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a-halpern@indstate.edu.

One of the overall objectives in teaching physical chemistry
is to make students aware of the grand sweep of knowledge
contained in that subject and how one can apply first-principles
analyses to a vast range of seemingly different topics. In this
context, one would logically like to begin with the microscopic
understanding of matter and its characteristics (quantum chem-
istry and statistical mechanics) and extend this knowledge to the
macroscopic domain to predict measurable bulk properties (e.g.,
thermodynamic and kinetic) of systems.

This article describes an opportunity for students to explore
the domains of statistical mechanics and thermodynamics by
utilizing a quantum chemical approach to the study of intera-
tomic interactions. The focus of this exercise is the argon dimer,
Ar2, which is a paradigmatic example of a van derWaals complex
that is a manifestation of dispersion, or induced dipole-induced
dipole interactions. While any of the rare gas dimers could be
used in this study, Ar2 is chosen because its structure and binding
energy are well-known experimentally, as are its thermodynamic
properties. It is also amenable to a rigorous quantum computa-
tional investigation because its binding energy is sufficiently large
(i.e., 100 cm-1) so as to override more subtle effects, the number
of electrons is not excessive, and the nuclei are not too massive to
warrant the consideration of relativistic effects.

The project described here can be carried out by under-
graduates taking physical chemistry or a computational chem-
istry course, by graduate students, or by students working on a
directed-study project. It can be undertaken by a single student or
by a group in which individuals take on different responsibilities
while working on the components of the project. The results are
wide ranging enough to make it possible for each of the students
in a group to present a portion of the work individually.

Before the details of the study are described, the schematic
outline of the project is presented. One begins by constructing
the interatomic, or pair potential of Ar2, V(r), where r is the
internuclear separation, by carrying out high-level ab initio
quantum chemical calculations. This potential forms the basis of
all the other results obtained in the study. Students will be
impressed to learn that this potential is the key that can be used
to unlock somany of the properties of the argon dimer. They will
see that it provides the connection between the microscopic and
macroscopic domains.

Once V(r) is obtained, the fundamental molecular con-
stants, including the “bond length” and dissociation energy, are
extracted. Then the second virial coefficient, B2, is calculated

using a relationship obtained from statistical mechanics. Also,
from the molecular constants, the entropies and partition
functions of the argon atom and dimer can be computed, and
from this information the standard thermodynamic functions of
dimer formation (and the equilibrium constant) can be deter-
mined.

Calculation of the Pair Potential

The argon dimer potential energy surface (PES) is obtained
by calculating the energy of a pair of Ar atoms as a function of
their internuclear separation. The computational approach
suggested here employs the coupled-cluster method (1) with
single, double, and perturbative triple excitations, CCSD(T) (2),
along with a family of augmented correlation-consistent basis
sets, aug-cc-pVXZ (where X denotes double, triple, and quad-
ruple-ζ: D, T, Q). This method, which can be readily employed
by students using the Gaussian 03 suite of programs (for
Windows or Unix) (3), represents a satisfactory compromise
between rigor and practicality. This high-level method is needed
to properly take into account electron correlation effects that are
important in the type of nonbonded interactions in the argon
dimer and thus represent the shape of the PES reasonably
accurately. Because the calculations employing the quadruple-ζ
basis sets take considerably more time, the points used to
constructV(r)must be chosen judiciously. To achieve the highest
level of computational rigor within the limitations of the
available computing resources, students will obtain three V(r)
surfaces for the argon dimer using basis sets of increasing size and
then extrapolate these surfaces to obtain V(r) in the “complete
basis set” (CBS) limit (4). The details of acquiring these scans,
examples of input files, the method used to obtain the CBS
energies, as well as a table of all energies obtained in the
calculations, are provided in the supporting material.

As a compromise between computational precision (which
would require a higher point density) and computational cost
(i.e., total run times), the V(r) surface was constructed from 35
points representing different Ar-Ar separations between 2.5 Å
and 6.7 Å. The results are illustrated in Figure 1, which shows 31
of the 35 ab initio calculated points. The four points not
included are those between 2.5 and 3.5 Å. They represent the
highly repulsive portion of the PES and are used in the
determination of the second virial coefficient, B2, to be discussed
later.
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Because the Lennard-Jones 6-12 potential

V ðrÞ ¼ 4ε
σ

r

� �12

-
σ

r

� �6
" #

(1Þ

where ε andσ are the well depth and the value of rwhereV(r) = 0,
is frequently used to represent pairwise interactions, it is instruc-
tive to compare the ab initio PES with the 6-12 potential. A
regression analysis of the data yields ε and σ values of 93.2(7)
cm-1 and 3.372(2) Å, respectively. These results compare with
86.1 cm-1 and 3.418 Å as reported by Hirschfelder, presumably
from gas imperfectionmeasurements. Evidently, the ab initio and
6-12 potentials do not map onto each other in great detail. The
CCSD(T)/CBS ab initio well depth and minimum obtained
with the method described in this work, however, compare well
with those from other ab initio calculations (5).

Molecular Constants

Once the points (in cm-1 units) along the Ar2 PES are
obtained, 14 data points along V(r) near the bottom of the well
(from 3.5 Å to 4.4 Å) are fit to a seven-parameter power series (6)

V ðrÞ ¼ a0 þ a2ðr- reÞ2 þ a3ðr- reÞ3 þ a4ðr- reÞ4

þ a5ðr- reÞ5 þ a6ðr- reÞ6 (2Þ
where a0 is the energy at the bottom of the well where r = re, the
equilibrium internuclear separation. The parameter a0 is negative
because zero energy is reached asymptotically at infinite separa-
tion. The well depth, De, is equal to -a0. The parameter a2
accounts for the harmonic property of the potential, and the
remaining constants are used to capture its anharmonic property.
Fitting details are found in the supporting information. The
result of fitting eq 2 to the 14 data points is shown in Figure 2.
The standard deviation of regression is 0.00256, and the seven
regression parameters are a0 = -95.430(1), a2 = 248.4(1), a3 =
-410.8(5), a4 = 433.1(7), a5 =-3501(4), a6 = 151(4), and re =
3.79793(3) Å. The units of an are cm

-1 Å-n.
Using these parameters, the rotational constant, Be, can be

expressed as (7)

Be ¼ h
8π2cμre2

(3Þ

in which h and c are Planck's constant and the speed of light,
respectively, and μ is the reduced mass (one-half the mass of the
Ar atom). The harmonic frequency (ν~e, in cm

-1) is, as expected,
extracted from an expression containing a2

~νe ¼ 1
2πc

ffiffiffiffiffiffiffi
2a2
μ

s
(4Þ

The rotational vibrational coupling constant, Re, is given by

Re ¼ -
6Be

2

~νe

a3re
a2

þ 1

� �
(5Þ

and the centrifugal distortion constant, D (not to be confused
with De), by

D ¼ 4Be
3

~νe2
(6Þ

Finally, the anharmonicity constant, ν~eχe, is calculated from the
expression

~νeχe ¼
Be

8
15 1þRe~νe

6Be
2

� �2

-
12a4re2

a2

" #
(7Þ

The results provided by these calculations are summarized in
Table 1 along with experimental data obtained from vacuum
ultraviolet laser spectroscopy.

Students will be encouraged by seeing how well their cal-
culations agree with the experimental results for the argon dimer.

Figure 1. Argon dimer interatomic potential energy surface, V(r), ob-
tained from CCSD(T)/CBS calculations at selected interatomic separa-
tions, r: • calculated points and ; regression fit to eq 1.

Figure 2. Portion of the ab initio potential energy, V(r): • calculated
points and ; regression fit to eq 2.

Table 1. Values of the Molecular Constants of the Ar Dimer

Spectroscopic Constant This Worka Experimental Valueb

re/Å 3.7978 3.761(3)

De/cm-1 95.430(1) 99.2

Be/cm-1 0.05851 0.05965(8)

ν~e/cm-1 28.96 30.68(3)

Re/cm-1 0.00375 0.00364(10)

D/cm-1 9.55 � 10-7

ν~eχe/cm-1 2.12 2.42(5)
aData obtained from 14 ab initio V(r) points between 3.5 and 4.4 Å and

eqs 2-7. b Data from ref 8.
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The uncertainties in the molecular constants can be obtained
from propagation-of-errors analyses of eqs 3-7 and the respec-
tive standard deviations of the parameters represented in eq 2.
(Students may find some of these tasks challenging.)

For an optional exercise in this project, students can spline
their ab initio potential, including the portion extrapolated to
20 Å (see the discussion in the following section) to an array of
equally spaced points and use a utility such as FINDIF (9) to
diagonalize the potential, thereby obtaining the eigenvalues.
They will find that their potential supports nine bound states.
Using this information they can determine the harmonic and
anharmonic constants. Such an analysis gives ν~e = 23.4(4) cm-1

and ν~eχe = 1.43(6) cm-1. Details are provided in the supporting
material. These values differ from the ones obtained from the
analysis of the V(r) surface using eq 2 (Table 1) because the latter
analysis also takes into account the other molecular constants
listed in Table 1.

The Second Virial Coefficient

Students can now proceed to obtain the second virial
coefficient, B2, defined through the familiar power series expres-
sion for an imperfect gas

PVm ¼ RT 1þ B2

Vm
þ 3 3 3

� �
(8Þ

where P, T, and Vm are the pressure, absolute temperature, and
molar volume, respectively, and R is the gas constant. From
statistical mechanics, the second virial coefficient can be ex-
pressed in terms of V(r) through

B2 ¼ 2πNA

Z ¥

0
½1- e-V ðrÞ=ðkTÞ�r2dr (9Þ

where NA and k are Avogadro's number and the Boltzmann
constant, respectively (10). The integration limits in eq 9 require
that V(r) be evaluated not only for small values of r, but for large
ones as well. This is the reason that four values of V(r) have been
obtained at small r (i.e., 2.5, 2.7, 2.9, and 3.1 Å), points well onto
the repulsive wall of the potential. The integration of eq 9 can be
readily carried out numerically (see the supporting material).
Students will see that the integrand in eq 9 is equivalent to r2 for
r = 2.5 Å (because V(r). kT), so they can confidently represent
it by r2 for an arbitrary number of values down to r = 0.

As for the upper limit of the integration, it is necessary to
obtain values of V(r) well beyond the 6.7 Å high end of the
calculation range to obtain a satisfactory value of B2. To
accomplish this objective, students can learn that for the argon
dimer, V(r) at large values of r is dominated by the attractive
forces between the atoms, which can be approximated in the
induced dipole-induced dipole model (i.e., involving dispersion,
London, or van der Waals forces) by a simple expression
containing a single term in r-6, viz.

V ðrÞ≈-
C
r6

(10Þ

where C is a constant (11). This expression is used to extrapolate
V(r) out to 20 Å, a point at which the integral in eq 9 reasonably
converges. To obtainC, students can fit the last three data points
[i.e., V(r) for r = 6.3, 6.5, and 6.7 Å] to eq 10, which is known as
the London formula. The value of C obtained in this way,
4.148(23) � 105 cm-1 Å6, is not very precise, but when used in

eq 10 nevertheless provides a suitable way to improve on the
accuracy of B2 without having to carry out additional ab initio
calculations.

Because eq 10 attempts to account for the dispersion
attraction between two argon atoms, it is interesting to consider
the constantC in the London equation in the context of classical
electrostatics, that is

C ¼ 3
4
R02I (11Þ

where R0 is the polarizability volume and I is the ionization
energy of the argon atom (12). Students can use eq 11 to check
the reasonableness of the value ofC obtained from their ab initio
calculations. Thus using the ionization energy of Ar (1.2709 �
105 cm-1), they find R0 = 2.086(6) Å3, which is in qualitative
agreement with a reported value of 1.85 Å3 (13).

Now in possession of a pair potential that spans from 0 to
20 Å, students can proceed to determine B2 by carrying out a
numerical integration of eq 9. In doing so forT=300K, they will
obtain, after conversion to cm units, a value of-15.9 cm3, which
is in good agreement with -15.1 cm3 that is obtained from a
meta analysis of gas imperfection data (14). The results obtained
in this section are summarized in Table 2.

Students might wonder why it is recommended that they
extrapolate their potential from 6.7 Å (the largest internuclear
separation in their calculations) to 20 Å. If they examine their
potential graphically it might seem that at 6.7 Å it is close enough
to the limiting value of zero (the potential has a value of about
-4 cm-1 at that point). However, if they were to evaluate the
integral in eq 9 with an upper limit of 6.7 Å, they will find that B2
is about -7.1 cm3, a value that significantly underestimates the
attractive pair interactions between argon atoms. Students
should be encouraged to examine the integrand, I(r), of eq 9
(not to be confused with I in eq 11). They will see that this
function is positive when V(r) > 0 (accounting for repulsive
interactions) and negative when V(r) < 0 (accounting for
attractive interactions); thus underrepresenting V(r) for larger
values of r correspondingly causes the calculated value of B2 to be
too large (not negative enough).

This situation can provide students with a learning experi-
ence in computational work by their calculating B2 from eq 9
using only their data up to 6.7 Å and being asked to determine
why their value is too positive. If they then graph I(r) in eq 9, they
will realize that a significant portion of the true integrand (the
portion for which I(r) < 0) is unaccounted for by their calcula-
tions. A plot of I(r) versus r is presented in the supporting
material. This discovery will lead to suggestions for carrying out
additional calculations or for appropriately extrapolating V(r).

Thermodynamic Properties of the Argon Dimer

Thus far students have used their ab initio argon pair
potential to find the molecular constants of the dimer, an
estimate of the polarizability volume of the argon atom, and

Table 2. Ar Atom Polarazibility and Second Virial Coefficient

Property This Work Literature Value

R0/Å3 2.09 1.85 a

B2/cm3 -15.9 -15.1b

aData from ref 13. b Data from ref 14.
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the argon second virial coefficient. But they can confront an
additional challenge as they consider using their results to obtain
the standard thermodynamic quantities of dimer formation, that
is, ΔrU

o, ΔrH
o, ΔrS

o, and KP
o for

2ArhAr2 (12Þ
OnceΔrH

o, ΔrS
o are found, ΔrG

o and the equilibrium constant
KP

o can be found from the Gibbs equation ΔrG
o = ΔrH

o -
T ΔrS

o and from KP
o = exp(-ΔrG

o/RT). (In this section,
energy units of kJ mol-1 are implicit. Details of the calculations
are provided in the supporting material).

This task begins by expressing ΔrU
o as the difference

between the thermally populated dimer (including its zero-point
energy) and two thermally populated Ar atoms at an absolute
temperature T (300 K is used in this work), that is,

ΔrU� ¼ Eelec, D þEzpe, D þEtrans, D þErot, D þEvib, D

- 2ðEelec,M þEtrans,MÞ (13Þ
where Eelec,D and Eelec,M are the electronic energies of the dimer
and monomer, Ezpe is the zero-point energy of the dimer, and
EX,D(M), is the thermal population of the dimer (monomer) for
the X degree of freedom (i.e., translation, rotation, and vibration).
Because the dimer well depth, De, obtained from the pair poten-
tial, is equal to -(Eelec,D - 2Eelec,M), eq 13 can be rewritten as

ΔrU� ¼ -De þEzpeþEtrans, D þErot, D þEvib, D - 2Etrans,M

(14Þ
In the harmonic oscillator approximation, Ezpe = (1/2)hc ν~e, and
the equilibrium translational, rotational, and vibrational energies
of dimer and monomer are obtained from the expressions for a
diatomic rigid rotator perfect gas in the canonical ensemble (15).
The results are Etrans,D = Etrans,M = (3/2)RT, Erot,D = RT, and

Evib, D ¼ RΘvib
1

eΘvib=T - 1
(15Þ

where Θvib is the vibrational temperature, hc ν~e/k. At this point
some students might become suspicious if they remember that eq
15 is valid for (Θvib/T) < 1; for the argon dimer, this quotient is
about 0.14. They will also realize from their V(r) curve that the
dimer is clearly not a harmonic oscillator.

Now ΔrH
o can be obtained from the definition H � U þ

PV and its application to a perfect gas in eq 12, that is, ΔrH
o =

ΔrU
o - RT. To find ΔrG

o, students will have to calculate ΔrS
o

for dimer formation. Again they will turn to the results of a
statistical mechanics treatment of the diatomic harmonic oscil-
lator-rigid rotator and use the following expressions for the
translational, rotational, and vibrational entropies, Strans, Srot,
and Svib (the electronic entropies of the argon atom and dimer
are both equal to zero because each is a singlet state):

Strans ¼ 5
2
RþR ln

ð2πmÞ3=2
h3

ðkTÞ5=2
P�

" #
(16Þ

wherem is the molecular mass (dimer or monomer) and Po is the
standard pressure, 105 Pa (1 bar). The dimer rotational entropy is
calculated from

Srot ¼ RþR ln
T

σΘrot
(17Þ

in which σ andΘrot are the rotational symmetry number (2 for
the argon dimer) and Θrot the rotational temperature, Behc/k,
respectively. The vibrational entropy is found from

Svib ¼ R
Θvib

T
ðeΘvib=T - 1Þ- 1=2 -R lnð1- eΘvib=T Þ (18Þ

The results obtained in this section are summarized in
Table 3. Values of the monomer and dimer energies, entropies,
and other quantities used in eqs 14-18 are listed in the
supporting material.

Students can be given the option of obtaining the concen-
tration-based equilibrium constant, Kc

o, using an alternate (but
fundamentally equivalent) approach that utilizes the Ar and Ar2
partition coefficients. In this way they will use the relation

Kc� ¼ qD
qM2

e-ΔrU0�=ðRTÞ (19Þ

where qD and qM are the argon dimer and atom partition
functions and ΔrU0

o is the negative of the argon dimer well
depth to the zero-point energy. Expressed in terms of the
calculated quantities, ΔrU0

o = -De- 1/2hcν~e). The dimer
partition function is the product of those for the degrees of
freedom, that is, qD = qD,transqD,rotqD,vib. For the monomer, qM=
qM,trans. The partition functions (again, in the canonical ensem-
ble, and in the harmonic oscillator-rigid rotator approximation,
HORR) are

qD, trans ¼ 2πmDkT
h2

� �3=2

V (20Þ

qD, rot ≈
T

σΘrot
(21Þ

qD, vib ≈ ð1- e-Θvib=T Þ- 1 (22Þ
where mD is the molecular mass of the dimer (eq 20 can also
express the partition coefficient for the monomer, by using mM,
the mass of the monomer). It is important to remind students
that the translational partition function has units of volume, and
in eq 20V is customarily equal to the SI value of 1m3, but for this
work it is more convenient to set V = 10-6 m3 (i.e., 1 cm3).

If students successfully navigate the treacherous waters
involved in performing these calculations (being ever mindful
of units), they should obtain a value ofKc

o that is nearly identical
to that found using eqs 14-18, that is, 140 cm3 mol-1 for T =
300 K. Seeing this agreement will reinforce the fundamental
applicability of statistical mechanics to their project.

However, if students expect as good an agreement between
their thermodynamic calculations and the experimental data and

Table 3. Values of the ThermodynamicQuantitiesfor the Reaction 2Ar/
Ar2 at 298.15 K

Quantity/Unit Valuea

ΔrU
o/(kJ mol-1) 0.1096

ΔrH
o/(kJ mol-1) -2.385

ΔrS
o/(kJ mol-1 K-1) -0.05104

ΔrG
o/(kJ mol-1) 12.89

KP
o/(bar-1) 0.005611

Kc
o/(cm3 mol-1) 139.1

aData based on the calculations described in this work.
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as they found with the molecular constants, they are in for a
surprise. This is because the value of Kc for the argon dimeriza-
tion at 300 K, obtained from mass spectrometric studies, place
this value at about 18.7 cm3 mol-1 (16). Detailed statistical
mechanical calculations provide a value of 21.9 cm3 mol-1 (17).
The reason that the statistical mechanical calculations described
earlier overestimate Kc is that the HORR model approximation
does not hold in this application. This should not, of course,
come as a surprise to the students. Furthermore, they can be
guided into reasoning why this model overestimates Kc. The
problem lies with the calculation of the argon dimer entropy (or
equivalently, the rovibrational partition function). It can be
pointed out that entropy of a system is an indication of its
capacity to dissipate energy among energy levels. The HORR
model assumes that there are an infinite number of accessible
rovibrational states that can be populated according to its
degeneracy and energy level. This can be seen in the fundamental
expression of the rovibrational partition function, qrv (for a
nondegenerate vibrational mode), viz.

qrv ¼
X
J , n

gJ e-Ej, n=ðkTÞ (23Þ

where J and n are the rotational and vibrational quantum
numbers, gJ is the rotational degeneracy (2J þ 1), and EJ,n is
the rovibrational energy relative to the zero-point energy. The
number of accessible levels in the argon dimer is considerably less
than those implicit in theHORRmodel. This discrepancy can be
directly traced to the value of qrv, which from eqs 21 and 22 is
calculated to be 1.37 � 104, whereas the empirical value of qrv,
obtained from eq 19, and the experimental value ofKc, andΔrU0

from this work, is 1.74 � 102.
Curious students will wonder how one can cast aside the

HORR model and obtain a more realistic value of qrv. One
approach would be to diagonalize the ab initio pair potential
(obtain the anharmonic vibrational eigenvalues), then add to each
energy level the appropriate number of rotational levels such that
the total energy does not exceed the dimer dissociation energy and
then carry out the sum over states indicated in eq 23. But even this
approach, although an improvement, is not complete because the
effective rovibrational potential contains, in addition to the
“bound” states (those with energies less than De), “quasibound”
states that have energies greater than De. This situation arises as a
consequence of Newton's third law. For a rotating molecule, the
centrifugal force is counterbalanced by the restoring force, which is
accounted for by V0

0(r), the derivative of the potential energy
curve for the rotationless molecule (J = 0). The centrifugal force is
equal to L2/μr3, where L is the angular momentum and μ is the
reduced mass. Further treatment (17) gives the result

V ðrÞ ¼ V0ðrÞþ L2

2μr2
(24Þ

whereV(r) is the potential energy of the rotatingmolecule ( J> 0).
The L2/μr2 term represents the classical rotational kinetic energy.
Students will recognize that the quantummechanical treatment of
a rotator gives the rotational energy as J(J þ 1)/8π2cμr2. We can
therefore express the effective pair potential for a rotatingmolecule
as

VJ ðrÞ ¼ V0ðrÞþ JðJ þ 1Þ h
8π2cμr2

(25Þ

where V0(r) corresponds to the ab initio potential calculated in
this work. An example of the impact of molecular rotation on the
PES is shown in Figure 3, which presents VJ(r) for J = 30. Note
that although the well depth of this high rotational state is about
55 cm-1, which compares with 95.2 cm-1 for the J = 0 state, the
potential curve shows amaximum value of about 13 cm-1 (at ca. 6
Å) above the dissociation limit, and thus gives rise to a quasibound,
or metastable state, that contributes to the entropy of the dimer.

A complete accounting of all rovibrational states, bound
and quasibound, requires the diagonalization of all VJ(r) poten-
tials, that is, eq 25, for all values of J. This undertaking is beyond
the scope envisioned for this project.

Summary

By working on and completing this project, students will
gain first-hand experience in seeing how, from first principles and
the application of quantum chemical techniques, they can obtain
a wealth of information about a diatomic molecule (the argon
dimer) that can be tested by experimentation. This information
includes the molecular structure and constants, the second virial
coefficient, the polarizability volume, and the standard thermo-
dynamic functions of formation (and the equilibrium constant).
The project affords students the opportunity to verify the
interrelationship among quantum chemistry, statistical thermo-
dynamics, and equilibrium thermodynamics.
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Supporting Information Available

The details of acquiring these scans, examples of input files, the
method used to obtain the CBS energies, as well as a table of all energies
obtained in the calculations. This material is available via the Internet at
http://pubs.acs.org.


