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Closing Remarks 

New Dimensions in Reaction Dynamics and Electronic Structure 

Dudley R. Herschbach 
Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138, U.S. A. 

The traditional functions of a Faraday Discussion: ‘to celebrate, to elucidate and to 
debate’, have again been amply fulfilled! I am grateful for the opportunity to give the 
customary benediction, on behalf of our newly inspired but now very tired clan. I 
welcome also this chance to express my own thanks for memorable meetings that over 
a span of more than thirty years have punctuated and accentuated the development of 
reaction dynamics. 

Fig. 1 indicates the series of Discussions most directly antecedent to this one, each 
specified by year and site. This is the Golden Jubilee of the 1937 meeting at Manchester; 
it was the first on Reaction Kinetics and featured papers on potential-energy surfaces 
and transition-state theory by Henry Eyring, Michael Polanyi and Eugene Wigner. Also 
especially pertinent are the 1954 and 1979 meetings, both held here at Birmingham. I 
was still an undergraduate in 1954, but remember the excitement of my mentor in 
chemical kinetics, Harold Johnston, when he was invited to present a paper. A couple 
of years later, as a graduate student, I was intrigued to discover in the discussion volume 
the remarkable paper by Bull and Moon. This paper (which has notable neighbours, 
including contributions by Kistiakowsky, Norrish, Porter, Eigen . . . ) described the 
bombardment of Cs vapour by a pulsed, accelerated CCl, beam swatted by a high-speed 
rotor. My first Faraday Discussion came in 1962 at Cambridge, where I especially 
enjoyed talking with John Polanyi about molecular rotors in reactions. After five 
subsequent Discussions, we are both still spiraling about with high angular momentum! 
At the 1979 meeting, the Silver Jubilee of his swatting paper, I had the pleasure of 
meeting Prof. Moon and presenting work by Riley and Siska on alkali metal+CCl, 
reactions which quantitatively confirmed his results. This also revealed rainbow structure 
in the product angle and energy distributions which indicated that the dynamics ‘involve 
spinning and swatting, much as in the apparatus of Bull and Moon’. 

We are delighted that Prof. Moon is again with us. Knowing his fondness for 
versifying levity as well as levitating rotors, I want to offer these lines to renew our 
thanks for his bold experiment, literally the stuff that fables are spun of: 

Hey, diddle, diddle: the carbon tet riddle, 
The Bull whirled round with the Moon! 
The little gas puffed to move so fast, 
But the alkali speared it soon. 
Alpha and beta, E-prime coupled theta, 
Reaction urged by a harpoon. 
A rainbow was left to show for it all, 
And the salt ran away with the tune! 

Retrospect and Prospect 

On looking back, however, what strikes me most about reaction dynamics as a field is 
the prevalence of centripetal rather than centrifugal evolution. Despite major advances 
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Year I 

War wick ‘83 

Birmingham 

‘73 London 

‘54 t , T i r m i n g  ham 

Fig. 1. Faraday discussions pertaining largely to reaction dynamics. Numbers labelling points 
indicate volume numbers (prefix T indicates Trans. Furuduy SOC.). 

in experimental/ theoretical/ computational repertoire and in chemical scope, this 
remains a cohesive, zestful field. Also striking among recruits new and old is an inviting 
sense of community, fostered both by the fundamental appeal of chemical dynamics 
and by expanding, uncrowded frontiers. This is indeed what Michael Polanyi envisioned 
in his essays, The Republic of Science’ and The Tacit Dimension2 

The papers and posters at this Discussion exemplify three happy trends. ( 1 )  The 
experimental arena basks in the glow of an ‘age of laser enlightenment’. New aspects 
include extending state-selection of reagents or analysis of products, particularly to 
ion-molecule reactions; providing versatile new beam sources for refractory materials; 
and enabling studies of reactive scattering of electronically excited atoms. (2) In the 
collision theory arena, classical trajectory, phase space, semiclassical and quanta1 scatter- 
ing treatments are now much better integrated and implemented. For a given potential- 
energy surface, many dynamical properties can be reliably calculated. Frequently, two 
or three methods can be intercompared. The emphasis is on providing practical predictive 
or diagnostic results rather than theory swaddled in formalism. For instance, the reactive 
flux correlation function presented by Miller offers both a link to transition-state rate 
constants and a generic classification of reaction dynamics. ( 3 )  In the electronic structure 
arena, since potential-energy surfaces of requisite accuracy can as yet only be calculated 
for the simplest systems, more attention is being devoted to qualitative or semiquantitative 
concepts that can guide chemical interpretations of dynamical features. A prime 
example, lucidly treated by Dunning, is the concept of reaction path, so ‘firmly embedded 
in the lore of chemistry’. Since only a swath across the potential surface need be 
computed, this approach is feasible for reactions involving four or more atoms. Like 
the reactive flux correlation function, the reaction path reaches back to the ancestral 
Manchester Discussion of fifty years ago. 
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Dudley R. Hersch bach 467 

Some vigorous subfields of reaction dynamics, absent or under-represented here, are 
discussed in other recent forms. These include laser photodissociation, the focus of a 
Faraday Discussion last year;’ a broad and eclectic field now called dynamical 
stereochemistry or stereodynamics, treated at a Fritz Haber workship in Je ru~a lem;~  and 
the manifold dynamics of molecular clusters or van der Waals complexes, the subject of 
several recent  conference^.^ 

Prospects are heartening for most parts of reaction dynamics. However, in these 
broad-brush benedictory comments I prefer to submit tacit optimism. This allows me 
to discuss briefly two specific topics that appear especially promising. Both involve 
angular momentum and literally bring new dimensions to reaction dynamics and to 
electronic structure. 

Angle-Angular Momentum Correlations 

In effect, the potential-energy surface acts as a polarizing lens that induces anisotropies 
and correlations among the initial and final relative velocity and rotational angular- 
momentum vectors. Much of this dynamical information is seemingly lost by averaging 
over the random orientations of impact parameters and reactant molecules. That is why 
even single-collision experiments are not sufficient to characterize a potential surface, 
if limited to scalar properties such as energy distributions or to vector properties that 
depend on only a single angle, such as the product angular distribution. Yet in principle 
much of the information otherwise lost to the orientational averaging can be recovered 
from higher-order vector properties, termed angular correlations, that involve simul- 
taneous measurement of two or more angles. 

The pursuit of this ‘otherwise lost’ information comprises a chief theme of stereo- 
dynamics.‘ Our rather fitful progress has been reviewed elsewhere.’ Unfortunately, the 
intimate analysis of angular momentum required for some aspects has caused many 
colleagues to complain that they are ‘certainly lost’. These colleagues will soon be 
rescued by a forthcoming text on angular momentum by Zare,8 surely destined to be a 
canonical classic of chemical physics. Here I wish to examine two instructive questions 
pertaining to angle-angular momentum correlations. These stem from my paper with 
Kim at this meeting, but were held in reserve as deserving of emphasis in a wider context. 

The Observability of an Unobservable Angle 

Fig. 2 illustrates the triple-vector correlation among k, k‘ and j ’ ,  the initial and final 
relative velocities and the product rotational angular momentum, respectively. We have 
asserted that although the distributions of both k’ and j ’  must have azimuthal symmetry 
about k, when a subset is selected of k’ vectors with particular j ’  (or vice versa), this 
subset in general will not have azimuthal symmetry about k. Accordingly, the dihedral 
angle 4 between the k, k’ and k, j ’  planes need not be uniformly distributed. A 
simultaneous measurement of two product vectors, k’ and j ’ ,  would make 4 observable 
and thereby offer a means to undo the ‘dart-board’ averaging over the random azimuthal 
orientations of initial impact parameters. The quasiclassical trajectory calculations by 
Kim indeed show that the 4 distribution is a useful diagnostic property. The same 
situation will obtain for analogous angles in other vector correlations.6 

In urging that 4 and other such neglected angles now serve as diagnostic properties, 
we meet the first of the two instructive questions. Is not 4 unobservable after all 
according to quantum mechanics? Only the magnitude and one projection of an angular 
momentum vector can be specified. Since we envision a measurement that specifies 
both the magnitude of j ’  and the polar angle x between j ’  and k, the azimuthal angle 
about k should be unobservable. That is so, for any particular measurement. But this 
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G- k 

I I 

k 

k '  

Fig. 2. Three-vector correlation among initial and final relative velocity vectors, k and k', and 
product rotational angular momentum vector j ' .  Upper pair of diagrams indicate the azimuthal 
symmetry about k of the k' and j '  vectors inherent when these are observed separately. Lower 
pair of diagrams indicates how the three-vector correlation can give information about the dihedral 

angle 4, in effect undoing the azimuthal averaging about the initial relative velocity. 

can be circumvented by measuring the angular momentum using several different choices 
for the axis of quantization. The data can then be combined to obtain moments of the 
4 distribution as well as those of x and the scattering angle 8 between the k and k' 
velocity vectors. 

employs an expansion of the three-vector correlation in suitable 
orthogonal polynomials: 

The 

This is just the generalization of the familiar expansion of a single-angle function in 
Legendre polynomials. The three-angle PvhP functions are rotationally invariant combi- 
nations of spherical harmonics; we have called them 'Biedenharn polynomials', to 
acknowledge a particularly lucid treatment of angular correlations." The expansion 
coefficients Au,+,, characterize reaction stereodynamics in much the way that spectroscopic 
vibration-rotation parameters describe the force field of a molecule. 

Eqn (1 )  is the classical version; the quanta1 version for any particular choice of 
quantization axis z corresponds to a uniform azimuthal average about the z direction. 
This does not affect 8, which relates unquantized vectors, but replaces x and 4 by a 
single angle with cosine proportional to the j '  z scalar product. The A,,+,, coefficients 
are unaffected by this average. Thus, once these are determined either from theory" or 
by combining experimental data taken with different choices of the L axis,'* we can 
resurrect from eqn (1) the classical version of the three-vector correlation, including its 
4 dependence. In this sense, quantum mechanics in effect allows a dihedral angle such 
as 4 to be observed even when the uncertainty principle does not permit this in any 
particular measurement. 
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I‘ 

1 O O f  

50fi  

I’ 

pure I I  

i’ pure I 

Fig. 3. Phase-space diagram for product angular momentum. ( a )  Straight lines indicate conserva- 
tion constraints imposed by the triangle condition on the magnitudes: l f ‘ + j ’ l >  J l f ’ - j ’ / .  Only 
points within the three-sided ‘box’ thus defined are allowed; for the case pictured, J = 50 h. 
Dashed curves show energy constraint; outer curve ( i )  computed for no vibrational excitation of 
products (fv = O ) ,  inner curve (ii) for most probable excitation (fv = 0.4). ( b )  Dashed solid lines 
define four regions defined by perpendicularity of the indicated pairs of vectors. These loci thus 
are determined from the Pythagorian theorem, which gives 1” = J 2  * j ”  and 1” = j f 2  - J 2 .  Inside 
each region are shown the signs of Z ’ e j ’ ,  f ‘ . J  and j ’ . J ,  respectively, with corresponding 

orientations of J (solid), I’ (dashed) and j ’  (dotted). 
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A Kinematic Diagram for Angular Momentum Orientation 

In the design and interpretation of single-collision experiments, analysis of the kinematic 
properties imposed by conservation laws has a key role, It provides means to recognize 
and evaluate features arising from the dynamic properties governed by the potential- 
energy surface. At the 1962 Discussion, a velocity vector diagram derived from conserva- 
tion of energy and linear momentum was applied to the analysis of product angular 
distributions; this is referred to as a ‘Newton Diagram’. Here we meet our second 
instructive question. How can we construct an analogous diagram from conservation 
of angular momentum for kinematic analysis of orientation angles? 

Fig. 3 displays the components from which such a diagram may be assembled. For 
a fixed magnitude of the total angular momentum, J = I t +  j ’ ,  the magnitudes of the exit 
orbital momentum and product rotational momentum correspond to points within a 
tilted, open-ended box defined by vector addition. The accessible portion of this box 
is defined by energy d i ~ p o s a l . ’ ~  If the reaction exoergicity and product vibrational 
excitation are specified, then the magnitudes of I’ and j ’  are related by 

where A is the reciprocal of 2 p ’ b t 2 / h 2 ,  involving the reduced mass of the product 
atom + diatom and the exit impact parameter, B is the rotational constant of the product 
molecule and fv is the fraction of the available energy E,,, which appears in product 
vibrational excitation. In the phase-space theory it is customary to fix the A parameter 
by employing the venerable centrifugal barrier ~r i te r ion . ’~  The dashed lines shown in 
fig. 3( a )  were obtained in this way for the H + Li, reaction. Other criteria will be more 
suitable in many cases;9 the corresponding A parameters can readily be evaluated for 
any specified distribution of exit impact parameters. l4 

Within the domain of 1’, j ’  phase space allowed by conservation of angular momen- 
tum, there are four ~ u b d o m a i n s ’ ~  that differ in the relative orientations of the J’ ,  I’ and 
j ’  vectors. The dashed lines shown in fig. 3 ( b )  define these regions. Since the energy 
constraint of fig. 3 ( a )  imposes different weights on the four regions, by combining these 
diagrams we can obtain quick estimates for directional properties such as ( I ’  j ’ ) .  For 
instance, in the H + Li, case, we see that although there is cancellation between regions 
with I’ j ’  positive and negative, the negative regions are dominant; hence I’  and j ’  tend 
to be antiparallel, as found in Kim’s trajectory study. For convenient reference, this 
useful combined diagram, fig. 3( a )  and ( b ) ,  needs a name. We suggest ‘Holmes Diagram’. 
The immortal sleuth did in fact have some adventures with angular momentum,15 and 
this centennial of his literary birth seems a good occasion to bestow on him honorary 
fellowship in the Royal Society of Chemistry. 

A I ’ ( I ’ + l ) + B j ’ ( j ’ + l ) = ( l  -fv)Etot (2) 

Dimensional Scaling for Electronic Structure 

Virtually all ab initio electronic structure calculations now performed use the same basic 
method, the Hartree-Fock approximation (HF) plus configuration interaction (CI). The 
enormous growth in computing power has made feasible highly accurate HF calculations 
for many-electron systems, but the small residual error, termed the correlation energy 
(CE),  remains recalcitrant because CI calculations are extremely arduous and slowly 
convergent. This is a crucial problem for reaction energies and often varies strongly 
with the geometrical configuration of the atoms. For instance, current calculations for 
the F+H,  reaction employ millions of terms in the CI wavefunction but still have an 
error of ca. 30% in the activation energy.I6 Reliable means to predict activation energies, 
reaction intermediates and pathways could resolve myriad ambiguities in interpreting 
experiments and identifying reaction mechanisms. 

Recently, we have explored a new approach using dimensional scaling methods.”-*’ 
Although so far fully implemented only for two-electron atoms, these methods offer 
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Dudley R. Herschbach 47 1 

remarkably simple and accurate computational strategies for the correlation energy. 
Dimensional scaling also brings out novel heuristic concepts, including semiclassical 
features with uncanny links to the prequantum valence notions of Lewis and Langmuir. 

The dimensional scaling approach has proved useful for many problems not amenable 
to ordinary perturbation methods, especially in statistical mechanics, particle and nuclear 
physics, and quantum optics. Typically the problem is solved analytically for some 
‘unphysical’ dimension D = 3, where the physics becomes much simpler, and then 
perturbation theory is employed to obtain an approximate result for D = 3. Most often 
the analytic solution is obtained in the D -+ 00 limit, and 1/ D is used as the perturbation 
parameter. In our study of the correlation energies for the ground state of two-electron 
atoms, we find the problem can be solved exactly in two limits, D --+ co and D -+ 1, and 
to a good approximation the CE is just a linear function of 1/D. Linear interpolation 
between the exactly known limits gives total energies for D = 3  and 2 2 2  accurate to 
0.005 ‘/O or better, comparable to the best available configuration interaction calculations. 

The Schroedinger equation is readily generalized to an arbitrary spatial dimensional- 
ity D, which denotes the number of Cartesian coordinates specifying the position vector 
for each electron relative to the atomic nucleus fixed at the origin. The Laplacian and 
Jacobian change form but not the potential energy.22 For any central force problem, 
the radial Hamiltonian in D-dimensions is the same as for D = 3, except that the orbital 
angular momentum I is replaced by A = I +;( D - 3). As noted long ago by Van Vleck,” 
in this case an isomorphism exists between angular momentum and dimensionality such 
that each half-unit increment in I is equivalent to a unit increment in D. For instance, 
the lowest P state for D = 3 corresponds to the lowest S state for D = 5. For a hydrogenic 
atom, the ground-state energy is given by -&Z’/K’ hartree and the radial probability 
distribution has its maximum at K’ /Z  bohr, where K = $( D - 1). Thus the energy vanishes 
as D -+ 00 and becomes singular as D -+ 1.  

In treating other systems we use dimension-scaled units, proportional to the hydro- 
genic energy and distance, and thereby make the scaled energy finite in both limits. 
Likewise, we rescale the wavefunction to incorporate the square root of the D-dependent 
Jacobian volume element. This simplifies the Laplacian, explicitly displays the cen- 
trifugal potential, and reduces the Jacobian for the rescaled wavefunction to unity so 
that D may be varied with no further concern for implicit dimension dependence. 

Lewis Structures and Langmuir Vibrations 

For large D the rescaled Hamiltonian for any atom or molecule takes a perspicuous 
form. It consists of kinetic-energy terms, all proportional to 1/D2, and an effective 
potential, independent of D, comprised of the rescaled centrifugal energy and the 
familiar Coulombic interactions. In effect, the factor h2/  me involving Planck’s constant 
and the electronic mass, which occurs in the unscaled kinetic energy, is replaced by 
1 / D 2  in the scaled version (whereas this factor cancels from the scaled centrifugal 
potential). The limit D --+ 00 thus is tantamount to h --+ 0 and/or me --+ 00 in the kinetic 
energy. The electrons then assume fixed positions relative to the nuclei and each other 
which correspond to the minimum of the effective potential, the sum of the rescaled 
centrifugal and Coulombic terms. We call this the Lewis structure; it can be calculated 
exactly for any atom or  molecule and provides a rigorous version of the qualitative 
electron-dot formulae introduced in 1916. 

For D finite but very large, the electrons are confined to harmonic oscillations about 
the fixed positions attained in the D -+ limit. We call these motions Langmuir 
vibrations, in view of his prescient suggestion in 1919 that ‘the electrons could. .  . rotate, 
revolve, or oscillate about definite positions in the atom’. In the dimensional perturbation 
treatment the first-order term, proportional to 1/ D, corresponds to these harmonic 
vibrations, so the coefficient of this term is calculable from the curvatures of the effective 
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472 Concluding Remarks 

Fig. 4. Radial probability distribution for a ground-state hydrogenic atom in D-dimensional 
space. (Values of D are shown.) The curves are normalized at the maximum, which occurs at 

R,,, = [$ (D - l>]'/Z. 

potential about its minimum. Accordingly, standard methods for normal mode analysis 
of molecular vibrations24 become directly applicable to electronic structure. 

From Pseudoclassical Limit to Hyperquantum Singularities 

The large-D limit which emerges from dimensional scaling may be termed pseudo- 
cZassicaZ, to indicate that it is not the same as the conventional classical limit obtained 
by k - co for a fixed dimension.25 Since the unscaled centrifugal potential is proportional 
to k2, it does not contribute to the conventional limit. With dimensional scaling, however, 
the centrifugal term introduces barriers which prevent the electrons from falling into 
the nucleus, colliding with each other or finding the unstable trajectories" that exist 
when they are opposed by 180". In short, adding 'extra' angular momentum as represen- 
ted by D cures some major ills of the old quantum theory and thus invites use of modern 
semiclassical methods. 

As D decreases further, the electron oscillations become increasingly anharmonic 
and change character from semiclassical to semiquantal. Eventually, for low D there 
occur the wild excursions corresponding to a strongly quanta1 domain. Fig. 4 illustrates 
for the hydrogen atom this progression in the radial distribution function. For two- 
electron atoms, the dependence on both D and 2 has been mapped out by Loeser." 
He generalized to arbitrary D both the Hylleras-Pekeris and Hartree-Fock algorithms, 
and thereby obtained very accurate ground-state total energies and correlation energies 
for a wide range of 2 and for D = 00 down to below D = 1 .  

These results were complemented by an analysis of the low-D regime by D 0 ~ e n . l ~  
The D --+ 1 limit is tantamount to r? -+ 00 in the unscaled wave equation, hence represents 
a hyperquantum limit. Since the centrifugal potential disappears and the Coulombic 
interactions are replaced by delta functions,22 this limit has an exact ~olu t ion .~ '  The 
dimension dependence is dominated by singuiarities at D = 1,  arising from a second- 
order pole (like the hydrogenic atom but with a different residue) and a congruent 
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(ii i)  

Fig. 5. Variation of Lewis structures ( D  = CO) for two-electron atoms in the symmetry breaking 
region (at left). Corresponding values of 2, rm and 8, are shown. Solid lines indicate structures 
that pertain to global minima, dashed those that pertain to less stable local minima as pictured 
schematically (at right): (i) single minimum; (ii) triple minima, symmetric well lowest; (iii) triple 
minima, three wells equally low; (iv) triple minima, asymmetric wells lowest; (v) double minima. 

first-order pole. Deducting the readily calculable contributions from these poles 
markedly improves the efficacy of semiclassical dimensional perturbation expansions. 

Symmetry Breaking At Low 2 or Large R 
The Lewis structure for helium and other two-electron atoms with 2 2 2 is symmetrical; 
the D -+ 00 effective potential has a single minimum, with the electrons equidistant from 
the nucleus. The angle between the radii is obtuse rather than linear, since it reflects 
the competition between centrifugal repulsion (minimal at 90") and interelectron repul- 
sion (minimal at 180"). For helium this angle is 8, = 95.3", as compared to COS-~{COS 0) = 
93.1" for the D = 3 atom. However, when the nuclear charge drops below a critical 
value, 2, = 1.2279 . . . , the force constant for the antisymmetric stretching vibrational 
mode becomes negative. The symmetric configuration then becomes a saddle point, 
and the effective potential acquires two equivalent unsymmetrical minima that differ 
only by interchange of the electrons; these Lewis structures have one electron much 
closer to the nucleus than the other, as in the actual hydride ion. Fig. 5 shows how the 
electron geometry and the effective potential change in the transition region; for a short 
range just above Z,,  triple minima interpolate between the single and double minima 
regimes.** 

Pu
bl

is
he

d 
on

 0
1 

Ja
nu

ar
y 

19
87

. D
ow

nl
oa

de
d 

by
 M

IT
 L

ib
ra

ry
 o

n 
2/

3/
20

19
 5

:0
1:

52
 P

M
. 

View Article Online

http://dx.doi.org/10.1039/dc9878400465


474 Concluding Remarks 

Fig. 6. Effective potential surfaces for the hydrogen molecule at D = 00 and various internuclear 
distances (bohr units), R :  ( a )  0, ( b )  1,  (c)  2 and ( d )  3. These plots pertain to global minima, 
for which the electrons reside on a cylinder of radius p coaxial with the molecular axis ( p ,  = p 2 ) ,  
at equal distances z above and below the plane bisecting the nuclei ( 2 ,  = - z2) .  The R = 0 united 
atom limit pertains to helium and exhibits a single minimum corresponding to the symmetrical 
Lewis structure of fig. 6 .  Symmetry breaking occurs for R > ca. 0.91 11, and a double minimum 
structure becomes increasingly pronounced for R = 1 ---* 2 -+ 5. Not evident are minor subsidiary 

minima (with z1 = z2)  in which both electrons are above or below the bisector plane. 

This symmetry breaking transition, although confined to a narrow range of 2, has 
important repercussions elsewhere. It introduces a square-root branch point singularity 
in the zero-point energy of the Langmuir vibrations, which determines the coefficient 
of the first-order term in the 1/D perturbation expansion. The effects of this singularity 
become particularly significant in the correlation energy. However, Loeser has found 
a satisfactory approximation which exploits the asymptotic character of the dimensional 
perturbation This simply utilizes the 1/D term up to the lowest non- 
vanishing order in 1/Z; as typically happens with asymptotic series, it turns out that 
‘less is more’. 

In the Lewis structures for molecules, analogous symmetry-breaking transitions 
appear when either the nuclear charges or internuclear distances are varied. Fig. 6 
shows effective potentials for the hydrogen molecule derived by Frantz.29 When the 
separation R between the nuclei is small, the Lewis structure has the electrons in the 
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R 
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-- R 
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I I I I I I 1 1 1 1 I 
0 1 2 3 4 5 

internuclear distance, R 

Fig. 7. Variation of dihedral angle for Lewis structures of hydrogen molecule with internuclear 
distance (bohr units). Symmetry breaking occurs at R = 0.91 11, where 4,,, = 97.51"and p,,, = 0.9195; 

stick figures show typical structures at smaller and larger R. 

plane bisecting the molecular axis, but when R becomes large enough the potential 
acquires two pairs of double minima. One pair corresponds to localizing each electron 
on a different nucleus; the other pair, much less favourable energetically, has both 
electrons on one or the other nucleus. These 'electronic isomers' thus represent distinct 
valence bond structures. Fig. 7 gives another perspective, showing the dihedral angle 
(certainly unobservable!) between two planes hinged on the molecular axis, each contain- 
ing one of the electrons. When viewed along the molecular axis, for small R the Lewis 
structure resembles that for the helium atom ( R  = 0). As the critical internuclear distance 
is approached, the optimum dihedral angle opens up by a few degrees. At larger R, 
the dihedral angle decreases rapidly towards 90" for the most favourable structure 
(peroxide-like) but opens up further for the less favourable one (amino-like). It remains 
to be seen whether tracing out such features of these readily calculable Lewis structures 
will prove a useful complement to the traditional orbital pictures, but the prospect is 
inviting, particularly for analysis of electronic pathways in reactions. 

Overt Strategies and Hidden Virtues 

At this early stage in applying dimensional scaling to electronic structure, the emphasis 
is on assessing possibilities. Most computations thus far have simply employed perturba- 
tion expansions in powers of 1/D. In every case treated, when the hyperquantum and/or 
symmetry breaking singularities are taken into account, we find that even the first two 
terms (zero- and first-order), corresponding to the Lewis structure and Langmuir vibra- 
tions, give accuracy comparable to or better than the Hartree-Fock method. It appears 
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that treating electrons as if they were classical particles vibrating harmonically about 
fixed sites actually may provide as good a starting point for quantitative calculations 
as the conventional orbital description of wave mechanics. 

The hydride ion provides a striking example, since restricted Hartree-Fock theory 
fails to predict the stability of the ground state. It is an extreme case: for D = 3, only 
the ground state and the doubly excited 2p2’Pe state are bound, while for an 
infinitesimally larger nuclear charge, there are infinitely many bound states. Likewise, 
for D=m one of the electrons escapes into the ionization continuum. Doren found 
that the very simple first-order dimensional expansion, determined just from the hydro- 
genic contribution at D = and the hyperquantum pole terms at D = 1 gives both bound 
states for H- at D=3 with an accuracy of a few tenths of a percent.28 Both states are 
obtained in a single stroke, by virtue of an exact interdimensional degeneracy” between 
the excited state at D = 3  and the ground state for D=5. In this approximation, the 
poles at D = 1 are solely responsible for the stability of the atom, so much of the effect 
of short-range electron repulsion evidently is contained in the residues of those poles. 

By augmenting the Lewis + Langmuir terms with insightful approximations, Loeser 
has devised an elegant and remarkably satisfactory treatment of N-electron atoms.21 He 
greatly simplified the analysis by postulating that in the Lewis structure, the electrons 
are equidistant from one another and equidistant from the nucleus. Then the minimiz- 
ation of the effective potential involves only two free parameters, a single distance and 
a single angle, and the geometry and energy for D + 00 are obtained from the smallest 
positive root of a quartic equation. The minimum puts the electrons at the corners of 
a regular N-point simplex, a ‘hypertetrahedron’, while the nucleus lies along an axis 
that passes perpendicularly through the centroid. Prof. G. N. Lewis would surely be 
delighted at this generalization of his cubical atom! 

To take account of the Pauli principle, Loeser assumed that the spin and symmetry 
rules are unaltered in D-space and related the various Langmuir vibrational modes to 
the familiar electron configurations lnlll . . . nN!N) in the double limit 0, -+ 00, where 
both representations become exact. Also, as already noted, to avoid or reduce contribu- 
tions from symmetry-breaking transitions, Loeser deleted terms beyond the lowest 
nonvanishing order in 1/Z from the Langmuir vibrations. In this way he obtained total 
energies with maximum errors of only ca. 1 % ,  for atoms with up to N = 100 electrons. 
In subsequent work Loeser has found calculations at the same order of approximation 
yield correlation energies that agree to within the estimated uncertainties with most 
known values. 

From our current perspective, dimensional scaling offers two promising computa- 
tional strategies for correlation energies. One route is to use the H F  method in the 
conventional way but to supplement or replace the CI calculations by a 1/D expansion 
to evaluate the CE corrections.18 This relies on the fact that in the limiting cases 
(pseudoclassical and hyperquantum) used to construct the perturbation expansion, the 
complete Hamiltonian is solved. The ability of the expansion to represent the D=3 
solution thus does not depend on the magnitude of the interaction but only on its 
dimension dependence. For multielectron systems, the location of the important hyper- 
quantum singularities will not be evident beforehand. However, Goodson has developed 
a powerful moment method2’ for computing to high accuracy the perturbation coefficients 
of the 1/D series. With this he has recently evaluated the coefficients for helium to 20 
significant figures, up to order 15.  Since the power series itself is asymptotic, it is not 
directly useful. However, Pad& approximants constructed from the coefficients yield 
extremely accurate energies (as well as the location and residues of the hyperquantum 
poles). 

The other dimensional scaling strategy aims to improve the H F  approximation and 
thereby reduce the magnitude of the CE correction. As with the analogous mean-field 
approximation in statistical mechanics, the correlation error in the H F  method is expected 
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0 0.1 0.2 0.3 0.4 0.5 
S = l / D  

Fig. 8. Approximate correlation energies (as percentage of total energy) for the ground-state 
helium atom as functions of 6 = 1/D, for four choices of separable 'modified Hartree-Fock' 
wavefunctions ( z  = 2). Each is constructed from factors that depend on a single coordinate, as 
indicated. The coordinates denoted by s and t are proportional to r ,  f r 2 ,  respectively. The result 
for normal-coordinate separation ( q l ;  q2; q3)  coincides with abscissa axis. ( a )  ( r , ;  r 2 ) ,  ( b )  ( r , ;  r,; 0); 

(4 (s ;  t ) ,  (a (s; t ;  0). 

to diminish as D increases. This is because fluctuations decrease in proportion to D-"', 
as illustrated in fig. 4 for the H atom. However, whereas the mean-field approximation 
for critical exponents of phase transitions becomes exact for sufficiently large D, for 
the H F  approximation the C E  remains non-zero and relatively large even for D --+ a. 
As a function of the total energy, the CE for the helium atom varies from 2.3% at the 
D -+ 1 limit to 1.5% for D = 3  to 0.99% at the D -+ rn limit. 

limit is evident from the dimensional 
perturbation treatment. The H F  wavefunction, constructed as a product of one-electron 
orbitals, lacks any explicit dependence on the angle 8 between the electron radii. Hence 
this angle enters only in the Jacobian volume element, which contains (sin 8)O-*; 
therefore as D + 00, the angle becomes fixed at 90". The corresponding Lewis structure 
is in error simply because this constraint on the angle does not allow the H F  method 
to find the correct minimum of the effective potential, which has 8, =95.3". 

The correlation error at D -  00 can be made to vanish by modifying the H F  
variational wavefunction, as shown by Goodson in another study.*' It is only necessary 
to introduce an explicit dependence on 8, and this can be done while retaining a separable 
form for the wavefunction. Likewise, the error in the H F  value for the first derivative 
of the energy with respect to 1 / D  can be made to vanish. This involves using as 
coordinates the normal modes qi for the Langmuir vibrations. By thus eliminating the 
large H F  error for the D -+ rn limit, the CE for D = 3 will be markedly reduced. Fig. 
8 shows estimates obtained by Goodson for the dimension dependence of the correlation 
energies corresponding to various coordinate choices in such modified H F  functions. 

Aside from enhancing computational methods and heuristic concepts, dimensional 
scaling also answers a persistent philosophical question of quantum theory: might not 

The origin of this large residual CE at the D = 
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‘hidden’ classical variables exist despite the uncertainty principle? The pseudoclassical 
limit shows that such variables do exist, for D + 00. Although this limit yields equations 
entirely classical in form, it is nonetheless consistent with the uncertainty principle.” 
Scaling the coordinates in proportion to D2 implies that the conjugate momenta are 
scaled inversely, so the commutators and the uncertainty principle remain invariant. In 
effect, the dimensional scaling brings out the underlying classical structure and hides 
the quantum mechanics. Our seemingly classical calculations of the Lewis and Langmuir 
terms are still fully quantum-mechanical. This is a fundamental reason why dimensional 
scaling gives surprisingly good results. 

The underlying motif of fig. 1 is a spiral of understanding. Our successors will 
likewise return repeatedly (like Prof. Moon’s spinning rotors) to fundamental themes 
in the molecular dynamics of reactions. With this in mind, these closing remarks are 
really intended as opening remarks for the next upward spiral. We now recognize that 
previously neglected ‘unobservable’ angles in reaction stereodynamics and ‘unphysical’ 
dimensions in electronic structure offer new insights and a new calculus. Both provide 
welcome tools for forging higher spiral links. Both also reveal a deeper role than 
previously suspected for classical mechanics within quantum mechanics. This is an apt 
turn of affairs in the tercentenary year of the publication of Newton’s Principia. 
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