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The Rydberg spectrum of CaF and BaF: Calculation by R-matrix
and generalized quantum defect theory

M. Arif, Ch. Jungen, and A. L. Rochea)
Laboratoire Aime´ Cotton du CNRS, Universite´ de Paris-Sud, 91405 Orsay, France

~Received 29 October 1996; accepted 15 November 1996!

R-matrix theory combined with generalized quantum defect theory is used to calculate the electronic
spectrum of the CaF and BaF molecules from the ground state up near the ionization limit. The
approach, an effective one-electron method similar in spirit to the ligand-field model of Rice,
Martin, and Field@S. F. Rice, H. Martin, and R. W. Field, J. Chem. Phys.82, 5023~1985!# and to
the electrostatic polarization model of To¨rring, Ernst, and Ka¨ndler @T. Törring, W. E. Ernst, J.
Kändler, J. Chem. Phys.90, 4927~1989!# removes many of the limitations inherent in the previous
work. The resulting level energies~effective principal quantum numbers! are in good agreement
with the available experimental data and constitute the first quantitative theoretical calculation of the
full electronic spectrum of CaF and BaF. Limitations and possible extensions of the theory are
discussed, and quantum defects of high orbital angular momentum states are predicted. ©1997
American Institute of Physics.@S0021-9606~97!02607-X#

I. INTRODUCTION

The alkaline earth halides are prototypes of ionic mol-
ecules with a lone electron moving in the field of two closed-
shell atomic ions, a metal ion M11 carrying two positive
charges and a halogen ion X2 carrying a negative charge.
This picture has been underlying most theoretical descrip-
tions of these systems. In the early 1980’s Rice, Martin, and
Field1 developed the so-called ligand-field model. They cal-
culated the polarization of the lone electron orbital situated
on the metal ion by the electrostatic field of the ligand ion
which was treated as an external perturber. The calculation
involves a state-by-state perturbation Hamiltonian matrix di-
agonalization and requires explicit knowledge of the M1 va-
lence electron wave functions. The model is capable of pre-
dicting the lowest Rydberg states of the alkaline earth
halides, but its application to higher states is more difficult
because of the rapid increase of the size of the basis sets
required. A few years later To¨rring, Ernst, and Ka¨ndler2 put
forward an electrostatic polarization model. Here the energy
is evaluated classically in terms of the mutual polarization of
the two centers M1 and X2 and the quadrupole moment of
the valence electron wave function. Unlike the ligand-field
model this approach is not based on the explicit knowledge
of electron wave functions. While this model is very attrac-
tive in terms of the physical insight it provides, it has the
drawback that the dipole polarizability of M1 is treated as an
adjustable parameter so that its predictive power is limited.
This model has yielded excitation energies and dipole mo-
ments for the lowest excited states of several alkaline earth
halides in quite good agreement with experiment. Only rela-
tively few ab initio calculations have been made for alkaline
earth halides, and these again do not extend beyond the first
few excited electronic states.3,4

The experimental spectroscopic knowledge of the alka-

line earth halides has vastly expanded since about 1990.
Fourier-transform recorded laser induced emission spectra5,6

yielded highly precise molecular constants for states ranging
up to 4 eV above the ground state. Building on this informa-
tion, Field and co-workers7–9 carried out double resonance
fluorescence experiments on several of these related mol-
ecules which opened up the region of the higher Rydberg
states with effective principal quantum numbersn ranging up
to '15.

As Field and co-workers recognized, these Rydberg
states no longer correspond to a metal ion~M11e2! per-
turbed by an external ligand X2. They are more realistically
described in terms of a Rydberg electrone2 moving in the
field of an ionic closed-shell core~M11X2!. Field and
co-workers7,8 summarized the present knowledge of CaF and
BaF in compact form in a set of plotsn~mod1! vs n, wheren
is the effective principal quantum number~often calledn* !
andn~mod1! is the negative of the quantum defect. Numer-
ous Rydberg series are apparent in these plots, whose quan-
tum defects however are not constant in each series, but ex-
hibit for low n characteristic strong energy dependencies
which are different for different series. These plots suggest
that the ground states of CaF and BaF can each be associated
with one of the series of2S1 symmetry of the corresponding
molecule. Thus,a priori somewhat surprisingly, the alkaline
earth monohalides can be regarded as ‘‘Rydberg molecules,’’
in the sense that all their states including the ground state
naturally fit into Rydberg series. On the other hand it is not
possible on experimental grounds alone to assign particular
orbital angular momentum valuesl to the individual series.
Indeed, the alkaline earth halides possess among the largest
dipole moments known for diatomic molecules and hence
one expects that there should be strongl mixing in their
Rydberg states. For this reason Field and co-workers labeled
each observed series by the high-n value ofn~mod1! and its
symmetry, e.g., 0.232S1. We shall use the same convention
in this paper.

a!Laboratoire de Photophysique Mole´culaire du CNRS, Universite´ de Paris-
Sud, 91405 Orsay, France.
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The vast amount of experimental data collected by the
group of Field mainly on CaF and BaF constitutes a chal-
lenge to theorists, and the present work is a response to this.
Our aim here is to provide a theory which describes both
limiting situations, ~M11e2!X2 and ~M11X2!e2, equally
well. While retaining the physical simplicity of the ligand
field and electrostatic polarization models, the theory should
yield reliable predictions of the full level spectrum up to the
ionization potential and of the electron-ion phase shift spec-
trum in the ionization continuum beyond. A preliminary ac-
count of this work has been given previously.9 In this work
we calculate the bound energy level pattern for the equilib-
rium internuclear distance. A forthcoming paper10 will report
on dipole moments, the variation of quantum defects with
internuclear distance as well as the evolution with energy of
the continuum electron phase shifts.

Our method is based on scattering theory. It involves a
variational one-electronR-matrix calculation in a limited
volume surrounding the atomic cores M11 and X2 but
which excludes the M11 core~cf. Fig. 1!. We take advantage
of the fact that on both boundaries of this reaction zone the
electronic motion can be described quite simply:

~i! Inside the metal ion M11 intra-atomic forces prevail.
Near the ion surface the electronic motion is therefore
in a good approximation separable in a spherical co-
ordinate system centered on M11 and it will be
shown that the known quantum defects of M11e2

contain all the information needed to represent the
wave function on the ion surface.

~ii ! At large electron distances the field of the molecular
~M11X2! core reduces to that created by two point
charges which are separated by the internuclear dis-
tanceR. The electron motion therefore is separable in

elliptic coordinates. It turns out that the long range
field is not exactly that created by two elementary
charges12 and21. Rather, mutual polarization of
the atomic ions tends to partially compensate the elec-
trostatic field so that the asymptotic field corresponds
to that of two effective charges, reduced by as much
as 20% to 40%.

The role of theR-matrix calculation is to propagate the
electron wave function from the short-range atomic to the
asymptotic region and thus to define the asymptotic molecu-
lar reactance matrixK(e). The calculation is completed by
an application of generalized quantum defect theory which
determines bound or continuum states in terms of this reac-
tance matrix.

Two related theoretical approaches may be mentioned
here. The multiple scattering method~MSM! developed for
molecules in the 1970’s by Dill and Dehmer11 also involves
the calculation of reaction matrices by means of matching
procedures applied simultaneously on the boundaries of the
individual atoms and of the whole molecule. The main ele-
ment of our approach, namely the variational evaluation of
the electron motion in the intermediate zone with a realistic
potential field, was however not present in the earlier work,
nor was use made of the generalized form of quantum defect
theory. Philippe, Masnou-Seeuws, and Valiron12 and more
recently Du and Greene13 considered alkali atoms with neu-
tral perturbers~rare gas atoms!. Reference 12 focused on the
realistic representation of the one-electron potential as we do
here, but rather than usingR-matrix theory, represented the
perturber core by orthogonality constraints imposed on the
wave function. The method of Ref. 13 is perturbative in that
only s- andp-wave scattering on the perturber is taken into
account, but otherwise is quite close to the present approach.

II. THEORY

Figure 1 illustrates the partitioning of space into differ-
ent zones which we use. We discuss the electron wave func-
tion in the various regions in turn. Rydberg energy units are
used throughout.

A. Atomic zone I

When the Rydberg electron enters either of the constitu-
ent ions it will experience many-electron interactions and
there is no simple description of its motion. We assume here
that the repulsive potential of the halogen ion X2 prevents
significant electron penetration. Therefore it will be suffi-
cient to describe the X2–e2 interaction by a local potential
of appropriate form.~In fact, penetration effects can also be
included within the present theory as long as they can be
represented by a local one-electron potential.! On the other
hand there will be strong penetration of the Rydberg electron
wave function into the metal ion. We will therefore exclude
the spherer 1<r 1a surrounding the nucleus of M

11 ~cf. Fig.
1! from our calculations and replace the many-electron wave
function inside the metal ion by a set of appropriate bound-
ary conditions on the Rydberg electron wave function at
r 15r 1a.

FIG. 1. Schematic representation of an electron interacting with an alkaline
earth halide ion: 1, metal nucleus. 2, halogen nucleus. I, atomic zone. II,
molecular ~‘‘reaction’’ ! zone. III, asymptotic zone. The spheresr5r 1a,
r5r 1b and the ellipsoidj5j0 are the boundaries used in theR-matrix cal-
culation~cf. the text!. The figure is drawn to the scale corresponding to the
calculations carried out for CaF.
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Specifically we write for each partial componentl ,

c l
I~e1 ,r 1 ,u1 ,f!5Yll~u1 ,f!

1

r 1
@ f l~e1 ,r 1!cospm l

2gl~e1 ,r 1!sin pm l #, ~1!

where theYll are ordinary spherical harmonics centered on
the metal nucleus.l here and later is the projection of the
orbital angular momentum on the internuclear axis which
remains a good quantum number in the diatomic system and
within the present framework is identical with the spectro-
scopic quantum numberL.

f l and gl are energy-normalized radial wave functions
also centered on the metal nucleus which are regular and
irregular, respectively, at the originr 150. Them l are the
quantum defects of the free metal ion M1. e1 is an effective
collision energy which will be specified in Sec. III A. Iff l
andgl are taken to be radial Coulomb functions, Eq.~1! will
be valid for the free ion for valuesr 1 sufficiently large so
that the polarization field is negligible. The quantum defects
m l are then directly those obtained from the M1 energy lev-
els enl by means of the Rydberg equation in Rydberg units,
enl521/[(n2m l(e)]

2. Here we shall instead define the ra-
dial functions f l andgl as the energy-normalized functions
associated with the Coulomb potential including the polar-
ization contribution~CP!, namely,

V~CP!~r 1!'2
2Z1
r 1

2
a1

r 1
4 f 1

2~r 1! ~2!

@to which the centrifugal terml ( l11)/r 1
2 is to be added#,

wherea1 is the dipole polarizability of the metal core M11

and

f 1~r 1!5@12e2~r1 /r1c!6#1/2 ~3!

is the customary cutoff function for the polarization potential
with r 1c the ‘‘core radius.’’ With this definition Eq.~1! re-
mains valid down to the metal core surfacer 15r 1a'r 1c.
However the quantum defectm l now no longer corresponds
to the value which would be obtained from the Rydberg
equation. Instead,m l in Eq. ~1! represents the core contribu-
tion to it, whereas the polarization contribution is effectively

absorbed into the radial functionsf l andgl . At the same time
the radial functions no longer are the analytical Coulomb
functions defined by Seaton,14 but they must be calculated
numerically. Our method of doing this will be described
elsewhere;15 it is an extension of the phase-amplitude formu-
lation of generalized quantum defect theory given by Greene,
Rau, and Fano.16 In the following it will be assumed that
intra-atomic forces still prevail in the molecular environment
nearr 1'r 1a so that Eq.~1! remains valid. Withf 1 , gl and
m l known, Eq.~1! thus establishes a boundary condition at
r 15r 1a which for each partial componentl ensures the con-
tinuity of the wave function across the core boundary. This
condition is

2
]~r 1c l

I !/]r 1
~r 1c l

I !
52

]~r 1c l
I I !/]r 1

~r 1c l
I I !

5bl~r 1!, ~4!

where for the given core radius~r 15r 1a! the set of quantities
bl depends smoothly on the energy and characterizes the
particular metal ion M11e2. Each term of the partial wave
expansion ofCII valid in the reaction zone II of Fig. 1 must
then satisfy Eq.~4!.

B. Reaction zone II

We next construct a set of variational solutionsCb
II

which satisfy Eq.~4! and are valid throughout the reaction II
surrounding the atomic zone I~see Fig. 1!. We write the
potential forr 1>r 1a by taking account of the following:

~a! the Coulomb interaction betweenZ1 , Z2 , ande
2;

~b! the energy of the electric dipole induced on each ion by
the electron and by the charge of the other ion;

~c! the dipole–dipole interaction energy of each electron-
induced dipole on one center with the ion-induced di-
pole on the other center;

~d! the dipole–dipole interaction energy of the two
electron-induced dipoles;

~e! a small metal core correction potential which will be
specified in Sec. III B;

~f! all the terms that are independent of the position of the
electron~such as e.g. the dipole–dipole interaction en-
ergy between the dipoles induced on each ion by the
other ion! are part of the energy of the ion core and are
therefore not considered explicitly.

We thus have

Vl~r1 ,r2 ,R!52F2Z1r 1
1
2Z2
r 2

G1F2a1f 1
2 1

r 1
4 1a1f 1

2Z2 cosu1
r 1
2R2 2a2f 2

2 1

r 2
4 1a2f 2

2Z1 cosu2
r 2
2R2 G

2
4a1f 1a2f 2

R5 FZ1 cosu1
r 1
2 1

Z2 cosu2
r 2
2 G1

2a1f 1a2f 2
R3r 1

2r 2
2 @2 cosu1 cosu21sin u1 sin u2#1Vl

~core!~r 1!. ~5!
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r 1 andr 2 are defined in Fig. 1. The polar anglesu1 andu2 are
defined such thatu15u250 at the molecular midpoint,a1 and
a2 are the dipole polarizabilities of M11 and X2, f 1 and f 2
are the cutoff functions for the polarization potentials of the
two centers defined in Eq.~3!. The choice of the cutoff radii
r 1c andr 2c enteringf 1 and f 2 will be specified in Sec. III D.
The five terms of Eq.~5! correspond, in this order, to the
terms~a!–~e! mentioned above.

We are now ready to set up a basis of functions which
will be used in the variational determination of the solutions
describing the electron motion forr 1>r 1a. We chose a basis
defined forr 1a<r 1<r 1b ~see Fig. 1! wherer 1b will be cho-
sen as specified in Sec. III E. The basis consists of spherical
free-particle eigenfunctions for positive and negative energy
as follows:

cml
~l!~r 1 ,u1 ,f!5Yll~u1 ,f!

1

r 1
@cml sin~kmlr 1!

1dml cos~kmlr 1!#,

Feml
~l!5

1

2
kml
2 >0G ,

~6!

cml
~l!~r 1 ,u1 ,f!5Yll~u1 ,f!

1

r 1
@cmle

kmlr11dmle
2kmlr1#,

Feml
~l!52

1

2
kml
2 <0G .

The coefficientscml anddml are determined by imposition of
specific boundary conditions atr 15r 1a and r 15r 1b. At the
inner edge of zone II we impose the set of conditions Eq.~4!,
whereas the condition imposed at the outer edge is arbitrary
but fixed and will be specified in Sec. III F. For a given set of
conditionsbl(r 1a) and bl(r 1b) this procedure yields a dis-
crete set of energieseml

(l) and eigenfunctions which are or-
thonormalized. This is described in the Appendix A.

We next set up a Hamiltonian matrix for each value ofl
with elements given by the volume integrals

Hml,m8 l 8
~l!

~R!51eml
~l!dml,m8 l 81E E E cml

~l!* ~r 1 ,u1 ,f!

3FVl~r1 ,r2 ,R!1
l ~ l11!

r 1
2 G

3cm8 l 8
~l!

~r 1 ,u1 ,f!r 1
2 sin u1dr1du1df. ~7!

The matrix is of course diagonal inl.
Diagonalization of this matrix in principle yields eigen-

values and eigenfunctions of the one-electron Hamiltonian
valid in the ranger 1a<r 1<r 1b which atr 15r 1a reduce to a
superposition of atomic functionsc l

I(r 1a) as required by Eq.
~1!. These eigenenergies and eigenfunctions also depend on
the boundary conditionb(r 1b) imposed at the outer bound-
ary r 15r 1b. b(r 1b) may be varied iteratively, and each time
an eigenvalue ofH coincides with the preselected energye,
b is an eigenvalue of the boundary condition. This is the
iterative eigenchannelR-matrix procedure of Fano and
Lee.17

In the variationalR-matrix scheme such as formulated
by Greene18 one solves a generalized eigenvalue system of
the form

Ga5b~r 1b!La ~8!

which directly yields the set of eigenvaluesbb ~b51,2,...!
for the boundary condition on the outer spherer 15r 1b. The
associated set of coefficientsaml,b serves to construct the
eigenfunctions valid in the reaction zone II in terms of the
basis of Eq.~6!,

Cb
II5(

m,l
aml,b

~l! cml
~l! ~9!

for eache, R, andl. For a given preselected total energye
the matricesG andL are defined as follows:18

Gml,m8 l 8
~l!

~e,R!52Hml,m8 l 8
~l!

~R!1edml,m8 l 8

2E E @r 1bcml
~l!~r 1b ,u1 ,f1!#

3
]

]r 1
@r 1cmll~r 1 ,u1 ,f1!# r15r1b

3sin u1du1df1 ,
~10!

Lml,m8 l 8
~l!

51E E cml
~l!~r 1b ,u1 ,f1!

3cm8 l 8
~l!

~r 1b ,u1 ,f1!r 1b
2 sin u1du1df1 ,

where the angular integrations yieldd l l 8dll8 by virtue of Eq.
~6! while the Hamiltonian matrix elementsHml,m8 l 8

(l) , those of
Eq. ~7!, are nondiagonal inl .

C. Asymptotic zone III

The next step of the calculation consists in matching the
eigensolutionsCb

II(r 1 ,u1 ,f1) of the reaction zone to eigen-
functions of the separable asymptotic Hamiltonian and hence
to determine the desired reaction matrixK . We first consider
the asymptotic behavior of the potentialV~r1,r2! of Eq. ~5!.
ExpressingV in terms of elliptic coordinates

j5
r 11r 2
R

~1<j<`!,

h5
r 12r 2
R

~21<h<11!, ~11!

f5f1 ,

we show easily that for larger 1 and r 2 such thatj@1>h,

V~r1 ,r2 ,R!'2
4

R~j22h2! H F ~Z11Z2!1
4

R3j3
~a11a2!Gj

2~Z1
eff2Z2

eff!hJ , ~12!

with
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Z1
eff5Z1S 12

2a2

R3 2
4a1a2

R6 D , ~13!

and whereZ2
eff is defined accordingly. Equation~12! is the

potential of two electric point charges expressed in elliptic
coordinates, with two differences.

~i! The total charge of the Coulomb term is comple-
mented by a polarization term proportional to the sum
of the dipole polarizabilities of the two ions which
decreases withj24;

~ii ! the charge difference of the dipole term is replaced by
the difference of twoeffectivechargesZ1

eff andZ2
eff as

given by Eq.~13!. This equation expresses the fact
that mutual polarization of the two centers tends to
compensate the dipole field created by the ion
charges. Specifically the effective reduction ofZ1,
proportional to the polarizabilitya2, accounts for the
fact that the center of the electron charge on the sec-
ond atom is displaced by the polarization. Miecznik
and Greene19 have studied this effect in detail for the
He11F2 system.

The electron motion in the potentialV(j,h) of Eq. ~12! is
well-known to be separable~see Appendix B!. The relevant
equations are collected for easy reference in the Appendix B.
Solution of the Schro¨dinger equation yields dipolar angular
functionsỸ l̃ l(h,f) which are just dipole distorted spherical
harmonics. In the present context we require energy-
normalized radial regular and irregular functionsf̃ l̃ (e,j) and
g̃ l̃ (e,j) which we evaluate numerically following Refs. 15
and 16. Examples of dipolar orbitalsỸ l̃ l(h,f) f̃ l̃ (j) are il-
lustrated in the Appendix B below.

D. Evaluation of the K matrix

We next choose a valuej0 in order to match each solu-
tion Cb

~l! obtained in zone II to asymptotic functions valid in
region III. With j0 large enough so that Eq.~12! holds we
can use the following expansion:

Cb
II~e,j0 ,h,f!5Cb

III ~e,j0 ,h,f!

[(
l̃

Ỹ l̃ l~e,h,f!
1

Aj0
221

@ f̃ l̃ ~e,j0!I l̃ b~e!

2g̃ l̃ ~e,j0!J l̃ b~e!#. ~14!

~For the sake of clarity the indicesl andR onC, f̃ , g̃, I , and
J are omitted here and later.! Equation~14! is entirely analo-
gous to Eq.~1! except that it includes a sum over partial
~dipolar! wavesl̃ since unlikel in the free ion M1, l̃ is not
preserved in general in the MX molecule. The desired reac-
tion matrix K or the equivalent quantum defect matrixm
then become

K
l̃ l̃ 8
~l!

~e,R![tanpm
l̃ l̃ 8
~l!

~e,R!5(
b

J l̃ b~e!I
b l̃ 8

21
~e!.

~15!

The tan function in Eq.~15! is taken for each element indi-
vidually. I andJ are determined by the requirement that Eq.
~14! and its derivative with respect toj be continuous at
j5j0. First,Cb

II and its derivative are expanded in terms of
the ‘‘surface harmonics’’Ỹ l̃ l with expansion coefficients

u l̃b~j0!5E E Ỹ
l̃ l
* ~h,f!@Aj0

221Cb
II~j0 ,h,f!#dhdf,

~16!

and an analogous equation foru8 ~where the prime refers to
differentiation with respect toj!. Then Eq.~16! and its de-
rivative are subtracted from each other after multiplication
by g̃

l̃
8 andg̃ l̃ or f̃ l̃

8 and f̃ l̃ , respectively. Since the Wronsk-

ian of f̃ l̃ and g̃ l̃ is equal to 1/p ~see Refs. 16 and 15! it
follows that

I l̃ b5p~ g̃ l̃
8u l̃ b2g̃ l̃ u l̃ b

8 !,

~17!
J l̃ b5p~ f̃ l̃8u l̃ b2 f̃ l̃ u l̃ b

8 !.

Use of Eq. ~15! completes the calculation of the reaction
matrix K .

E. Bound states

Bound states are found by writing a general superposi-
tion of asymptotic channel functions expressed in terms ofK
which now embodies all short-range scattering effects in re-
gions II and I. Thus,

C~e!5 (
l̃ , l̃ 8

Ỹ l̃ l

1

Aj221

3@ f̃ l̃ ~e,j!d l l̃ 82g̃ l̃ ~e,j!Kll̃ 8#Z l̃ 8~e!. ~18!

We must choose the expansion coefficientsZ l̃ (e) such that
C~e!→0 for j→`. The asymptotic behavior off̃ l̃ and g̃ l̃ is
written in the phase-amplitude approach16,15 as

f̃ l̃ ~j!'A1

p
a l̃ ~e,j!sin b l̃ ~e!,

~19!

g̃ l̃ ~j!'2A1

p
a l̃ ~e,j!cosb l̃ ~e!,

where the amplitude factora l̃ (e,j) is exponentially diver-
gent for negativee values~bound state region! andb l̃ (e) is
the accumulated phase~whose dependence onl and R is
again not indicated for the sake of clarity!. b l̃ (e) measures
the ~generally nonintegral! number of half-oscillations of the
wave function at the energye and is calculated with the
methods introduced in Refs. 16 and 15. Application of the
bound state boundary condition then leads to the familiar
homogeneous linear system of MQDT, namely,

(
l̃ 8

@ tanb l̃ ~e!d l l̃ 81Kll̃ 8#Z l̃ 8~e!50 ~20a!

for eachl̃ . Nontrivial solutions of Eq.~20a! occur only when
the corresponding determinant is zero. Such zeros occur only
for discrete values of the energy,en521/nn

2, for each value
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of l. The corresponding defectsmn52nn~mod1! will be
referred below as ‘‘effective quantum defects.’’ The coeffi-
cientsZ l̃ 8(en) give the channel mixing for each bound state.
An alternative equivalent form of the homogeneous linear
system is

(
l̃ 8

@sin b l̃ ~e!Cll̃ 81cosb l̃ ~e!Sll̃ 8#B l̃ 8~e!50, ~20b!

whereK5SC21, B 5 C21Z andS 5 U sin pmU21 ~and
similarly for C!, with U representing the eigenvector matrix
of the reaction matrixK of Eq. ~20a! and tanpm its eigen-
values.

III. DETAILS OF CALCULATION

A. Effective electron–metal atom collision energy

In order to connect each atomic radial function of Eq.~1!
of region I to the set of molecular basis functions Eq.~6! of
region II with the samel we must specify the effective
electron–metal atom collision energye1 occurring in Eq.~1!
which corresponds to the classical kinetic electron energy in
the vicinity of the metal nucleus. With Eq.~5!, setting
r 2'R>r 2c, u2'0 and taking the mean values of sinu1 and
cosu1 near the metal nucleus to be zero, we find

e2Vl~r1 ,r2 ,R!'Fe1
2Z2
R

1
a2

R4 S 122Z114
a1f 1Z2
R3 D G

2F2
2Z1
r 1

2
a1

r 1
4 f 1

2G . ~21!

We recognize the last bracket@•••# as being the atomic po-
tential of Eq. ~2!. The first bracket therefore represents an
effective collision energy,

e15e1
2Z2
R

1
a2

R4 S 122Z114
a1f 1Z2
R3 D . ~22!

Equation~22! relates the molecular electron energye to the
‘‘local’’ atomic collision energye1. The significance of this
expression can be understood e.g. by considering a molecu-
lar threshold electron~e50!. As the electron approaches
from infinity, it is slowed down by the repulsive potential of
the negative charge on the halogen atom@negative term
2Z2/R in Eq. ~22!# which would be absent in the isolated M1

ion. As a result the effective energy near M11 is diminished.
The additional terms in Eq.~22! are polarization corrections.

B. Logarithmic derivatives 2b l(r 1a)

The logarithmic derivatives2bl(r 1a) are the main dy-
namical parameters of the problem. In principle they can be
evaluated from the known M1 quantum defects as outlined
in Sec. III A. In practice a difficulty arises since Eq.~22!
shifts the effective collision energy by more than12Ry to-
wards lower energies~Z2521, R'4 a.u.!. As a result the
lower part of the MX Rydberg spectrum~n'2! corresponds
to an effective collision energy equivalent ton'1.5 for
which most of the empirical atomic quantum defectsm l must
be obtained through an extrapolation from higher energies.

This extrapolation can be avoided if we represent the
atomic core region by a suitable pseudopotential. Such po-
tentials are available in the literature for several alkaline
earth atomic ions M1.20 Their form is

Vl
~core!~r 1!52

2

r 1
@~Zn12Z1!e

2a1
~ l !r11b1

~ l !r 1e
2c1

~ l !r1#

1
a1

r 1
4 $e2@r1 /r1c

~ l !
#62e2~r1 /r1c!6%. ~23!

Zn1 is the charge of the metal nucleus whileZ1 is the metal
ion charge as before. The first two terms in Eq.~23! repre-
sent the screening of the metal nucleus by the core electrons,
whereas the last term makes the polarization potential cutoff
l -dependent. The pseudocharacter of the potentialVl

(core)

comes in through thel -dependence of the parametersa1
( l ),

b1
( l ), c1

( l ), and r 1c
( l ). Vl

(core)(r 1) is defined for allr 1>0 and is
added to the long-range Coulomb plus polarization potential
V~CP!(r 1) from Eq. ~2!. Outside the M11 core
$r 1>[a1

( l )]21,[c1
( l )]21,r 1c

( l )% Vl
(core) becomes vanishingly

small as stated before Eq.~5!. With an appropriate choice of
parameters20 the combined effective potentialV(CP)(r 1)
1 Vl

(core)(r 1) 1 l ( l 1 1)/r l
2 can be made to represent the ob-

served M1 energy levels quite accurately for eachl value.
Eachbl(r 1a) can thus be obtained without difficulty by out-
ward numerical integration of the radial Schro¨dinger equa-
tion in this potential fromr 150 to r 15r 1a. Table I lists the
pseudopotential parameters for CaF1 and BaF1 from Ref.
20.

C. Ion polarizabilities

The metal ion dipole polarizabilitiesa1 for Ca
11 and

Ba11 anda2 for F
2 are listed in Table II. The polarizability

of the isolated F2 is known fromab initio theory23 to be very
large~'16 a0

3!. Based on measurements of MF ground state

TABLE I. Pseudopotential parameters for Ca and Ba.a

Ca11e2 Ba11e2

l50 1 2 >3 0 1 2 >3

a1
( l ) 4.0099 4.2056 3.5058 3.7741 3.0751 3.2304 3.2961 3.6237
b1
( l ) 13.023 12.658 12.399 13.232 2.6107 2.9561 3.0248 6.7416
c1
( l ) 2.1315 2.0186 22.2648 3.1848 1.2026 1.1923 1.2943 2.0379
r 1c
( l ) 1.6352 1.5177 1.6187 0.7150 2.6004 2.0497 1.8946 1.0473

aM. Aymar and M. Telmini, Ref. 20.

TABLE II. Dipole polarizabilities, cutoff radii, and ion internuclear dis-
tances~atomic units!.

a1
a r 1c a2

b r 2c Rc

Ca11F2 3.5 1.6 4.7 2.3 3.54
Ba11F2 11.4 2.6 4.7 2.3 3.93

aM. Aymar and M. Telmini, Ref. 20.
bT. Törring, W. E. Ernst, and S. Kindt, Ref. 21.
cZ. J. Jakubek, N. A. Harris, R. W. Field, J. A. Gardner, and E. Murad, Ref.
22.
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dipole moments To¨rring, Ernst, and Kindt21 recommend a
much smaller ‘‘saturated’’ value~'4.7 a0

3! which we use
here. The correctness of this value is corroborated by con-
sideration of the dipole momentQ1 of the M

11X2 ion core.
According to Eq.~12! the dipole moment with respect to the
midpoint between the nuclei is

Q15
R

2
~Z2

eff2Z1
eff!. ~24!

The effective point chargesZ1
eff andZ2

eff in turn depend on
the dipole polarizabilitiesa1 anda2 @Eq. ~13!#, and thus a
relationship is established between the core dipole moment
and the ion polarizabilities. Jakubek,24 in anab initio calcu-
lation on CaF1, found Q1524.4 a.u. with respect to the
molecular midpoint forR53.538 a.u. Inverting Eq.~24! and
using Eq.~13! with the value fora1 given in Table II we
derivea254.0a0

3 which agrees to within 15% with the value
a254.7 a0

3 recommended by To¨rring et al.21 We used the
latter value for both the CaF and the BaF calculations.

D. Polarizability cutoff radii r 1c and r 2c

The polarization cutoff radius corresponds to the dis-
tance at which the long-range potential expansion begins to
break down and thus is a measure of the core radius. We take
r 1c for each metal core M

11 to be equal to the largest of the
r 1c
( l ) values of the pseudopotential given in Table I.r 2c is
taken such that

r̄ 1c1r 2c5R, ~25!

where r̄ 1c is the mean of ther lc
( l ) ( l5024) values from

Table I. This choice is consistent with the picture of two
ionic spheres that touch each other. We have verified that the
results of the calculations do not depend critically on the
values chosen for the cutoff radii. The parameters defining
the potential of Eq.~5! are listed in Table II.

E. R matrix radii r 1a, r 1b, and j0

The choice ofr 1a is made according to the following
criteria: Ideally, bothV~CP!(r 1) of Eq. ~2! andVl~r1,r2,R! of
Eq. ~5! should be valid representations of the potential felt by
the valence electron nearr 15r 1a, i.e., their difference should
be small. In practice it suffices that their difference be about
constant across the spherer 1<r 1a such that it is taken in
account in the effective collision energye1 @Eq. ~22!#. For
this reason we taker 1a smaller than the core radiusr 1c. We
can do this since with theVl

(core) @Eq. ~23!# the electron mo-
tion is correctly represented forr 1a<r 1<r 1c. On the other
hand,uVl~r1,r2,R!u itself should not be too large in this range
in order to avoid unduly large Hamiltonian matrix elements
in Eq. ~7!. With these considerations in mind we took values
for r 1a close to the smallest of the cutoff radiir 1c

( l ) of Table I,
namely,r 1a50.8 a.u. for Ca11 and r 1a51.0 a.u. for Ba11.
Again we verified that the results do not depend critically on
the choice made.

The elliptical radiusj0 must be taken large enough so
that Eq.~12! is a good approximation and at the same time

the M11 core must be enclosed in the ellipsoidj5j0. The
latter in turn must be contained within the spherer 15r 1b.
These requirements lead to the conditions

j0>11
2r 1a
R

, r 1b>
R

2
~11j0!. ~26!

In general it is preferable to reducej0 as much as possible in
order to avoid stronge dependences ofK or m. We found
that j055 is a good choice with Eqs.~12! and ~5! differing
by less than 1% everywhere except nearh511 ~halogen
ion! where generally little probability amplitude is present.
On the other hand forj0<3 Eq. ~12! begins to break down
seriously both forh'21 and11. We carried out two sets of
calculations withj055.0 and 3.0, andr 1b512.2 and 7.9 a.u.,
respectively, and we found that the resulting solutionsnn
differ by less than 0.015 for all of the electronic states cal-
culated, although some of them l̃ , l̃ 8 elements differ by more
than this amount.K ~e! was evaluated on a coarse energy
mesh and the solutionsnn determined by suitable interpola-
tion.

F. R matrix basis set and boundary conditions for
r 15r 1b

We have included valuesl5 l̃5l to 5 both for CaF and
BaF in theR-matrix basis Eq.~6! and in the asymptotic
expansion Eq.~14!. Following the recommendation of
Greene and Aymar25 we took for each l typically 13
‘‘closed’’ radial functions [b(r 1b)5109] and 2 ‘‘open’’ ra-
dial basis functions [b(r 1b)50]. This choice permitted the
use of the ‘‘streamlined’’ version of the variational eigen-
channelR-matrix formulation.25 Convergence was checked
in all cases. We found that for alll̃ 8, l̃ with l̃>4 and l̃ 8
arbitrary the calculations yield off-diagonal elements
um l̃ 8, l̃ u < 0.02 and diagonal elementsum l̃ , l̃ u < 0.002. Ac-
cordingly the positions of thel̃>4 states will be calculated
below as corresponding to strictly nonpenetrating orbitals
with all quantum defectsm l̃ , l̃ 8 set to zero.

IV. RESULTS AND DISCUSSION

A. Accumulated phase parameter and quantum
defect matrices

According to Eqs.~20! and ~15! the energiesen of the
bound state spectrum are determined by~i! the phaseb l̃

accumulated by the electronl̃ in the asymptotic field and~ii !
the short-range quantum defect matrixm l̃ , l̃ 8 . The behavior
of the phase parametersb l̃ (e)/p is illustrated in Fig. 2 for
CaF forl50 and l̃5024 and compared with the Coulomb
values b/p5n2 l used in the ordinary quantum defect
theory. When all quantum defects are zero@K50 in Eq.
~20a!#, bound states occur in Fig. 2 wheneverb~n!/p is an
integer. In a pure Coulomb field~dotted lines in Fig. 2! this
happens for integraln values. Notice how in CaF~full lines!
the dipole field pushes the lowest level~b/p51! to higher
energy for l̃52, 3, and 4~cf. also the discussion of high-l̃
states in Sec. IV C!, whereas forl̃50 and 1 the strong at-
traction of the doubly charged metal ion causes the first level
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to occurlower than the hydrogenic state. This behavior is of
course modified once the penetration effects embodied in the
quantum defect matrix are taken into account.

Figure 2 illustrates further how the Coulomb accumu-
lated phase parameterb/p5n2 l crosses the zero line for
eachl at n5 l . This leads to unphysical solutions forn< l , a
well-known difficulty in ordinary quantum defect theory.14

This problem does not arise in the numerical approach used
here,15 sinceb l̃ is seen to approach zero asymptotically asn
decreases belown5 l̃ . This physically correct feature is cru-
cial for the success of the present calculations where we need
to avoid false solutions in then'1.5 to 3 region while at the
same time we must retain channels with relatively highl̃
values in the calculations.

Figure 3 illustrates the energy dependence of the ele-
mentsm l̃ , l̃ 8 with l50 for CaF. Two types of energy depen-
dence can be discerned; all elements involvingl̃>2 ap-

proach zero forn<2.5. This behavior originates from the
corresponding behavior of the phase parameterb l̃ depicted
in Fig. 2. By contrast the substantial variations apparent in
the figure for l̃50 and 1 reflect more a resonant behavior.
They are related to the fact that the lowest states withn<2.5
are largely ~and unavoidably! contained within the outer
R-matrix radiusr 1b. While this behavior is not incorrect as
such, it renders the energy interpolations more difficult and
probably is the origin of the somewhat less satisfactory
agreement obtained in Sec. IV B for lown than for highn
states.

B. Energy levels

Tables III and IV summarize the effective principal
quantum numbersnn obtained for the various values ofl for
CaF and BaF, and compare them with the corresponding
experimental values. The same data are represented graphi-
cally in the n~mod1! vs n plots of Fig. 4~CaF! and Fig. 5
~BaF!. The effective principal quantum numbern ~abscissa!
gives the overall position of the states on a nonlinear energy
scale. The quantityn~mod1! ~ordinate!, the effective princi-
pal quantum number stripped of its integral part in front of
the decimal point, corresponds to the negative of the effec-
tive quantum defect and, per unit interval ofn, gives the
relative positions of the states on an enlarged nonlinear en-
ergy scale. Tables III and IV and the plots show that on the
whole the agreement between experiment and theory is quite
gratifying. The mean deviationunobs2ncalcu is 0.030 for CaF
and 0.023 for BaF. This is equivalent to an error of the order
of 650 cm21 for n'2 but of only'5 cm21 for n'10. This
agreement is about a factor of 3 better than in our previous
calculation9 of the states of CaF which neglected polarization
effects.

The main componentsl̃ 8 occurring in the expansion Eq.
~20b! for n'5 are listed for each series in Tables III and IV.
As expected most of the series are stronglyl̃ mixed. Note
that this mixing occurs in addition to the mixing due to the
asymptotic multipole field which causes each elliptic compo-
nent l̄ to be itself a mixture of spherical partial wavesl . Thus
it is clear that at least for lowl it is not possible to assign
even approximatel values to the individual series. The pro-
cedure of Jakubek and Field8 who named each series by its
asymptoticn~mod1! value reached nearn'5, together with
its molecular symmetry, thus remains valid.

Figures 4 and 5 show further that the characteristic ob-
served positive or negative curvatures of then~mod1! curves
at low n are reproduced by the calculations for all of the
series~the 0.14D series in CaF excepted!, and that each se-
ries ends with the correct terminus state. All low lying states,
including theX 2S1 ground state, are seen to fit naturally
into the scheme of series. The empirical conclusion of Mur-
phyet al.,7 that the alkaline earth halides may be regarded as
a particular type of ‘‘Rydberg’’ molecules, is thus supported
by the theory. The success of the calculations shows indeed
that the molecular core can be realistically represented by
two separate scattering centers M11 and X2 if proper ac-
count is taken of polarization effects.

FIG. 2. Accumulated phase parameterb, in units ofp, plotted as a function
of the effective principal quantum numbern5~2e!21/2 for l̃5024 and
l50. Full lines, numerical values calculated with the potential Eq.~12! with
parameters for CaF from Table II andZ152, Z2521. The dotted lines
correspond to the phase parameterb/p5n2 l for a Coulomb field, used in
ordinary quantum defect theory.

FIG. 3. Energy dependence of the quantum defect matrix elementsm l̃ , l̃ 8 for
CaF withl50.
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TABLE III. ~a! 2S1 Rydberg series of CaF.~b! 2P Rydberg series of CaF.~c! 2D Rydberg series of CaF.~d! 2F Rydberg series of CaF. The ionization
potential of CaF is 46 99865 cm21.g Each series is designated bynobs~mod1! taken forn'5. For states withn<2.5 a correction was applied which takes
account of the difference of the vibrational frequency and internuclear distance in the molecular state and in the ion. Thenobs in the table thus correspond to
vertical ionization energies corresponding toRc of the ion. The spectral composition of each series is given forn'5 in terms of the largest coefficients
B l̃ , Eq. ~20b!.

~a!
0.552S1

0.99s̃10.13d̃
0.882S1

0.84p̃10.51d̃10.16f̃
0.182S1

0.84d̃20.53p̃20.11s̃
0.092S1

0.99f̃20.13p̃20.10d̃

nobs ncalc o2c nobs ncalc o2c nobs ncalc o2c nobs ncalc o2c

X 1.536a 1.56 20.02 B 1.991b 2.04 20.05 F8 3.177c 3.17 10.01 4.08
D 2.553d 2.56 20.01 E 2.925e 2.96 20.03 4.183a 4.17 10.01 5.08
3.553c 3.55 10.00 3.901c 3.90 10.00 5.184a 5.16 10.02 6.08

4.55 4.899a 4.86 10.04 6.187a 6.16 10.03 7.08
5.551a 5.55 10.00 5.880a 5.86 10.02 7.189a 7.16 10.03 8.08
6.549a 6.55 20.00 6.878a 6.86 10.02 8.188a 8.16 10.03 9.08
7.546a 7.55 20.00 7.871a 7.86 10.01 9.196a 9.16 10.04 10.087f 10.08 10.01
8.549a 8.55 20.00 8.868a 8.86 10.01 10.173f 10.16 10.01
9.552f 9.55 10.00 9.891f 9.86 10.03

~b!
0.982P
1.00p̃

0.362P
0.98d̃10.18f̃

0.072P
0.98f̃20.18d̃

A 1.909e 1.92 20.01 C 2.557d 2.55 10.01 4.05
E8 2.959e 2.97 20.01 F 3.418c 3.45 20.03 5.04

3.98a 3.97 10.01 4.37a 4.41 20.04 6.04
4.973a 4.97 10.00 5.360a 5.40 20.04 7.04
5.975a 5.97 10.01 6.353a 6.40 20.05 8.04
6.976a 6.97 10.01 7.31a 7.40 20.09 9.04
7.977a 7.97 10.01 8.342a 8.40 20.06 10.073f 10.04 10.03
8.976a 8.97 10.01 9.348a 9.40 20.05
9.98a 9.97 10.01 10.384f 10.40 20.02
11.007f 10.97 10.04

~c!
0.142D

0.97d̃10.23f̃
0.002D

0.97f̃20.23d̃

B8 2.085h 2.16 20.08 3.98
3.15 4.97

4.13a 4.15 20.02 5.97
5.136a 5.15 20.01 6.97
6.135a 6.15 20.01 7.97
7.137a 7.15 20.01 8.97
8.134a 8.15 20.02 9.997f 9.97 10.03
9.131a 9.15 20.02
10.170f 10.15 10.02

~d!
0.932F
1.00f̃

3.89
4.89
5.89
6.88
7.88
8.88

9.934f 9.88 10.05

aJ. M. Berg, J. E. Murphy, N. A. Harris, and R. W. Field, Ref. 26.
bM. Dulick, P. F. Bernath, and R. W. Field, Ref. 27.
cN. A. Harris and R. W. Field, Ref. 28.
dC. M. Gittins, N. A. Harris, R. W. Field, J. Verge`s, C. Effantin, A. Bernard, J. d’Incan, W. E. Ernst, P. Bu¨ndgen, and B. Engels, Ref. 29.
eP. F. Bernath and R. W. Field, Ref. 30.
fR. W. Field, N. A. Harris, and Ch. Jungen, Ref. 31.
gZ. J. Jakubek, N. A. Harris, R. W. Field, J. A. Gardner, and E. Murad, Ref. 22.
hJ. Vergès, C. Effantin, A. Bernard, A. Topouzkhanian, A. R. Allouche, J. D’Incan, and R. F. Barrow, Ref. 5.
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TABLE IV. ~a! 2S1 Rydberg series of BaF.~b! 2P Rydberg series of BaF.~c! 2D Rydberg series of BaF.~d! 2F Rydberg series of BaF. The ionization
potential of BaF is 38 74263 cm21.a Each series is designated bynobs~mod1! taken forn'5. For states withn<2.5 a correction was applied which takes
account of the difference of the vibrational frequency and internuclear distance in the molecular state and in the ion. Thenobs in the table thus correspond to
vertical ionization energies corresponding toRe of the ion. The spectral composition of each series is given forn'5 in terms of the largest coefficients
B l̃ , Eq. ~20b!.

~a!
0.762S1

0.92s̃10.39d̃
0.882S1

0.89p̃10.37d̃20.22s̃10.14f̃
0.242S1

0.82d̃20.45p̃20.32s̃10.17f̃
0.082S1

0.98f̃20.21d̃

nobs ncalc o2c nobs ncalc o2c nobs ncalc o2c nobs ncalc o2c

X 1.692a 1.72 20.03 B 2.139b 2.14 20.00 E 3.223c 3.23 20.01 4.085e 4.08 10.01
D 2.75c 2.75 20.00 D8 2.963c 2.94 10.02 4.24 5.078f 5.08 20.00
G 3.758e 3.76 20.00 H 3.922e 3.88 10.04 5.242f 5.25 20.01 6.081f 6.08 10.00

4.760f 4.77 20.01 4.895f 4.85 10.05 6.240f 6.25 20.01 7.087f 7.08 10.01
5.766f 5.76 10.01 5.887f 5.85 10.04 7.248f 7.25 20.00 8.08
6.770f 6.76 10.01 6.881f 6.85 10.03 8.251f 8.25 20.00 9.08

7.76 7.884f 7.85 10.03 9.251f 9.25 10.00 10.099f 10.08 10.02
8.775f 8.76 10.02 8.883f 8.85 10.03 11.105f 11.08 10.03

9.889f 9.85 10.04

~b!
0.132P

0.84d̃10.50p̃10.21f̃
0.452P

0.87p̃20.48d̃20.13f̃
0.042P

0.97f̃20.25d̃

A 2.047b 2.06 20.01 C 2.459c 2.45 10.01 K 4.033e 4.04 20.01
E8 3.109g 3.13 20.02 F 3.440c 3.46 20.02 5.03
J 4.127e 4.13 20.00 4.47 6.03

5.14 5.447f 5.48 20.03 7.03
6.14 6.449f 6.48 20.03 8.03
7.14 7.48 9.03
8.14 8.48

~c!
0.232D

0.98d̃10.19f̃
0.942D

0.98f̃20.20d̃

A8 2.012b 2.02 20.01 3.953e 3.96 20.01
E9 3.102e,g 3.19 20.09 4.945f 4.96 20.01

4.22 5.943f 5.95 20.01
5.227f 5.23 20.00 6.945f 6.95 20.00
6.235f 6.23 10.01 7.95
7.243f 7.23 10.01 8.949f 8.95 20.00
8.246f 8.23 10.02 9.955f 9.95 10.01
9.255f 9.23 10.03
10.253f 10.23 10.02

~d!
0.872F
1.00f̃

3.86
4.86
5.86
6.86
7.86
8.86

9.867f 9.86 10.01
10.873f 10.86 10.01

aZ. J. Jakubek, N. A. Harris, R. W. Field, J. A. Gardner, and E. Murad, Ref. 22.
bA. Bernard, C. Effantin, J. D’Incan, J. Verge`s, and R. F. Barrow, Ref. 35.
cC. Effantin, A. Bernard, J. D’Incan, G. Wannous, J. Verge`s, and R. F. Barrow, Ref. 32.
dA. Bernard, C. Effantin, E. Andrianavalona, J. Verge`s, and R. F. Barrow, Ref. 6.
eZ. J. Jakubek and R. W. Field, Ref. 33.
fZ. J. Jakubek, Ref. 34.
gC. Effantin, A. Bernard, J. D’Incan, E. Adrianavalona, and R. F. Barrow, Ref. 36.
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The comparison of the plots of Figs. 4 and 5 for CaF and
BaF for corresponding symmetryL reveals that the patterns
are basically similar in the two molecules.$For theP sym-
metry this becomes apparent if one realizes that the 0.98P
series of CaF could be moved to the equivalent position
20.02 @Fig. 4~b!#.% To make this analogy more complete we
have reassigned theB 2S1 state of BaF as the terminus state
of the 0.882S1 series instead of the 0.242S1 as proposed in
Refs. 8 and 33. This reassignment is further justified since
our calculations indicate that theB state has a predominantly
p̃ character.

The calculations for BaF nearn'3.1 yield one2P and
one2D state whereas Effantinet al.36 have assigned experi-
mentally two2P states in this region,E8 andE9, separated
by only 62 cm21, but no2D state. The discrepancy can be
resolved if, as is done in Table IV and Fig. 5~c! and was
suggested very recently by Jakubek and Field,33 E9 is as-
sumed to be the missing2D state. We note though, that the
agreement obtained with this reassignment is less good than
for the other states. Our calculations show further that near
n'4 a few gaps still remain in the observations both for CaF
and BaF. This intermediate region is difficult to reach by
Fourier transform spectroscopy as well as by double reso-
nance spectroscopy. For BaF we predict a series 0.132P
which has not yet been observed beyondn'4 @Fig. 5~b!#.

C. Comparison with previous calculations of the
lowest states

For some of the lower states of CaF and BaF there exist
earlier theoretical calculations based on the polarization
model, the ligand field approach or ofab initio type. These
are collected in the Tables V and VI and compared with
experiment and with our results. Also given are the devia-
tions observed minus calculated and their rms value for the
set of states for each calculation. It can be seen that for CaF
our results are on the average distinctly closer to experiment
than all previous calculations. For BaF our results also com-
pare well with the previous theoretical work. The polariza-
tion model performs best in this case, although it should be
remembered that this theory contains a freely adjustable pa-
rameter.

D. Wave functions and low-energy behavior of the
quantum defects

Ernst and Ka¨ndler38 have measured the electric dipole
moments of some of the lower states of CaF. They found
vastly different values for theA 2P and C 2P states and
interpreted this in terms of two distinct types of polarization
of the lone electron orbital. In the first case the electron is
polarized away from the X2 center~X 2S1 or A 2P state!

FIG. 4. Rydberg series of CaF.n~mod1! of bound states is plotted vsn, wheren is the effective principal quantum number andn~mod1!52m with m the
effective quantum defect. The abscissa thus represents the electron binding energy on the gross nonlinear scalen5~2e!21/2. For each unit interval the same
information is represented on an enlarged scale on the ordinate. The spectral composition of each series for highn in terms of elliptic componentsl̃ is indicated
on the right. Circles, observed values. Full lines, calculated values.~a! 2S states.~b! 2P states.~c! 2D states.~d! 2F states.
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and the core dipole moment is partly compensated. In the
second case so-called ‘‘reversed’’ polarization of the Ryd-
berg electron occurs towards the X2 center and the total
dipole moment, core plus Rydberg electron, is on the con-
trary increased. This behavior has been confirmed by theab
initio calculations of Bu¨ndgenet al.3 for the two states. Mur-
phy et al.7 further related this to the low-n behavior of
n~mod1!; low states undergoing ‘‘normal’’ polarization are

stabilized in the attractive potential well of M11, whereas
low states undergoing ‘‘reversed’’ polarization are destabi-
lized. In the plots of Figs. 4 and 5 this becomes manifest in
the characteristic positive slope/negative curvature or nega-
tive slope/positive curvature of then~mod1! vs n curves in
the two cases, although this behavior is not equally pro-
nounced in all the series. These conjectures are again con-
firmed qualitatively by the present calculations and shown to

FIG. 5. Rydberg series of BaF, Cf. caption for Fig. 4.

TABLE V. The lowest electronic states of CaF: Various theoretical results~cm21!.

Presenta Ab initiob Pol. modelc Ligand fieldd

Obs,T0 Calc o-c Calc o-c Calc o-c Calc o-c

X 2S1 0 1 407 21 407 0 0 0 0 0 0
A 2P 16 530e 16 883 2353 17 712 21 182 16 340 1190 18 217 21 687
B 2S1 18 841f 20 148 21 307 20 069 21 228 18 620 1221 21 486 22 645
B8 2D 21 544g 23 259 21 715 24 851 23 307 17 690 13 854 22 552 21 008
D 2S1 30 159h 30 253 294 32 741 22 582 ••• ••• ••• •••
C 2P 30 216h 30 122 194 32 765 22 549 29 850 1366 32 138 21 922
Mean deviation 1 062 2 121 1 738 1 709

aThis work.T0 values, obtained by correcting the calculated vertical ionization energies for the differences of
vibrational frequency and internuclear distance in the molecular state and the ion.
bP. Bündgen, B. Engels, and S. D. Peyerimhoff, Ref. 3.
cT. Törring, W. E. Ernst, and J. Ka¨ndler, Ref. 2.
dA. R. Allouche, G. Wannous, and M. Aubert-Fre´con, Ref. 37.
eP. F. Bernath and R. W. Field, Ref. 30.
fM. Dulick, P. F. Bernath, and R. W. Field, Ref. 27.
g.J. Vergès, C. Effantin, A. Bernard, A. Topouzkhanian, A. R. Allouche, J. D’Incan, and R. F. Barrow, Ref. 5.
hC. M. Gittins, N. A. Harris, R. W. Field, J. Verge`s, C. Effantin, A. Bernard, J. D’Incan, W. E. Ernst, P.
Bündgen, and B. Engels, Ref. 29.
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hold for the whole series as demonstrated for the BaF 0.13P
~terminus stateA 2P! and 0.45P ~terminus stateC 2P!
series nearn'5. The electron wave function contour plot of
Fig. 6~a! shows strong polarization away from X2 in the
former case, whereas Fig. 6~b! on the contrary shows appre-
ciable probability amplitude in the vicinity of X2 in the latter
case.

E. States with high orbital angular momentum

Tables VII~a! and VII~b! list for CaF and BaF, respec-
tively, the effective principal quantum numbers calculated
for the lowest nonpenetrating states withl̃54–6. As indi-
cated earlier we set all quantum defectsm l̃ 8, l̃ for l̃ 8, l̃>4
identically to zero in these calculations. The resulting effec-
tive quantum defectsm are thus due entirely to the departure
of the potential given by Eqs.~12! and ~13! from that of a
single point chargeZ11Z2 .

Watson39 recently derived a formula for calculating the
quantum defect of an electron moving in the field of an elec-

FIG. 6. Wave function contour plots for BaF2P series nearn'5. z50
corresponds to the position of the Ba nucleus. The F nucleus is situated at
z54. Full and dotted lines are used to indicate sign changes of the wave
function. ~a! 0.13P series.~b! 0.45P series.

TABLE VI. The lowest electronic states of BaF: Various theoretical results~cm21!.

Presenta Ab initiob Pol. modelc Ligand fieldd

Obs,T0 Calc o-c Calc o-c Calc o-c Calc o-c

X 2S1 0 1 245 21 245 0 0 0 0 0 0
A8 2D 10 939e 11 150 2211 7 420 13 519 11 100 2161 11 310 2371
A 2P 11 980e 12 309 2329 9 440 12 540 12 330 2350 11 678 1302
B 2S1 13 945e 13 962 217 12 660 11 285 14 250 2305 13 381 1564
C 2P 20 086f 19 956 1130 16 290 13 796 19 970 1116 22 080 21 994
D 2S1 24 177f 24 231 254 25 810 21 633 ••• ••• ••• •••

D8 2S1 26 245g 26 046 1199 32 750 26 505 ••• ••• ••• •••

Mean deviation 502 3 378 226 951

aThis work.T0 values, obtained by correcting the calculated vertical ionization energies for the differences of
vibrational frequency and internuclear distance in the molecular state and the ion.
bE. Westin and A. Rosen, Ref. 4.
cT. Törring, W. E. Ernst, and J. Ka¨ndler, Ref. 2.
dA. R. Allouche, G. Wannous, and M. Aubert-Fre´con, Ref. 37.
eA. Bernard, C. Effantin, J. D’Incan, J. Verge`s, and R. F. Barrow, Ref. 35.
fC. Effantin, A. Bernard, J. D’Incan, G. Wannous, J. Verge`s, and R. F. Barrow, Ref. 32.
gA. Bernard, C. Effantin, E. Andrianavalona, J. Verge`s, and R. F. Barrow, Ref. 6.

TABLE VII. ~a! Nonpenetrating Rydberg states of CaF.a ~b! Nonpenetrating
Rydberg states of BaF.

l5 0 1 2 3 4 5 6

~a!
l̃54 5.038 5.031 5.011 4.981 4.943
5 6.021 6.018 6.012 6.001 5.986 5.968
6 7.013 7.012 7.009 7.004 6.998 6.990 6.980

~b!
l̃54 5.036 5.029 5.009 4.978 4.941
5 6.020 6.018 6.011 6.000 5.985 5.966
6 7.012 7.011 7.008 7.004 6.997 6.989 6.979

aEach entry corresponds to the calculated effective quantum number of the
lowest state for thel̃ andl values indicated.
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tric point charge with a superposed point dipole. It is instruc-
tive to compare the quantum defects derived from the effec-
tive principal quantum numbersn of Tables VII~a! and
VII ~b! with those obtained from Watson’s analytical expres-
sion. For unit total charge his formula gives

m l ,l52
2@ l ~ l11!23l2#

~2l13!~2l11!~2l21!l ~ l11!
~Q1

22Q2!,

~27!

whereQ1 is the dipole andQ2 the quadrupole moment. Wat-
son showed that while both these quantities are origin-
dependent for a system carrying a net electronic charge, the
combination Q1

22Q2/(Z11Z2) is origin-independent as
physically required. Here we take the midpoint between the
two nuclei as the center and we find from Eqs.~12! and~24!
that

Q1
22Q25

R2

4
@~Z2

eff2Z1
eff!221# ~28!

with Z1
eff andZ2

eff defined by Eq.~13!. Figure 7 compares the
quantum defects obtained from Eqs.~27! and ~28! by using
the appropriatea1, a2, andR values for CaF from Table II,
with l taken equal tol̃ and with the quantum defect values
derived from Table VII~a!. It can be seen that the two sets of
values are indeed in close agreement. Notice that the values
calculated with the present numerical elliptical approach ap-
pear consistently somewhat lower in the plot of Fig. 7 than
those derived from Watson’s model. This is due to the
j-dependent polarization term included in Eq.~12! which
adds a contribution

Dm l
Pol~e!5~a11a2!

32 l ~ l11!e

4S l2 1

2D l S l1 1

2D ~ l11!S l1 3

2D
~29!

to the quantum defect.~There are further small polarization
terms which we neglect here.! Equation~29! yields contribu-
tions 0.010, 0.003, and 0.001 to the quantum defects for
l54–6, respectively, which correspond closely to the devia-
tions apparent in Fig. 7. We conclude that for the bound state
range considered in this work nonpenetrating states with
l̃>4, and in fact very nearly also the states derived from
l̃53 orbitals, can be calculated directly from Eqs.~27!–~29!
without use of the numerical apparatus developed in the ear-
lier sections of this paper.

V. CONCLUSION

In this work we have developed a theoretical approach
designed to calculate the electronic structure of ionic di-
atomic ions with an associated electron, based solely on the
properties of the constituent ions such as their charges and
dipole polarizabilities. For the lowest bound states our ap-
proach resembles in many ways the ligand-field model of
Rice, Martin, and Field1 and the electrostatic polarization
model of Törring, Ernst, and Ka¨ndler.2 It yields however an
equally good description for the high Rydberg states and has
led, in the application to the CaF and BaF molecules, to the
first quantitative calculation of the full electronic spectrum of
these molecules at equilibrium.

Obvious further applications of this approach will be to
some of the other alkaline earth halides whose Rydberg spec-
trum is not yet known in detail and where we should be able
to make reliable predictions. The rare gas hydrides constitute
another class of ionic systems where one hasZ150 and
Z2511 instead ofZ1512 andZ2521, i.e., the ion core
may be represented as a protonated rare gas atom. We will
show in a forthcoming paper that with this simple substitu-
tion the present theory accounts equally well for the elec-
tronic structure of ArH and KrH as for the alkaline earth
halides studied here. Further, the present method is by no
means restricted to Rydberg molecules withZ11Z2511. It
might also be applied to the calculation of electron phase
shifts in negative ions possessing a double-closed-shell neu-
tral core (Z11Z250) such as, e.g., alkali-halides. An inter-
esting future avenue which we hope to pursue is the exten-
sion of the method to treat Rydberg states of small van der
Waals complexes, a subject that is just beginning to emerge
experimentally. Polyatomic systems with a protonated
closed-shell core constitute another class of possible candi-
dates for the method; HCO is an example whose Rydberg
spectrum is under study by Grant and co-workers.40

There are two obvious limitations of the approach such
as it has been outlined here. First, by representing the ligand
ion as a point charge we have neglected electron penetration
effects on the second center beyond those taken into account
by the polarization potential used here. The results seem to
indicate that this approximation is reasonable.R matrix cal-
culations allowing for two excluded atomic zones, one
around each atomic nucleus, clearly constitute the required
next step in the development of the method. The conceptual
link with the multiple scattering~MSM! model of Dill and
Dehmer11 will then become clearly apparent. However our

FIG. 7. Quantum defects of high-l̃ states of CaF forl50 ~highest-energy
component! and l5 l̃ ~lowest-energy component!. Note that, in line with
Figs. 4 and 5,2m has been plotted. Full lines, point dipole model@Eqs.~27!
and ~28!#. Circles, numerical values@Eq. ~20!#. Squares, experimental val-
ues.
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approach, once extended, will not be restricted to the case of
a constant potential between the scattering centers and
should thus yield a more realistic description of electron-
molecule multiple scattering. A more serious drawback of
the approach is that in the molecular reaction zone II a one-
electron Hamiltonian is employed. Thus the mixing of the
M11X2e2 configurations with configurations of the type
M1Xe2 occurring in the alkaline earth halides as dissocia-
tion is approached, is beyond the present framework.

Small-amplitude vibrations around the equilibrium on
the other hand can be handled without difficulty at present.
In a forthcoming paper10 we shall evaluate the derivatives
with respect toR of the quantum defect matrices, i.e., those
quantities that yield the contribution of the Rydberg electron
to the bond strength as well as the vibronic coupling that
affects the manifold of high Rydberg states.41 Calculations of
spin–orbit splittings and permanent and transition dipole mo-
ments will also be presented.

Returning once again to the CaF and BaF molecules, we
stress that our calculations unambiguously establish the low-
energy terminus states for all of the Rydberg series. In par-
ticular, the four f̃ series are nearly nonpenetrating in both
molecules, and have in fact almost the same quantum defects
in CaF and BaF due entirely to the core dipole plus quadru-
pole field of the molecular ion core. Their lowest members
have n'4 for all l components. This is somewhat unex-
pected since the atomicf orbital is nonpenetrating in Ca1

but penetrating in Ba1. We shall show in Ref. 10 that the
molecular f̃ orbitals of BaF indeed become more and more
penetrating as the energy increases beyond the range studied
so far. The formula of Watson39 then fails for their descrip-
tion, and use of the fullR-matrix apparatus becomes again
necessary.
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APPENDIX A: BOX QUANTIZATION WITH ARBITRARY
BOUNDARY CONDITIONS

We wish to determine the eigenenergies and eigenfunc-
tions of the one-dimensional free-particle radial Hamiltonian
in a box r a<r<r b in such a way that

2
c8

c
5ba , r5r a , 2

c8

c
5bb , r5r b , ~A1!

whereba and bb are given. The general expression of the
wave function for positive energy,e5k2>0 is given by

c5
1

N
@c sin~kr !1d cos~kr !#, ~A2!

whereN normalizesc to unity. It is easy to show that the
quantization condition is given by

~babb1k2!sin~kra2krb!2k~ba2bb!cos~kra2krb!50,
~A3!

while the ratio of the coefficientsc andd is

c

d
52

ba cos~kra!2k sin~kra!

ba sin~kra!1k cos~kra!
. ~A4!

The normalization factorN is obtained as

N25
1

2
~c21d2!~r a2r b!2

1

4k
~c22d2!@sin~2krb!

2sin~2kra!#1
cd

k
@sin2~krb!2sin2~kra!#. ~A5!

For certain boundary conditionsba and bb one may also
have a solution at negative energy,e52k2<0. In this case
Eq. ~A2! becomes

c5
1

N
@ce1kr1de2kr #, ~A6!

whereas the quantization condition becomes

~babb2k2!sinh~kr a2kr b!2k~ba2bb!

3cosh~kr a2kr b!50. ~A7!

The analog of Eq.~A4! is now

c

d
52

~ba2k!e2kr a

~ba1k!e1kr a
, ~A8!

while the normalization factor is

N25
c2

2k
~e2kr b2e2kr a!2

d2

2k
~e22kr b2e22kr a!

12cd~r b2r a!. ~A9!

We have found that in order to attain convergence in the
R-matrix calculations it is important to include states at
negative energy, Eq.~A6!, in addition to states at positive
energy, Eq.~A2!.

APPENDIX B: THE TWO-CENTER PROBLEM IN
ELLIPTICAL COORDINATES

The kinetic energy operator expressed in the elliptical
coordinates of Eq.~11! is42

D5
4

R2~j22h2! F ]

]j
~j221!

]

]j
1

1

j221

]2

]f2

1
]

]h
~12h2!

]

]h
1

1

12h2

]2

]f2G . ~B1!

The Schro¨dinger equation for a single electron in Rydberg
energy units is then

@D2V1e#C50, ~B2!

where the potential energyV is given by Eq.~12!. Writing
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C~j,h,f!5
1

Aj221
X̃~j!Ỹ~h,f!, ~B3!

and replacing]2/]f2 by 2l2 we obtain separate angular and
radial equations,

F ]

]h
~12h2!

]

]h
2

l2

~12h2!
2~Z1

eff2Z2
eff!Rh1p2h2

2A~e!G Ỹ~h,f!50, ~B4!

wherep252eR2/4 and thef dependent factor contained in
Ỹ is simply (2p)21/2eilf, and

H ]

]j
~j221!

]

]j
2

l2

~j221!
1F ~Z11Z2!1

4

R3j3

3~a11a2! f GRj2p2j21A~e!J 1

Aj221
X̃~j!50, ~B5!

whereA(e) is the separation constant andf is a cutoff func-
tion analogous to Eq.~3!. Setting

Ỹ~h,f!5
1

A12h2
Y~h,f! ~B6!

in order to have only second derivatives we obtain

H ]2

]h22
1

12h2 Fl221

12h2 1~Z1
eff2Z2

eff!Rh2p2h2G
1

1

12h2 @2A~e!#J 3Y~h,f!50, ~B7!

S ]2

]j2
2

1

j221 H l221

j221
2F ~Z11Z2!1

4

R3j3
~a1

1a2! f GRj2A~e!J 1F R2j2

4~j221!Ge D X̃~j!50. ~B8!

The angular functionỸ in Eqs.~B3! and~B6! is the same
as that occurring in Eq.~14!. We obtain the discrete eigen-
value spectrum ofA by numerical integration of Eq.~B7!
with the appropriate bound state boundary conditions applied
at h521 and h511. The eigenfunctionsY of Eq. ~B7!
behave as (16h)(11l)/2 nearh571, respectively. The ei-
genvaluesA reduce forp50 to the familiar quantityl ( l11).
In analogy with the spherical problem we define the gener-
alized orbital angular momentum quantum number as

l̃5kh1l, ~B9!

wherekh is the number of nodes of the eigenfunction of Eq.
~B7!. Multiplication of the eigenfunction of Eq.~B7! by
(2p)21/2eilf yieldsỸ(h,f). Ỹ is normalized to unity with a
volume elementdhdf.

OnceỸ andA have been obtained for the given energye
and valuesl̃ andl, Eq. ~B8! is integrated and, depending on
the boundary conditions imposed forj51 andj5` follow-
ing the methods of Refs. 16 and 15, the energy-normalized
regular solutionX̃5 f̃ or the irregular solutionX̃5g̃ will be
obtained. Forl.0 f̃ behaves as (pl)21/2(j 2 1)(11l)/2 near
j'1, whereasg̃ behaves as2(pl)21/2(j 2 1)(12l)/2. For
l50 f̃ behaves as (j 2 1)1/2 nearj'1, whereasg̃ behaves
as~p!21(j 2 1)1/2ln(j 2 1). Equation~14! is a superposition
of functions of the type of Eq.~B3!. The volume element for
the total wave function isR3(j22h2)djdhdf/8.

Figure 8 shows two examples of contour plots of ellip-
tical BaF orbitalsỸ l̃ l(h,f 5 0) f̃ l̃ (j). Strong polarization
away from the halogen ion is apparent for lowl̃ and l,
whereas for higherl̃ andl the familiar shapes of hydrogenic
orbitals are recovered.
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