# $B^{3} \Pi_{0_{4}^{-}}-X^{1} \Sigma_{g}^{+}$System of ${ }^{127} I_{2}$ : Rotational Analysis and Long-range Potential in the $B^{3} \Pi_{0_{4}^{+}}$State 

By Richard F. Barrow* and Kim K. Yee<br>Physical Chemistry Laboratory, Oxford University, Oxford OX1 3QZ

Received 28th December, 1972
The results of detailed rotational and term-value analyses involving some 7000 lines with 58 levels in $B^{3} \Pi_{0_{u}^{+}}(4 \leqslant v \leqslant 77)$ and 6 levels in $X^{1} \Sigma_{g}^{+}(0 \leqslant v \leqslant 5)$ are given. For the $B^{3} \Pi_{0_{u}^{+}}$state the rotational constants $B_{v}$ can be represented by $B_{v}=\sum_{n=0}^{4} c_{n}\left(v+\frac{1}{2}\right)^{n}$, but neither the vibrational levels nor the centrifugal stretching constants follow simple polynomials in $\left(v+\frac{1}{2}\right)$. At high $v,\left(\overline{\Delta G_{v}}\right)^{10 / 7}$ is linear in $E_{v}$ and a short extrapolation leads to a value of the limit, $20043.208 \pm 0.033 \mathrm{~cm}^{-1}$, relative to $X^{1} \Sigma_{g}^{+}(v=0, J=0)$. The highest bound vibrational level has $v=87$. An RKR potential energy curve has been calculated for the $B^{3} \Pi_{0_{u}}$ state, and a consistent value of the limit, $20043.220 \pm 0.015$ $\mathrm{cm}^{-1}$, is obtained from a fit to an attractive part of the curve near the limit, assuming a potential $V(r)=-C_{5} / r^{5}-C_{6} / r^{6}-C_{8} / r^{8}$. Values of the long-range interaction constants have been obtained: the term in $r^{-6}$ is not negligible even at internuclear distances as large as $20 \AA$. The ground-state dissociation energy, $D_{0}\left(\mathrm{I}_{2}\right)$ is found to be $12440.1 \mathrm{~cm}^{-1}$, corresponding to $35.568 \mathrm{kcal} \mathrm{mol}^{-1}$ or $148.81_{5} \mathrm{~kJ} \mathrm{~mol}^{-1}$.

The $B^{3} \Pi_{0_{u}-}-X^{1} \Sigma_{g}^{+}$system of molecular iodine has been much studied in absorption, emission and fluorescence ${ }^{1-11}$ in part because of its strength and accessibility. The relatively shallow potential energy curve in the upper state and favourable FranckCondon factors lead to the observation in absorption of a wide range of vibrational levels of the $B^{3} \Pi_{0_{u}^{+}}$state. Some rotational-vibrational levels can be selectively populated by monochromatic radiation using lasers ${ }^{11-18}$ and atomic emission lines ${ }^{3,9,19}$ so that the $B$ state has often been used for the study of lifetimes, ${ }^{20},{ }^{21}$ photodissociation ${ }^{22,23}$ and photochemical ${ }^{24-26}$ and energy transfer processes. ${ }^{9,11,19}$ Fluorescence from monochromatically excited levels in the upper state provides a means of investigating intensity distributions in transitions to different ground state levels and therefore of determining relative Franck-Condon factors which in turn provide tests of the accuracy of the potential energy curves. ${ }^{7,}$ 27-29

In the past few years interest in this system has been stimulated both by the rapid development of tunable lasers ${ }^{21,30}$ with which molecular hyperfine structures ${ }^{16,31-36}$ can be studied and by theoretical interest in the long range potential ${ }^{37-40}$ near the dissociation limit of the $B$ state.

Despite the importance of the system, it is poorly characterized, especially in respect of the excited state, and this, for example, has led to erroneous identification and assignment of several resonance fluorescence series. ${ }^{3,10-13,18,19}$ Although head measurements ${ }^{2}$ exist for a large number of bands, the rotational structure of relatively few vibrational levels has been analyzed. ${ }^{1,} 7-10$ The present paper reports the rotational and term-value analyses of 64 bands with $4 \leqslant v^{\prime} \leqslant 77$ and $0 \leqslant v^{\prime \prime} \leqslant 5$ together wi th the results of a detailed study of the energy levels near the dissociation limit of the $B$ state. We have confined ourselves to ${ }^{127} \mathrm{I}_{2}$ and the emphasis is on the excited state, although the first six levels of the ground state have also been analyzed. Higher levels of the ground state are best studied by resonance fluorescence. ${ }^{5,6,41,42}$

## ROTATIONAL ANALYSIS AND MOLECULAR CONSTANTS

The experimental details have already been described. ${ }^{11}$ The analysis was straightforward, for the bands consist of single unperturbed $R$ and $P$ branches, except that there is, especially at high $v^{\prime}$, a good deal of overlapping of lines. In some regions the intensity alternation ${ }^{43}$ with odd $J^{\prime \prime}$ strong, even $J^{\prime \prime}$ weak ( $1.4: 1$ ) is clearly observed. Sixty bands in the region 4985 to $6500 \AA$ with $4 \leqslant v^{\prime} \leqslant 77,8 \leqslant J^{\prime} \leqslant 129$ and $0 \leqslant v^{\prime \prime} \leqslant 5$, $7 \leqslant J^{\prime \prime} \leqslant 130$ have been analyzed : they are summarized in table 1 . A preliminary set of constants was obtained by fitting the observed molecular lines to the expression

$$
v_{\mathrm{m}}=v_{0}+2 B m+\Delta B m(m+1)+4 D m^{3}-\Delta D m^{2}(m+1)^{2}
$$

where $m=J+1$ for an R line, $m=-J$ for a P line, $v_{0}$ is the band origin, $B$ and $D$ are the lower state constants and $\Delta B=B^{\prime \prime}-B^{\prime}, \Delta D=D^{\prime \prime}-D^{\prime}$. Where duplication occurred, the agreement between the present analysis and that given in ref. (10) is generally poor, and we conclude that these reported bands should be ignored. On the other hand, agreement with the analysis given in ref. (7) is reasonably good, generally to within about $\pm 0.02 \mathrm{~cm}^{-1}$.

Table 1.-Summary of rotational analysis of the $B^{3} \Pi_{0_{u}^{+}}-X^{1} \Sigma_{g}^{+}$system of $\mathrm{I}_{2}$

| $v$ | band |  | rotational range |  | number of molecular lines |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $v$ | $v^{\prime \prime}$ | $J_{\text {min }}$ | $J_{\text {max }}$ | R branch | P branch |
| $B^{3} \Pi_{0}{ }_{u}^{+}$ |  |  |  |  |  |  |
| 77 | 77 | 0 | 12 | 26 | 13 | 12 |
| 76 | 76 | 0 | 11 | 28 | 17 | 15 |
| 75 | 75 | 0 | 8 | 30 | 22 | 21 |
| 74 | 74 | 0 | 8 | 38 | 29 | 29 |
| 73 | 73 | 0 | 10 | 41 | 31 | 30 |
| 72 | 72 | 0 | 9 | 42 | 34 | 32 |
| 71 | 71 | 0 | 9 | 45 | 36 | 37 |
| 70 | 70 | 0 | 11 | 47 | 36 | 34 |
| 69 | 69 | 0 | 11 | 51 | 39 | 40 |
| 68 | 68 | 0 | 10 | 53 | 43 | 42 |
| 67 | 67 | 0 | 10 | 54 | 44 | 43 |
| 66 | 66 | 0 | 8 | 51 | 44 | 41 |
| 65 | 65 | 0 | 12 | 58 | 45 | 46 |
| 64 | 64 | 0 | 11 | 65 | 55 | 54 |
| 63 | 63 | 0 | 22 | 66 | 45 | 44 |
| 62 | 62 | 0 | 25 | 66 | 41 | 42 |
| 61 | 61 | 0 | 20 | 62 | 43 | 43 |
| 60 | 60 | 0 | 22 | 67 | 46 | 43 |
| 59 | 59 | 0 | 8 | 61 | 52 | 52 |
| 58 | 58 | 0 | 20 | 62 | 40 | 40 |
| 57 | 57 | 0 | 19 | 59 | 39 | 40 |
| 56 | 56 | 0 | 17 | 62 | 44 | 45 |
| 55 | 55 | 0 | 17 | 67 | 50 | 48 |
| 54 | 54 | 0 | 15 | 73 | 56 | 56 |
| 53 | 53 | 0 | 17 | 73 | 51 | 54 |
| 52 | 52 | 0 | 18 | 64 | 46 | 43 |
| 51 | 51 | 0 | 17 | 62 | 45 | 42 |
| 50 | 50 | 0 | 12 | 50 | 36 | 35 |
| 49 | 49 | 0 | 8 | 82 | 69 | 75 |
| 48 | 48 | 0 | 15 | 82 | 66 | 66 |
| 47 | 47 | 0 | 12 | 99 | 86 | 87 |

Table 1.-contd.

| $v$ | u' band ${ }^{\prime \prime}$ |  | rotational range |  | $\underset{\text { R branch of molecular lines }}{\text { P branch }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $v^{\prime \prime}$ | $v^{\prime \prime}$ | $J_{\text {min }}$ | $J_{\text {max }}$ |  |  |
|  | $B^{3} \Pi_{0 u^{+}}$ |  |  |  |  |  |
| 46 | 46 | 0 | 22 | 94 | 71 | 71 |
| 45 | 45 | 0 | 26 | 83 | 56 | 56 |
| 44 | 44 | 0 | 19 | 68 | 46 | 49 |
| 43 | 43 | 0 | 12 | 60 | 47 | 45 |
| 36 | 36 | 0 | 64 | 114 | 47 | 48 |
| 35 | 35 | 0 | 25 | 129 | 100 | 105 |
| 34 | 34 | 0 | 12 | 104 | 88 | 88 |
| 33 | 33 | 0 | 17 | 96 | 75 | 75 |
| 32 | 32 | 0 | 7 | 87 | 68 | 63 |
| 29 | 29 | $0{ }^{\text {a }}$ | 8 | 70 | 53 | 50 |
| 25 | 25 | $0^{a}$ | 9 | 58 | 38 | 42 |
| 21 | 21 | 1 | 57 | 124 | 62 | 68 |
| 20 | 20 | 1 | 21 | 99 | 77 | 78 |
| 19 | 19 | 1 | 21 | 111 | 87 | 89 |
| 18 | 18 | 1 | 22 | 93 | 70 | 65 |
|  | 18 | 0 | 26 | 98 | 70 | 73 |
| 17 | 17 | 0 | 12 | 90 | 74 | 79 |
| 16 | 16 | 0 | 28 | 93 | 64 | 63 |
| 13 | 13 | $2^{\text {a }}$ | 16 | 73 | 45 | 54 |
| 12 | 12 | $2^{\text {a }}$ | 16 | 72 | 54 | 44 |
| 11 | 11 | 3 | 24 | 105 | 82 | 76 |
|  | 11 | $1{ }^{a}$ | 25 | 99 | 65 | 32 |
| 10 | 10 | 4 | 33 | 110 | 68 | 70 |
| 9 | 9 | 4 | 20 | 120 | 93 | 100 |
|  | 9 | 2 | 23 | 104 | 81 | 75 |
| 8 | 8 | 4 | 9 | 67 | 51 | 51 |
|  | 8 | 3 | 34 | 106 | 65 | 65 |
| 7 | 7 | 5 | 14 | 88 | 67 | 67 |
|  | 7 | 4 | 22 | 111 | 82 | 81 |
|  | 7 | 3 | 9 | 65 | 49 | 49 |
| 6 | 6 | 3 | 27 | 78 | 44 | 44 |
| 5 | 5 | 4 | 19 | 72 | 44 | 43 |
|  | 5 | 3 | 24 | 94 | 63 | 62 |
| 4 | 4 | 3 | 32 | 90 | 50 | 48 |
| $X^{1} \Sigma_{g}^{+}$ |  |  |  |  |  |  |
| 5 | 7-5 |  | 15 | 87 |  |  |
| 4 | 5 bands |  | 10 | 120 |  |  |
| 3 | 6 bands |  | 23 | 105 |  |  |
| 2 | 3 bands |  | 15 | 103 |  |  |
| 1 | 5 bands |  | 22 | 125 |  |  |
| 0 | 45 bands |  | 7 | 130 |  |  |

${ }^{a}$ Bands from ref. (7) with slight revisions.

A final set of molecular constants was obtained from a term-value analysis, using the method devised by Åslund ${ }^{44}$ with a total of 64 bands and about 7000 lines. All bands from the present analysis except the 7-3 band, which is badly blended by mutual overlapping of the R and P branches, were used, along with the slightly revised bands 11-1, 12-2, 13-2, 25-0 and 29-0 from ref. (7). The term values $Y_{v, \boldsymbol{J}}$ for the rotational levels of each vibrational level of the upper and lower states calculated relative to a pair of arbitrary reference levels were fitted by least squares to the expression ${ }^{44}$

$$
Y_{v, J}=(-1)^{J} X+T_{0}+B_{v} J(J+1)-D_{v} J^{2}(J+1)^{2}
$$

where $X$ is a constant connecting the two sub-sets of term-values and $T_{0}$ is the rotationless vibrational term-value relative to an arbitrary level. The final molecular constants for the two states are given in table 2.

Table 2.-Summary of molecular constants ${ }^{a}\left(\mathrm{~cm}^{-1}\right)$ obtained from term values analysis of the $B^{3} \Pi_{0_{u}^{+}}-X^{1} \Sigma_{g}^{+}$SYStem of $\mathbf{I}_{2}$

| 0 | $T_{v, J}=0^{\circ}$ | $10^{2} B_{0}$ | $10^{8} D_{v}$ |
| :---: | :---: | :---: | :---: |
| $B^{3} \Pi_{0_{4}^{+}}$ |  |  |  |
| 77 | $20038.162 \pm 35$ | $0.4297 \pm 180$ | $38.340 \pm 20.62$ |
| 76 | $36.396 \pm 16$ | $0.4560 \pm 81$ | $11.890 \pm 8.72$ |
| 75 | $34.141 \pm 5$ | $0.5262 \pm 26$ | $33.370 \pm 2.75$ |
| 74 | $31.473 \pm 6$ | $0.5709 \pm 22$ | $26.470 \pm 1.44$ |
| 73 | $28.312 \pm 7$ | $0.6092 \pm 18$ | $19.470 \pm 1.04$ |
| 72 | $24.558 \pm 4$ | $0.6569 \pm 12$ | $16.965 \pm 668$ |
| 71 | $20.176 \pm 4$ | $0.7064 \pm 11$ | $17.628 \pm 513$ |
| 70 | $15.123 \pm 8$ | $0.7557 \pm 18$ | $17.610 \pm 763$ |
| 69 | $09.356 \pm 4$ | $0.7988 \pm 8$ | $14.225 \pm 324$ |
| 68 | $02.797 \pm 5$ | $0.8443 \pm 10$ | $12.655 \pm 349$ |
| 67 | $19995.385 \pm 4$ | $0.8906 \pm 8$ | $11.755 \pm 277$ |
| 66 | $87.080 \pm 4$ | $0.9366 \pm 8$ | $10.940 \pm 296$ |
| 65 | $77.826 \pm 4$ | $0.9803 \pm 7$ | $9.411 \pm 194$ |
| 64 | $67.543 \pm 5$ | $1.0288 \pm 6$ | $9.573 \pm 132$ |
| 63 | $56.222 \pm 13$ | $1.0717 \pm 12$ | $8.393 \pm 259$ |
| 62 | $43.803 \pm 14$ | $1.1154 \pm 13$ | $7.600 \pm 268$ |
| 61 | $30.230 \pm 9$ | $1.1572 \pm 10$ | $6.530 \pm 237$ |
| 60 | $15.416 \pm 12$ | $1.2059 \pm 11$ | $7.217 \pm 230$ |
| 59 | $899.356 \pm 4$ | $1.2491 \pm 6$ | $6.775 \pm 178$ |
| 58 | $81.998 \pm 10$ | $1.2909 \pm 12$ | $6.492 \pm 277$ |
| 57 | $63.273 \pm 7$ | $1.3322 \pm 9$ | $5.732 \pm 245$ |
| 56 | $43.133 \pm 7$ | $1.3744 \pm 8$ | $5.296 \pm 196$ |
| 55 | $21.559 \pm 6$ | $1.4144 \pm 7$ | $4.703 \pm 139$ |
| 54 | $798.455 \pm 4$ | $1.4576 \pm 4$ | $4.939 \pm 72$ |
| 53 | $73.843 \pm 4$ | $1.4983 \pm 4$ | $4.751 \pm 74$ |
| 52 | $47.667 \pm 5$ | $1.5364 \pm 5$ | $4.131 \pm 117$ |
| 51 | $19.840 \pm 6$ | $1.5755 \pm 8$ | $3.706 \pm 190$ |
| 50 | $690.358 \pm 6$ | $1.6171 \pm 12$ | $4.423 \pm 462$ |
| 49 | $59.166 \pm 5$ | $1.6530 \pm 4$ | $3.575 \pm 62$ |
| 48 | $26.194 \pm 5$ | $1.6910 \pm 4$ | $3.378 \pm 54$ |
| 47 | $591.417 \pm 4$ | $1.7294 \pm 2$ | $3.327 \pm 26$ |
| 46 | $54.808 \pm 5$ | $1.7672 \pm 3$ | $3.229 \pm 32$ |
| 45 | $16.359 \pm 7$ | $1.8025 \pm 5$ | $2.941 \pm 64$ |
| 44 | $475.966 \pm 6$ | $1.8400 \pm 6$ | $2.880 \pm 113$ |
| 43 | $33.666 \pm 4$ | $1.8736 \pm 5$ | $2.022 \pm 143$ |

Table 2.--contd.

| $v$ | $T_{v, J=0^{i}}$ | $10^{2} B_{v}$ | $10^{8} D_{v}$ |
| :---: | :---: | :---: | :---: |
| $B^{3} \Gamma_{0_{\text {t }}}$ |  |  |  |
| 36 | $081.049 \pm 14$ | $2.1099 \pm 4$ | $2.104 \pm 21$ |
| 35 | $22.466 \pm 4$ | $2.1398 \pm 1$ | $1.985 \pm 7$ |
| 34 | $18961.744 \pm 2$ | $2.1690 \pm 1$ | $1.824 \pm 10$ |
| 33 | $898.901 \pm 2$ | $2.1982 \pm 1$ | $1.701 \pm 15$ |
| 32 | $33.951 \pm 6$ | $2.2264 \pm 3$ | $1.517 \pm 35$ |
| 29 | $626.423 \pm 3$ | $2.3114 \pm 4$ | $1.611 \pm 76$ |
| 25 | $320.695 \pm 5$ | $2.4116 \pm 8$ | $0.432 \pm 253$ |
| 21 | $17982.338 \pm 15$ | $2.5104 \pm 4$ | $1.141 \pm 20$ |
| 20 | $892.948 \pm 6$ | $2.5290 \pm 3$ | $0.839 \pm 31$ |
| 19 | $01.497 \pm 6$ | $2.5506 \pm 3$ | $0.798 \pm 31$ |
| 18 | $708.114 \pm 4$ | $2.5727 \pm 2$ | $0.867 \pm 28$ |
| 17 | $612.850 \pm 4$ | $2.5945 \pm 3$ | $1.013 \pm 35$ |
| 16 | $515.711 \pm 7$ | $2.6142 \pm 4$ | $0.875 \pm 38$ |
| 13 | $213.115 \pm 3$ | $2.6707 \pm 3$ | $0.125 \pm 59$ |
| 12 | $108.716 \pm 4$ | $2.6924 \pm 4$ | $0.743 \pm 67$ |
| 11 | 002.563士 4 | $2.7124 \pm 2$ | $0.952 \pm 20$ |
| 10 | $16894.664 \pm 5$ | $2.7292 \pm 2$ | $0.834 \pm 14$ |
| 9 | $785.033 \pm 3$ | $2.7472 \pm 1$ | $0.844 \pm 8$ |
| 8 | $673.690 \pm 4$ | $2.7656 \pm 2$ | $0.885 \pm 20$ |
| 7 | $560.715 \pm 3$ | $2.7816 \pm 1$ | $0.791 \pm 9$ |
| 6 | $446.071 \pm 6$ | $2.7971 \pm 4$ | $0.529 \pm 50$ |
| 5 | $329.769 \pm 3$ | $2.8153 \pm 2$ | $0.766 \pm 21$ |
| 4 | $211.859 \pm 9$ | $2.8315 \pm 5$ | $0.725 \pm 51$ |
| $X^{1} \Sigma_{g}^{+}$ |  |  |  |
| 5 | $1054.072 \pm 3$ | $3.6741 \pm 2$ | $0.575 \pm 21$ |
| 4 | $845.732 \pm 3$ | $3.6859 \pm 1$ | $0.551 \pm 6$ |
| 3 | $636.130 \pm 4$ | $3.6985 \pm 2$ | $0.624 \pm 18$ |
| 2 | $425.307 \pm 3$ | $3.7087 \pm 1$ | $0.507 \pm 15$ |
| 1 | $213.302 \pm 5$ | $3.7199 \pm 2$ | $0.409 \pm 12$ |
| 0 | 0.0 | $3.73129 \pm 7$ | $0.459 \pm 4$ |

$a$ Error limits in this table and throughout the paper arc one standard error. ${ }^{b} T_{v, J=0}$ is the vibrational term value relative to $X^{1} \Sigma_{g}^{+}(v=0, J=0)$.

The experimental values for the ground state can be represented adequately by two-constant expressions

$$
\begin{aligned}
G_{v} & =\omega_{\mathrm{e}}\left(v+\frac{1}{2}\right)-x_{\mathrm{e}} \omega_{\mathrm{e}}\left(v+\frac{1}{2}\right)^{2} \\
B_{v} & =B_{\mathrm{e}}-\alpha_{\mathrm{e}}\left(v+\frac{1}{2}\right) \\
D_{v} & =D_{e}+\beta_{e}\left(v+\frac{1}{2}\right)
\end{aligned}
$$

and the constants are given in table 3. The small constant $\beta_{\mathrm{e}}$ is, of course, not well determined, but the value of $D_{\mathrm{e}},(4.25 \pm 0.42) \times 10^{-9} \mathrm{~cm}^{-1}$, is in good agreement with the Kratzer value, $4.54 \times 10^{-9} \mathrm{~cm}^{-1}$. All the ground state constants agree reasonably well with published values.

Table 3.-Molecular constants ( $\mathrm{cm}^{-1}$ ) for ground state $X^{1} \Sigma_{g}^{+}$of $\mathrm{I}_{2}$

$$
\text { range of } v=0-5
$$

(a) vibrational constants $\omega_{\mathrm{e}}=214.5016 \pm 0.014 ; x_{\mathrm{e}} \omega_{\mathrm{e}}=0.61468 \pm 0.002$.
(b) rotational constants

$$
\begin{aligned}
B_{\mathrm{e}} & =3.73719 \times 10^{-2} \pm 4.7 \times 10^{-6} \\
\alpha_{\mathrm{c}} & =1.1376 \times 10^{-4} \pm 1.37 \times 10^{-6} \\
r_{\mathrm{e}} & =2.6663_{4} \AA \text { with } \mu=63.4502 \text { a.m.u. } \\
10^{9} D_{\mathrm{e}} & =4.25 \pm 0.42 \\
10^{9} \beta_{\mathrm{e}} & =0.321 \pm 0.122 \\
D_{\mathrm{e}}(\text { Kratzer }) & =4.54 \times 10^{-9}
\end{aligned}
$$

The vibrational term-values in the upper state extend over such a wide range, $4 \leqslant v \leqslant 77$, that they cannot be fitted to a simple polynomial in $\left(v+\frac{1}{2}\right)$. The values for $4 \leqslant v \leqslant 50$ have been fitted by least-squares to the expression $G_{v}=\sum_{n=0}^{5} c_{n}\left(v+\frac{1}{2}\right)^{n}$ and the values of the coefficients are given in table 4. The fit of $B_{v}$ to the polynomial $\Sigma_{n=0}^{4} c_{n}\left(v+\frac{1}{2}\right)^{n}$ is reasonably satisfactory and the results are given in table 4.

Table 4.-Molecular constants ( $\mathrm{cm}^{-1}$ ) for $B^{3} \Pi_{0_{4}^{+}}$state of $\mathrm{I}_{2}$
(a) vibrational constants: $0<v<50$
$G_{v}=\sum_{n=1}^{5} C_{n}\left(v+\frac{1}{2}\right)^{n}$
$C_{1}=125.69708 \pm 3.71 \times 10^{-2} ; C_{2}=-7.64244 \times 10^{-1} \pm 3.60 \times 10^{-3} ;$
$C_{3}=-1.77598 \times 10^{-3} \pm 1.54 \times 10^{-4} ; C_{4}=-7.37943 \times 10^{-5} \pm 2.99 \times 10^{-6} ;$
$C_{5}=1.03060 \times 10^{-6} \pm 2.16 \times 10^{-8}$.
$T_{0,0}=15724.57 ; T_{\mathrm{e}}=15769.01$.
(b) rotational constants

$$
B_{v}=\sum_{n=0}^{4} C_{n}\left(v+\frac{1}{2}\right)^{n} \quad 0<v<77
$$

$C_{0}=2.90387_{6} \times 10^{-2} \pm 2.07 \times 10^{-5} ; C_{1}=-1.58190 \times 10^{-4} \pm 3.25 \times 10^{-6} ;$ $C_{2}=-3.36318 \times 10^{-7} \pm 1.53 \times 10^{-7} ; C_{3}=-4.77727 \times 10^{-8} \pm 2.76 \times 10^{-9} ;$
$C_{4}=3.26287 \times 10^{-10}+1.67 \times 10^{-11}$.
$r_{\mathrm{e}}=3.0248_{1} \bar{\AA}$
$10^{9} D_{\mathrm{e}}=5.43 \pm 1.44$
$10^{9} \beta_{\mathrm{e}}=0.300 \pm 0.186$
$D_{\mathrm{c}}($ Kratzer $)=6.20 \times 10^{-9}$.
The variation of the values of $B_{v}$ and $D_{v}$ with $v$ is illustrated in fig. 1. $D_{v}$ changes little with $v$ below about $v=20$, but increases very rapidly at $v>30$. The values of $D_{v}$ over the whole range of $v$, cannot be fitted to a simple polynomial. A limited linear fit for $v \leqslant 10$ gives $D_{\mathrm{e}}=(5.43 \pm 1.44) 10^{-9} \mathrm{~cm}^{-1}$, in reasonable agreement with the Kratzer value $6.2 \times 10^{-9} \mathrm{~cm}^{-1}$.

It is clear that representation of the molecular constants for the $B^{3} \Pi_{0_{\Delta+}}$ state over the wide range of $v$ by simple polynomials in $\left(v+\frac{1}{2}\right)$ is not very successful, and the experimental values of $T_{v, J=0}, B_{v}$ and $D_{v}$ should be used for both states, $B$ and $X$. Missing values of $G_{v}$ and of $B_{v}$ in the excited state can be calculated using the coefficients in table 4. Similarly missing values of $D_{v}$ can be calculated or obtained from the curve in fig. 1 .

The extensive lists of molecular lines and vibrational rotational term-values are too lengthy to publish here but may be obtained on request. Alternatively lines and termvalues can be generated using the constants in tables 2,3 and 4 : these are capable of reproducing the observed unblended lines to within $\pm 0.02 \mathrm{~cm}^{-1}$.


Fig. 1.-The variation of $B_{v}$ with $v$ (left-hand scale) and $D_{v}$ with $v$ (right-hand scale) for the $B^{3} \mathrm{II}_{0_{u}^{+}}$ state of $\mathrm{I}_{2}$. The $B_{v}$ values represented by open squares are calculated from the constants given in table 4.

ANALYSiS OF THE LONG-RANGE POTENTIAL in THE $B^{3} \Pi_{0_{u}^{+}}$State
A. Vibrational energy levels near the dissociation limit

Recently LeRoy and Bernstein ${ }^{37}$ have derived an expression

$$
\begin{equation*}
G_{v}=D-\left[\left(v_{\mathrm{D}}-v\right) H_{m}\right]^{2 m /(m-2)}, m \neq 2 \tag{1}
\end{equation*}
$$

which relates the distribution of vibrational eigenvalues $G_{v}$ near the dissociation limit $D$ to the attractive long-range part of the internuclear potential

$$
\begin{equation*}
V(r)=-\sum_{m \geqslant n} C_{m} / r^{m} \tag{2}
\end{equation*}
$$

Here $v_{\mathrm{D}}$ is an effective vibrational index, in general non-integral, at the dissociation limit, and $H_{m}$ is a constant depending on the reduced mass $\mu$, the long-range coefficient $C_{m}$ and the local value $m$ in (2) where $n$ is the asymptotic value of the inverse powers of the internuclear distance $r$. Truncating $v_{\mathrm{D}}$ to an integer gives the highest bound vibrational level supported by the internuclear potential.

The applicability of (1) is limited to cases where the Birge-Sponer plot ${ }^{45}$ shows positive curvature for the levels near $D$, as appears for the $B$ state of $I_{2}$ (fig. 2).

If, in the region near the dissociation limit the density of vibrational levels is sufficiently great, the dissociation energy can be determined with the use of the approximate expression ${ }^{37}$

$$
\begin{equation*}
\left(\overline{\Delta G}_{v}\right)^{2 n /(n+2)}=\left[D-G_{v}\right]\left(K_{n}\right)^{2 n /(n+2)} \tag{3}
\end{equation*}
$$

where $\overline{\Delta G}_{v}=\frac{1}{2}\left(G_{v+1}-G_{v-1}\right)$, and, with $m=n$ in (1), $K_{n}=[2 n /(n-2)] H_{n}$. If the
conditions for (1) and (3) are satisfied and $n$ is known ${ }^{46}$ the long-range parameters $D, v_{\mathrm{D}}, H_{n}, K_{n}$ and hence $C_{n}$ can be obtained graphically. We used

$$
\begin{align*}
G_{v} & =D-k\left[\bar{\Delta}_{v}\right]^{2 n /(n+2)}  \tag{4}\\
v & =v_{\mathrm{D}}-h\left[D-G_{v}\right]^{(n-2) / 2 n} \tag{5}
\end{align*}
$$

where $k=1 /\left[K_{n}\right]^{2 n /(n+2)}$ and $h=1 / H_{n}$.
LeRoy and Bernstein have concluded that for the $B^{3} \Pi_{0_{0_{t}}}$ states of the halogens $n=5$. The effect of using different values of $n$ in the least-squares fitting of (4) is shown in table 5 for $65 \leqslant v \leqslant 76$. Relatively large systematic deviations are found for $n=4,5.5$ and 6 and we conclude in agreement with LeRoy and Bernstein that the effective value of $n$ is 5 . The effect of different assumptions about the value of $n$ on the extrapolated value of $D$ is given in table 6 .


Fig. 2.-The variation of $\Delta G_{v+\frac{1}{2}}$ with $v+\frac{1}{2}$ for the $B^{3} \Pi_{0_{u}+}$ state of $\mathrm{I}_{2}$ showing positive curvature at the high vibrational levels. The values represented by filled circles are calculated from the constants given in table 4.

Table 5.-Effect of using different values of $n$ in the least-Squares fitting of eqn (4) FOR $B^{3} \Pi_{O_{u}^{+}}$STATE OF $I_{2}$

| $v$ | $n=5$ | $\left[E_{v}(\right.$ obs.$)$$n=4$ |  | $n=6$ |
| :---: | :---: | :---: | :---: | :---: |
| 76 | 0.020 | -0.526 | 0.235 | 0.423 |
| 75 | 0.054 | -0.276 | 0.188 | 0.305 |
| 74 | -0.124 | -0.267 | -0.063 | -0.008 |
| 73 | -0.077 | -0.033 | -0.089 | -0.097 |
| 72 | 0.040 | 0.245 | -0.036 | -0.100 |
| 71 | 0.067 | 0.387 | -0.057 | -0.163 |
| 70 | 0.002 | 0.384 | -0.149 | -0.279 |
| 69 | -0.019 | 0.362 | -0.171 | -0.304 |
| 68 | 0.058 | 0.355 | -0.065 | -0.173 |
| 67 | 0.059 | 0.180 | 0.005 | -0.045 |
| 66 | -0.032 | -0.194 | 0.025 | 0.073 |
| 65 | -0.047 | -0.617 | 0.175 | 0.367 |

The plot of $G_{v}$ against $\left(\overline{\Delta G}_{v}\right)^{10 / 7}$ is illustrated in fig. 3. To within the experimental errors this plot is linear in the range $65 \leqslant v \leqslant 76$, but for $v<64$ the slope becomes increasingly negative as $v$ decreases. The value of $D$ obtained by linear extrapolation of (4) is, therefore, an upper bound. However the extrapolation from the last observed level with $v=76$ is only some $7 \mathrm{~cm}^{-1}$ and this, together with the relative insensitivity of the extrapolated value of $D$ to the assumed value of $n$, suggests that the systematic errors in $D$ are likely to be small.

Using the value of $D$ determined from (4) with $n=5$ a plot of $v$ against $\left[D-G_{v}\right]^{3 / 10}$ may be used to determine $v_{\mathrm{D}}$ and $h$ (fig. 4). The long-range parameters obtained from a least-squares fit for $64 \leqslant v \leqslant 77$ are given in table 6 . The previous results obtained by LeRoy and Bernstein ${ }^{37}$ using Brown's band-head data ${ }^{2}$ (with the revised

Table 6.-Long-range parameters obtained from eqn (4) and (5) for the $B^{3} \Pi_{0_{4}^{+}}$state OF $\mathrm{I}_{2}$

| $n$ | $0_{\text {H }}{ }^{\text {a }}$ | $v$ range ${ }^{\text {c }}$ | $10^{-5} \mathrm{Cn}_{n} / \mathrm{cm}^{-1} \AA^{n}$ | $\nu_{\text {p }}$ | dissociation energy/ <br> $\mathrm{cm}^{-1}$ | ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 77 |  |  |  | $20045.010 \pm 0.21$ |  |
| 5 | 77 | 64 | $2.8861{ }^{\text {d }}$ | $87.345 \pm 0.007$ | $20043.20_{8} \pm 0.033$ | his work |
| 5.5 | 77 |  |  |  | $20042.550 \pm 0.07$ | , work |
| 6 | 77 |  |  |  | $20042.000 \pm 0.13$ |  |
| 5 | $72^{\text {b }}$ | $55-72{ }^{\text {b }}$ | $3.10{ }_{6} \pm 0.16$ | $87.74{ }_{5} \pm 0.38$ | $20044.040 \pm 1.2$ | 37 |

$a v_{\mathrm{H}}$ is the highest analyzed vibrational level ; $b$ vibrational analysis only (ref. (2)); ${ }^{c}$ range of $v$ used in analysis; $d$ obtained from $1 / H_{n}=6.376 \pm 0.002{ }_{7}$ in eqn (5); e energy relative to $X^{1} \Sigma_{g}^{+}$ ( $v=0, J=0$ ) (see table 2).


Fig. 3.-Plot of $E_{v}$ against $\left(\overline{\Delta G}_{v}\right)^{1017}$ according to eqn (4) near the dissociation limit of $B^{3} \Pi_{0_{u}+}$ of $\mathrm{I}_{2}$. $E_{v}$ is the vibrational energy relative to $X^{1} \Sigma_{g}^{+}(v=0, J=0)$. The relatively large systematic errors resulting from a least-squares fit for $60 \leqslant v \leqslant 76$ are shown in the bottom inset. The small random errors resulting from a fit for $65 \leqslant v \leqslant 76$ are shown in the top inset.
$v^{\prime}$ numbering ${ }^{7,47}$ ) agree well with the present results. The separation ${ }^{2} P_{\frac{1}{2}}-{ }^{2} P_{\frac{3}{2}}$ in I is $7603.15 \mathrm{~cm}^{-148}$ : the value of $D_{0}$ becomes $12440.06 \mathrm{~cm}^{-1}$. This confirms the estimate of LeRoy and Bernstein, ${ }^{37,49}$ but, since it is based on band-origins rather than band-heads, should be more precise. The value $D_{0}=12452.5 \pm 1.5 \mathrm{~cm}^{-1}$ obtained by Verma ${ }^{41,50}$ from the analysis of fluorescence series seems to be too large by about $12.55^{3} \mathrm{~cm}^{-1}$.


Fig. 4.-Plot of $v$ against $[D-G(v)]^{3 / 10}$ according to eqn (5) near the dissociation limit of $B^{3} \Pi_{0_{u}}$ of $\mathrm{I}_{2}$.

## B. analysis of long-range potential

With the constants given in tables 2 and 4, an RKR potential energy curve was constructed to the highest observed vibrational level $v=77$ using a programme devised by Chandler, Richards and Todd of this laboratory. The potential was extended to $v=85$ using the extrapolated energies given in table 7 together with values of $B_{v}$ extrapolated graphically. Large-scale graphical extrapolation of the $r_{\text {min }}$ limb of the RKR potential at high $v$ was necessary because the calculations are very sensitive to small errors in $B_{v}$. This extrapolation is straightforward since the $r_{\text {min }} \operatorname{limb}$ is almost vertical at these levels and $\Delta r=r_{\text {max }}-r_{\text {min }}$ depends only on the vibrational levels. ${ }^{51}$ The RKR turning points of the $B^{3} \Pi_{0_{u}^{+}}$state for $0 \leqslant v \leqslant 85$ in the range 2.63 to $27.63 \AA$ are given in table 8. A part of the attractive potential near the dissociation limit is shown in fig. 5.

It was implicitly assumed that only the leading term (asymptotic value $n$ ) in the inverse power long-range expansion of (2) need be considered in the applications of (4), (5) to the analysis of the experimental data for the levels $64 \leqslant v \leqslant 77$, corresponding to $6.2 \lesssim r_{\max } \lesssim 10.0 \AA$ (table 8 ). The effects of higher terms in the expansion are now
considered. Theory ${ }^{40,52-54}$ shows that for $\mathrm{I}_{2}\left(B^{3} \Pi_{0_{u}^{*}}\right)$ the binding energy in the attractive long-range potential is given by

$$
\begin{equation*}
D-G_{v}=C_{5} / r_{v}^{5}+C_{6} / r_{v}^{6}+C_{8} / r_{v}^{8}+\ldots \tag{6}
\end{equation*}
$$

where $C_{5}, C_{6}$ and $C_{8}$ are constants (positive) and $r_{v}$ is $r_{v, \text { max }}$. Values of $C_{6}$ and of $C_{8}$ have been determined using a known value of $D$ and a theoretical estimate ${ }^{40}$ of $C_{5}$. In the present analysis all three constants were determined by a simultaneous leastsquares fit using $r_{\text {max }}$ values for $64 \leqslant v \leqslant 77$ and values of $D-G_{v}$ from tables 2 and 6 . The long-range constants were also determined from the $r_{\text {max }}$ values for $64 \leqslant v \leqslant 85$, with $D$ unknown. The results are given in table 9 . The value derived in this way for the limit, $20043.22_{0} \mathrm{~cm}^{-1}$, relative to $X^{1} \Sigma_{g}^{+}(v=0, J=0)$, is in very good agreement with that given in table 6. The two extrapolations, one based on the values of $\overline{\Delta G_{v}}$, and the other on the values of $r_{\max }$, are therefore consistent.

Table 7.-Energy levels $\left(\mathrm{cm}^{-1}\right)^{a}$ near the dissociation limit of $B^{3} \Pi_{0_{4}}$ state of $\mathrm{I}_{2}$ CALCULATED ACCORDING TO EQN (1) WITH $m=n$

|  | calc. ${ }^{\text {energy level }}$ obs. |  |
| ---: | ---: | ---: |
| 0 | 20043.208 |  |
| 87 | 43.202 |  |
| 86 | 43.172 |  |
| 85 | 43.092 |  |
| 84 | 42.930 |  |
| 83 | 42.653 |  |
| 82 | 42.224 |  |
| 81 | 41.605 |  |
| 80 | 40.756 |  |
| 79 | 39.632 |  |
| 78 | 38.189 | 38.162 |
| 77 | 36.382 | 36.396 |
| 76 | 34.162 | 34.141 |
| 75 | 31.480 | 31.473 |
| 74 | 28.286 | 28.312 |
| 73 | 24.527 | 24.558 |
| 72 | 20.152 | 20.176 |
| 71 | 15.105 | 15.123 |
| 70 | 09.332 | 09.356 |
| 69 | 02.776 | 02.797 |
| 68 | 1995.379 | 95.385 |
| 67 | 87.083 | 87.080 |
| 66 | 77.829 | 77.826 |
| 65 | 67.557 | 67.543 |

${ }^{a}$ Energy relative to $X^{1} \Sigma_{g}^{+}(v=0, J=0) ;{ }^{b}$ calculated energies for levels $v \leqslant 63$ become progressively too small as $v$ decreases (see fig. 4).

Although the value of $C_{5}$ derived in the present RKR analysis is in reasonably good agreement with the theoretical value, those of $C_{6}$ and $C_{8}$ are significantly different from the values obtained by LeRoy and Cummings. ${ }^{40}$ A graphical comparison between the two sets of long-range constants is given in fig. 6. According to both sets, the contribution of the leading term in $r^{-5}$ is only about $50 \%$ of the binding energy at $v=65$ and less than $70 \%$ at the highest analyzed level $v=77$. This result is of
course contrary to the assumptions which have been made in respect of the applicability of (4) and (5) for the levels $64 \leqslant v \leqslant 77$. The apparent paradox arises from a fortuitous cancellation when the powers of the first two potential terms in (2) differ by unity, ${ }^{40}$ so that the forms of (4) and (5) are effectively unchanged for the high vibrational levels. The values of $C_{n}$ derived from the slopes $k$ and $h$ may not then be pure $C_{5}$, and this may explain the difference between the two estimates derived in the present analysis (tables 6 and 9). It seems that the deviation from linearity for $v<64$ shown in fig. 3 arises from the increasing contribution of $C_{8} / r^{8}$ as illustrated in fig. 6. If so, the values of $C_{6}$ and $C_{8}$ obtained by LeRoy and Cummings appear to be slightly too high and too low, respectively.

Table 8.-RKR potential turning points for the $B^{3} \Pi_{0,4}$ state of $I_{2}$

| $v$ | $G(v) / \mathrm{cm}^{-1}$ | $R_{\text {min }} / \AA$ | $R_{\text {max }} / \AA$ | 0 | $G(0) / \mathrm{cm}^{-1}$ | $R_{\text {min }} / \AA$ | $R_{\text {max }} /$ A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 62.66 | 2.96307 | 3.09344 | 43 | 3771.72 | 2.64986 | 4.46732 |
| 1 | 186.82 | 2.92173 | 3.14871 | 44 | 3814.02 | 2.64815 | 4.51716 |
| 2 | 309.44 | 2.89500 | 3.18957 | 45 | 3854.41 | 2.64661 | 4.56885 |
| 3 | 430.49 | 2.87424 | 3.22465 | 46 | 3982.86 | 2.64504 | 4.62294 |
| 4 | 549.97 | 2.85696 | 3.25645 | 47 | 3929.47 | 2.64364 | 4.67910 |
| 5 | 667.88 | 2.84203 | 3.28614 | 48 | 3964.25 | 2.64231 | 4.73757 |
| 6 | 784.18 | 2.82880 | 3.31436 | 49 | 3997.22 | 2.64104 | 4.79888 |
| 7 | 898.83 | 2.81690 | 3.34153 | 50 | 4028.41 | 2.63980 | 4.86307 |
| 8 | 1011.82 | 2.80606 | 3.36794 | 51 | 4057.89 | 2.63870 | 4.93009 |
| 9 | 1123.17 | 2.79616 | 3.39350 | 52 | 4085.72 | 2.63771 | 5.00002 |
| 10 | 1232.80 | 2.78695 | 3.41888 | 53 | 4111.90 | 2.63673 | 5.07379 |
| 11 | 1340.72 | 2.77834 | 3.44409 | 54 | 4136.51 | 2.63588 | 5.15098 |
| 12 | 1446.90 | 2.77035 | 3.46900 | 55 | 4159.61 | 2.63521 | 5.23171 |
| 13 | 1551.33 | 2.76281 | 3.49388 | 56 | 4181.19 | 2.63445 | 5.31770 |
| 14 | 1653.97 | 2.75575 | 3.51868 | 57 | 4201.33 | 2.63381 | 5.40817 |
| 15 | 1754.80 | 2.74906 | 3.54355 | 58 | 4220.05 | 2.63319 | 5.50380 |
| 16 | 1853.81 | 2.74276 | 3.56849 | 59 | 4237.41 | 2.63257 | 5.60559 |
| 17 | 1950.96 | 2.73676 | 3.59361 | 60 | 4253.47 | 2.63207 | 5.71317 |
| 18 | 2046.22 | 2.73109 | 3.61894 | 61 | 4268.28 | 2.63163 | 5.82736 |
| 19 | 2139.61 | 2.72571 | 3.64453 | 62 | 4281.86 | 2.63117 | 5.95068 |
| 20 | 2231.06 | 2.72059 | 3.67040 | 63 | 4294.27 | 2.63077 | 6.08218 |
| 21 | 2320.58 | 2.71571 | 3.69666 | 64 | 4305.60 | 2.63047 | 6.22233 |
| 22 | 2408.13 | 2.71106 | 3.72328 | 65 | 4315.88 | 2.63017 | 6.37280 |
| 23 | 2493.70 | 2.70664 | 3.75038 | 66 | 4325.13 | 2.62987 | 6.53751 |
| 24 | 2577.28 | 2.70240 | 3.77794 | 67 | 4333.44 | 2.62960 | 6.71586 |
| 25 | 2658.83 | 2.69839 | 3.80608 | 68 | 4340.85 | 2.62935 | 6.90862 |
| 26 | 2738.35 | 2.69453 | 3.83477 | 69 | 4347.41 | 2.62915 | 7.12119 |
| 27 | 2815.82 | 2.69086 | 3.86411 | 70 | 4353.18 | 2.62900 | 7.35502 |
| 28 | 2891.23 | 2.68736 | 3.89412 | 71 | 4358.23 | 2.62888 | 7.60953 |
| 29 | 2964.57 | 2.68399 | 3.92486 | 72 | 4362.61 | 2.62878 | 7.89193 |
| 30 | 3035.82 | 2.68078 | 3.95639 | 73 | 4366.37 | 2.62865 | 8.20987 |
| 31 | 3104.98 | 2.67773 | 3.98878 | 74 | 4369.56 | 2.62858 | 8.56661 |
| 32 | 3172.04 | 2.67479 | 4.02205 | 75 | 4372.25 | 2.62852 | 8.97017 |
| 33 | 3236.99 | 2.67199 | 4.05632 | 76 | 4374.47 | 2.62846 | 9.43306 |
| 34 | 3299.83 | 2.66930 | 4.09159 | 77 | 4376.27 | 2.62840 | 9.97048 |
| 35 | 3360.55 | 2.66671 | 4.12799 | 78 | 4377.72 | $2.6283_{5}$ | $10.6021_{5}$ |
| 36 | 3419.14 | 2.66421 | 4.16566 | 79 | 4378.84 | $2.6283_{1}$ | $11.3600_{3}$ |
| 37 | 3475.69 | 2.66190 | 4.20426 | 80 | 4379.69 | $2.6282_{8}$ | $12.2924_{8}$ |
| 38 | 3530.16 | 2.65968 | 4.24422 | 81 | 4380.31 | $2.6282_{7}$ | $13.4653_{1}$ |
| 39 | 3582.55 | 2.65752 | 4.28572 | 82 | 4380.74 | $2.6282_{6}$ | $15.0054_{3}$ |
| 40 | 3632.89 | 2.65547 | 4.32864 | 83 | 4381.01 | $2.6282_{5}$ | 17.16989 |
| 41 | 3681.18 | 2.65351 | 4.37316 | 84 | 4381.17 | $2.6282_{4}$ | $20.9001_{5}$ |
| 42 | 3727.45 | 2.65165 | 4.41935 | 85 | 4381.25 | $2.6282_{3}$ | $27.6276_{6}$ |



Fig. 5.-A portion of the attractive RKR potential energy curve near the dissociation limit of the $B^{3} \Pi_{0_{u}}$ state. The turning points for $v>77$ as indicated by filled circles are calculated using the extrapolated energies given in table 7. The dissociation limit relative to the potential minimum is $D_{\mathrm{e}}=4381.29 \mathrm{~cm}^{-1}$.

Table 9.-Results of RKR long-Range potential analysis for $B^{3} \Pi_{0_{+}}$State of $\mathbf{I}_{2}$

| $v$ range | $r$ range $/ \AA$ | dissociation energy/ <br> $\mathrm{cm}^{-1} a$ | $10^{-5} C_{5}{ }^{b}$ | $10^{-6} C_{6}$ | $10^{-8} C_{8}$ | note |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $64-77$ | $6.2-10.0$ |  | $3.43 \pm 0.13$ | $1.064 \pm 0.133$ | $0.46 \pm 0.02$ | $d$ |
| $64-85$ | $6.2-27.6$ | $4381.293 \pm 0.015$ | $3.40 \pm 0.13$ | $1.100 \pm 0.13$ | $0.45 \pm 0.02$ | $d$ |
|  |  |  | $(3.68)^{c}$ | $1.850 \pm 0.2$ | $0.19 \pm 0.04$ | ref. (40) |

${ }^{a}$ Energy relative to the equilibrium position of the potential curve of $B^{3} \Pi_{0_{u}^{+}}$state. The value relative to $X^{1} \Sigma_{g}^{+}(v=0, J=0)$ is $20043.220 \mathrm{~cm}^{-1} ; b$ the $C_{m}(m=5,6,8)$ coefficients are in $\mathrm{cm}^{-1}$ $\AA^{m} ; c$ theoretical value; ${ }^{d}$ values obtained using eqn (6).


Fig. 6.-The percentage contribution of each term $C_{m} / r^{m}$ in eqn (6) for $m=5,6$ and 8 to the binding energy $\left[D-G(v)\right.$ ] near the dissociation limit of $B^{3} \Pi_{0_{u}^{+}}$is indicated by $\boldsymbol{\Delta}$ and $\boldsymbol{\square}$, respectively. The corresponding values shown by $\bigcirc, \triangle$ and $\square$ are calculated from the constants obtained by LeRoy and Cummings (table 9).

## C. LONG-RANGE DEPENDENCE OF $B_{v}$

LeRoy ${ }^{39}$ has examined the problem of the variation of $B_{v}$ with $v$ near the dissociation limit and obtained a relation which may be written

$$
\begin{equation*}
v=v_{\mathbf{D}}-q\left[B_{v}\right]^{(n-2) / 4} \tag{7}
\end{equation*}
$$

where $q=1 /\left[Q_{n}\right]^{(n-2) / 4}$ and $Q_{n}$ is a constant depending on the reduced mass, $n$ and the long-range constant $C_{n}$. For $n=5, B_{v}^{3 / 4}$ should then be linear in $v$. However the approximations made in the derivation of (7) are expected to be less well satisfied than in the corresponding relation connecting $\overline{\Delta G}_{v}$ with $v(5)$ and the results plotted in fig. 7


Fig. 7.-The variation of $\left(B_{v}\right)^{3 / 4}$ with $v$. A, observed values together with the calculated value for $v=76$ using the constants given in table $4 ; B$, calculated with $C_{5}=3.40 \times 10^{5} \mathrm{~cm}^{-1} \AA^{5}$ obtained from the analysis of long-range RKR potential (table 9); C, calculated with $C_{5}=2.886 \times 10^{5} \mathrm{~cm}^{-1}$ $\AA^{5}$ obtained with the use of eqn (5) (table 6).
show that the values of $B_{v}$ calculated from (7) are too large. Moreover the variation of $B_{v}$ with $v$ near dissociation illustrated in fig. 1 , where $\mathrm{d} B_{v} / \mathrm{d} v$ is found to decrease only slightly with increasing $v$, shows that the power to which $B_{v}$ is to be raised in an expression of the type of (7) to obtain a region of linear variation with $v$ is close to one. It seems that the long-range dependence of $B_{v}$ requires further attention. Meanwhile estimates of $B_{v}$ for $v>77$ can readily be obtained, either graphically, or by polynomial extrapolation as shown in table 10.

## CONCLUSIONS

The present work began with the aims of determining the dissociation limit in the $B^{3} \Pi_{0_{u}^{+}}$state and of deriving experimental data to test the theory of the long-range interaction between $I\left({ }^{2} P_{\frac{3}{2}}\right)$ and $I\left({ }^{2} P_{\frac{1}{2}}\right)$. In the course of this work it became clear that the accepted assignments for many of the laser excited fluorescence series were incorrect and the rotational analysis was extended to include most of the commonly used laser and other excitation lines. The result has provided a consistent rotational analysis covering the greater part of the range of bound levels in the $B$ state.

Table 10.-Comparison of observed and calculated $B_{v}$ values ( $\mathrm{cm}^{-1}$ ) near the dissociation limit of $B^{3} \Pi_{0_{u}}$ state of $\mathrm{I}_{2}$

| $v$ | obs. $^{a}$ | calc. $^{10{ }^{2} B_{v}}$ | calc. ${ }^{c}$ |
| :---: | :---: | :---: | :---: |
| 87 | 0 |  | $0.006(0.006)$ |
| 86 | $[0.031]$ |  | $0.036(0.040)$ |
| 85 | $[0.066]$ | 0.063 | $0.075(0.083)$ |
| 84 | $[0.107]$ | 0.108 | $0.120(0.134)$ |
| 83 | $[0.150]$ | 0.154 | $0.170(0.190)$ |
| 82 | $[0.194]$ | 0.199 | $0.224(0.250)$ |
| 81 | $[0.240]$ | 0.245 | $0.282(0.314)$ |
| 80 | $[0.286]$ | 0.291 | $0.342(0.382)$ |
| 79 | $[0.331]$ | 0.337 | $0.406(0.453)$ |
| 78 | $[0.376]$ | 0.383 | $0.472(0.526)$ |
| 77 | 0.4297 | 0.4293 | $0.540(0.603)$ |
| 76 | 0.4560 | 0.4757 | $0.611(0.681)$ |
| 75 | 0.5262 | 0.5221 | $0.684(0.763)$ |
| 74 | 0.5709 | 0.5685 | $0.759(0.846)$ |
| 73 | 0.6092 | 0.6149 | $0.835(0.932)$ |
| 72 | 0.6569 | 0.6612 | $0.914(1.019)$ |
| 71 | 0.7064 | 0.7075 | $0.994(1.109)$ |
| 70 | 0.7557 | 0.7536 | $1.076(1.200)$ |
| 69 | 0.7988 | 0.7996 | $1.159(1.293)$ |
| 68 | 0.8443 | 0.8454 | $1.244(1.388)$ |
| 67 | 0.8906 | 0.8910 | $1.331(1.485)$ |
| 66 | 0.9366 | 0.9364 | $1.419(1.583)$ |
| 65 | 0.9803 | 0.9816 | $1.508(1.682)$ |
| 64 | 1.0288 | 1.0265 | $1.599(1.784)$ |

$a$ Values in square brackets are graphically extrapolated; $b$ values calculated using the constants obtained from a least-squares polynomial fit (table 4) ; ${ }^{c}$ calculated using eqn (7), with $C_{5}=3.40 \times$ $10^{5}$. Values in parentheses are with $C_{5}=2.8861 \times 10^{5}$ (table 6).

The first direct conclusion is that, over the extended range of $v$, neither the vibrational levels nor the centrifugal stretching constants, $D_{v}$, can adequately be expressed by simple polynomials in $\left(v+\frac{1}{2}\right)$. This situation has already been recognized in the cases of, amongst others, the ground states of $\mathrm{H}_{2}{ }^{55}$ and of HF. ${ }^{56} \quad B_{v}$ can be represented by a five-term polynomial, but the behaviour of $B_{v}$ at high values of $v$ is not well represented by current theory based on the long-range potential.

The results have been used to construct an RKR potential curve extending to the dissociation limit of the $B$ state. The interaction at large distances may be represented by a potential $-\left(C_{5} / r^{5}+C_{6} / r^{6}+C_{8} / r^{8}\right)$ and the analysis shows that even at distances as large as $20 \AA$, the contribution of the term in $C_{6} / r^{6}$ is not negligible. Independent determination of uncorrelated values of $C_{5}, C_{6}$ and $C_{8}$ is, however, difficult, so that not too much weight should be attached to the precise values so far obtained.

In the long-range region, the approximations (4) and (5) are found to hold and provide good estimates of $D$ and of $v_{\mathrm{D}}$ : this is for the reasons (i) that there is positive curvature in the Birge-Sponer plot and (ii) that the first two terms in the potential differ in power by unity. Both these terms, in $r^{-5}$ and $r^{-6}$, are significant in the working range, so that the values of the constants $C_{n}$ derived from eqn (4) and (5) are not pure $C_{5}$.

Regardless of the precise significance of the values of the long-range constants, the
dissociation limit is well-defined and leads to the ground state value $D_{0}\left(\mathrm{I}_{2}\right)=12440.1$ $\mathrm{cm}^{-1}$. This value is inconsistent with that derived by Verma from long fluorescence series, $12452.5 \pm 1.5 \mathrm{~cm}^{-1}$, and it is concluded that these series require revision.

We thank the S.R.C. for a grant.
${ }^{1}$ R. Mecke, Ann. Phys., 1923, 71, 104.
${ }^{2}$ W. G. Brown, Phys. Rev., 1931, 38, 709.
${ }^{3}$ P. Pringsheim, Fluorescence and Phosphorescence (Interscience, New York, 1949), p. 159.
${ }^{4}$ R. S. Mulliken, J. Chem. Phys., 1971, 55, 288 and references therein.
${ }^{5}$ D. H. Rank, J. Optical Soc. Amer., 1946, 36, 299 ; D. H. Rank and W. M. Baldwin, J. Chem. Phys., 1951, 19, 1210.
${ }^{6}$ D. H. Rank and B. S. Rao, J. Mol. Spectr., 1964, 13, 34.
${ }^{7}$ J. I. Steinfeld, R. N. Zare, L. Jones, M. Lesk and W. Klemperer, J. Chem. Phys., 1965, 42, 25 and references therein.
${ }^{8}$ A. W. Richardson and R. A. Powell, J. Mol. Spectr., 1967, 24, 379.
${ }^{9}$ R. L. Brown and W. Klemperer, J. Chem. Phys., 1964, 41, 3072.
${ }^{10}$ J. I. Steinfeld, J. D. Campbell and N. A. Weiss, J. Mol. Spectr., 1969, 29, 204.
${ }^{11}$ K. K. Yee and G. J. Miller, Chem. Comm., 1972, 1054, and references therein.
${ }^{12}$ S. Ezekiel and R. Weiss, Phys. Rev. Letters, 1968, 20, 91.
${ }^{13}$ K. Sakurai and H. P. Broida, J. Chem. Phys., 1969, 50, 557 ; 1970, 53, 1615.
${ }^{14}$ W. Holzer, W. F. Murphy and H. J. Bernstein, J. Chem. Phys., 1970, 52, 399, 469.
${ }^{15}$ E. Menke, Z. Naturforsch., 1970, 25A, 3, 442 ; Th. Halldorsson and E. Menke, Z. Naturforsch., 1970, 25A, 1356.
${ }^{16}$ G. R. Hanes and C. E. Dahlstrom, Appl. Phys. Letters, 1969, 14, 362 ; J. D. Knox and Y. H. Pao, Appl. Phys. Letters, 1970, 16, 129.
17 J. Vigue and J. C. Lehmann, Chem. Phys. Letters, 1972, 16, 385.
${ }^{18}$ D. G. Fouche and R. K. Chang, Phys. Rev. Letters, 1972, 29, 536.
${ }^{19}$ J. I. Steinfeld and A. N. Schweid, J. Chem. Phys., 1970, 53, 3304.
${ }^{20}$ K. C. Shotten and G. D. Chapman, J. Chem. Phys., 1972, 56, 1012.
${ }^{21}$ K. Sakurai, G. Capelle and H. P. Broida, J. Chem. Phys., 1971, 54, 1220.
22 J. Solomon, J. Chem. Phys., 1967, 47, 889.
${ }^{23}$ T. W. Broadbent and A. B. Callear, J.C.S. Faraday II, 1972, 68, 1367.
${ }^{24}$ T. W. Broadbent, A. B. Callear and H. K. Lee, Trans. Faraday Soc., 1968, 64, 2320.
${ }^{25}$ A. B. Callear and J. F. Wilson, Trans. Faraday Soc., 1967, 63, 1358.
${ }^{26}$ W. E. Falconer and E. Wasserman, J. Chem. Phys., 1966, 45, 1843.
${ }^{27}$ R. N. Zare, J. Chem. Phys., 1964, 40, 1934.
${ }^{28}$ K. K. Yee and R. F. Barrow, J.C.S. Faraday II, 1972, 68, 1181, 1397.
${ }^{29}$ K. K. Yee, R. F. Barrow and Astri Rogstad, J.C.S. Faraday II, 1972, 68, 1808.
${ }^{30}$ M. Kroll and D. Swanson, Chem. Phys. Letters, 1971, 9, 115.
${ }^{31}$ M. Kroll and K. K. Innes, J. Mol. Spectr., 1970, 36, 295.
${ }^{32}$ M. Kroll, Phys. Rev. Letters, 1969, 23, 631.
${ }^{33}$ T. W. Hänsch, M. D. Levenson and A. L. Schawlow, Phys. Rev. Letters, 1971, 26, 946.
${ }^{34}$ M. S. Sorem, M. D. Levenson and A. L. Schawlow, Phys. Letters, 1971, 37A, 33.
${ }^{35}$ M. D. Levenson and A. L. Schawlow, Phys. Rev., 1972, 6A, 10.
${ }^{36}$ G. R. Hanes, J. Lapierre, P. R. Bunker and K. C. Shotton, J. Mol. Spectr., 1971, 39, 506.
${ }^{37}$ R. J. LeRoy and R. B. Bernstein, J. Mol. Spectr., 1971, 37, 109 and references therin.
${ }^{38}$ R. J. LeRoy and R. B. Bernstein, Chem. Phys. Letters, 1970, 5, 42.
${ }^{39}$ R. J. LeRoy, Canad. J. Phys., 1972, 50, 953.
${ }^{40}$ R. J. LeRoy and F. E. Cummings, to be published.
${ }^{41}$ R. D. Verma, J. Chem. Phys., 1960, 32, 738.
${ }^{42}$ R. J. LeRoy, J. Chem. Phys., 1970, 52, 2683.
${ }^{43}$ G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand, New York, 1950).
${ }^{44}$ N. Åslund, Arkiv Fys., 1965, 30, 377.
${ }^{45}$ A. G. Gaydon, Dissociation Energies and Spectra of Diatomic Molecules, 3rd edn (Chapman and Hall, London, 1968), Chap. 5.
${ }^{46}$ R. J. LeRoy and R. B. Bernstein, J. Chem. Phys., 1970, 52, 3869.
${ }^{47}$ R. L. Brown and T. C. James, J. Chem. Phys., 1965, 42, 33.
${ }^{48}$ C. E. Moore, Atomic Energy Levels, Vol. 3, Nat. Bur. Stand. Circ. No. 467, 1958.
${ }^{49}$ R. F. Barrow, D. F. Broyd, L. B. Pedersen and K. K. Yee, Chem. Phys. Letters, 1973, 18, 357.
${ }^{50}$ W. C. Stwalley, J. Chem. Phys., 1972, 56, 680.
${ }^{51}$ J. A. Coxon, J. Quanturn Spectr. Rad. Transfer, 1971, 11, 443.
${ }^{52}$ J. K. Knipp, Phys. Rev., 1938, 53, 734.
${ }_{54}^{53}$ T. Y. Chang, Rev. Mod. Phys., 1967, 39, 911.
${ }^{54}$ R. J. LeRoy, J. Mol. Spectr., 1971, 39, 175 and references therein.
${ }^{55}$ G. Herzberg and L. L. Howe, Canad. J. Phys., 1959, 37, 636.
${ }^{56}$ J. W. C. Johns and R. F. Barrow, Proc. Roy. Soc. A, 1959, 251, 504. D. E. Mann, B. A. Thrush, D. R. Lide, J. J. Ball and N. Acquista, J. Chem. Phys., 1961, 34, 420.

