-

TABLE I. Spectroscopic parameters for theA state of I2, from MXS fit with
iterative adjustment of centrifugal distortion constants. Dissociation limit
fixed at 12 547.354 cm21 above the minimum of theX state~Ref. 16! mak-
ing De51639.904 cm21 for the A state. Switchingv (vS)516.

Parametera Vibrational Rotationalb

c0(Te /Be) 10 907.449 7~33! 0.027 394 2~5!
c1(ve /ae) 92.852 4~63! 2.694 27 (819)31024

c2 21.469 443~4 322! 28.6231026

c3 20.017 53 7.260 631027

c4 4.163 131024 22.26931027

c5 24.862 331025 3.259 63731028

c6 431026 22.831029

c7 23.531028 1.366310210

c8 22.9310212

X0/1
c 0.005 96 7.6631024

vD /p1 55.634~6! 20.173 556
p2 23.732 81831023 0.013 841 34
p3 3.272 231024 27.386 731 431024

p4 21.53731025 2.283 531025

p5 4.156 06131027 23.7731027

p6 26.05431029 2.631029

p7 3.7310211

s2 d 3.3631025

aUnits cm21 for polynomial coefficients andX0/1 , cm22 for s2, dimension-
less for others. All parameters have been rounded and refitted systemati-
cally to preserve their reliability.39 Where given, figures in parentheses
represent standard errors, in terms of final digits.

bV-doubling constant, Qv511.23102717.331028(v11/2)13.2
31029(v11/2)2. Coefficient of 7th-order CDC,k750.0383 (6).

cX0 andX1 fixed at values given in Ref. 16.
dEstimated variance for measurements of unit weight. Assuming these have
s50.005 cm21, 16 this gives reduced chi-squarexn

251.34.

FIG. 3. Changes inTv ~cm21) and Bv(1027 cm21) from the analysis of
Table I, and the statistical error band~dashed curves!. The plotted quantities
are the new values minus those of Ref. 16.
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ity of these quantities in the final cycles of the iterative re-
finement summarized in Table I and in fact served as a guide-
line in those calculations.

In the previous work, no effort was made to correct the
RKR curves for their inherent semiclassical origin, so the
systematic errors in the quantum computedGv and Bv are
also of interest. The values for the former were as much as
0.05 cm21, which is an order of magnitude greater than its
statistical error. ForBv the systematic errors were less than
1026 cm21 below v530, but this again exceeds the statisti-
cal error by more than an order of magnitude. Beyondv
530 the computedBv drops off from the fitted value more
strongly, as a direct consequence of the left-branch smooth-
ing. The differences, which are too small to see on the scale
of Fig. 1, are in a direction to improve agreement with the
more recent estimates from Yukiyaet al.,23 though at v
535 the computedBv still exceeds the estimate from the
latter authors by 1.931025 cm21. While this difference is
probably significant, it is difficult to make quantitative com-
parisons with the results from Ref. 23, because the authors

reported only phenomenological CDCs forDv andHv , ne-
glecting the contributions from higher-order terms, which are
significant for their range of observedJ.

The band-by-band statistical examination of the data
mentioned earlier suggested that the R/P data from Ref. 16
are inferior in quality to the Q-only data; and even the latter
seem to deteriorate in the high-v region. Also, some of the
largest residuals among the fitted data belonged to lines that
were multiply assigned. To check on the possible signifi-
cance of these matters, I conducted an iterative analysis like
that of Table I on a data set which had been edited for re-
moval of 50 of the offending multiple assignments, with
downweighting by a factor of four for all the R/P lines as
well as the Q lines forv.30. These changes in the data set
produced only minor changes in the spectroscopic constants.
However, the fit variance was a factor of two smaller, sug-
gesting that the high quality data from Ref. 16 are actually
better (s50.004 cm21) than assumed there.44

IV. CONCLUSION

Mixed representations~MXRs!—polynomials in (v1 1
2)

for low v, near-dissociation expansions in (vD2v) for
high—have been tested in their ability to fit an extensive and
precise data set for theA state of I2. Smoothness inTv and
Bv was ensured by fitting with exactly satisfied constraints
~MXC!, and by use of a switching function~MXS!. Both
approaches yielded significantly lowerx2 than achieved by
the NDE previously reported for this data set,16 though they
required eight additional parameters. However, the param-
eters of the MXRs show much less mutual correlation, so
fitting to an increased number of them presented no compu-
tational difficulties.

Mixed representations have the advantage of yielding
directly the common physical parameters associated with
both the low-v region and the dissociation region.45 Further,
since both parts of the MXR are of lower order than would
be required to fit the data to either a pure polynomial or a
pure NDE, they are ‘‘safer’’ for extrapolating across data
gaps. In the present tests, the MXC approach yielded noisy
computedDv and Hv values. The constraints also were an
inconvenience in the estimation of numerical derivatives re-
quired to propagate the fit error into the various computed
properties. No such problems arose in the MXS approach,
which also gave lower chi-square. Thus, the MXS method
appears preferable for both its ease of application and its
performance.

The use of MXRs for theA state of I2 has changed the
spectroscopic constants of observed levels by amounts that
are appreciable in a statistical sense but small for most prac-
tical applications. The changes inTv andBv ~Fig. 3! display
an oscillatory behavior as a function ofv. Some of this is
likely due to representation error in the original CDCs,
which were fitted to NDE s before incorporation in the fits to
determineTv andBv . However, some is also probably due
to the different orders of functions used to represent these
quantities here and in Ref. 16, and may be an inevitable
consequence of the approximation of highly smooth quanti-
ties by empirical polynomial-based functions. For the highest
levels analyzed by Appadooet al.,16 there is a suggestion of

FIG. 4. Changes~%! in the first four CDCs, from the analysis of Table I.
Plotted quantities are the new values minus those of Ref. 16. Note different
scales for the two quantities plotted in each frame—solid points and lines
for Dv andLv .

FIG. 5. Statistical errors inDv , Hv , andQv from MXS analysis. Note the
logarithmic ordinate.
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systematic error in the assignments, from the behavior of the
spectroscopic constants and the RKR curve abovev530,
and from comparison with the more recent results from
Yukiya et al.23 It will be interesting to see how these data
respond to analysis by direct fitting to theA-state potential
curve,41 which will also avoid or greatly reduce some of the
problems inherent in the RKR approach, like the
semiclassical-quantum inconsistency and unsmoothness in
the repulsive branch.
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