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Abstract

Absolute values of gas-phase absorption cross-sections for some atmospherically important molecules (HCI, H,O,
H2S, NH3, HzOz, HNCO, CH4, CH3C1, CHzClz, CHCI}, CHcml, CHBI’3, CH3CF2C1 and CH3CFC12) have been
measured at the H atom Lyman-o wavelength (121.567 nm) employing narrow band (A4 = 0.0006 nm) laser radiation
generated by resonant third-order sum-difference frequency conversion. The present values can be used to access the
uncertainty associated with Lyman-o absorption cross-section values derived from available literature absorption
spectra which usually have been measured with quite different and sometimes with quite low spectral resolu-

tions. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

The ultraviolet (UV) solar spectrum is of par-
ticular importance in determining the composi-
tion, temperature distribution and circulation
pattern of the stratosphere, mesosphere and ther-
mosphere. The strongest emission line in the VUV
region of the solar spectrum is at the Lyman-o
(121.567 nm) wavelength due to neutral atomic
hydrogen [1,2]. The energy contained in the solar
Lyman-o flux is as large as the total solar flux in
the 120-160 nm region [3]. Because the Lyman-o
wavelength occurs at a spectral window of mo-
lecular oxygen, solar radiation can penetrate down
to about 60 km in the earth’s atmosphere [4].
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Therefore, an accurate knowledge of molecular
absorption cross-sections is essential to obtain re-
liable photodissociation rates in the earth’s upper
atmosphere as well as in interstellar media. For the
sun and other stars with a similar radiation envi-
ronment, the most important wavelength being the
Lyman-a wavelength [5], absolute values of ab-
sorption cross-sections at this wavelength are of
great significance in the development of chemical
dynamical radiative models [6].

Despite such importance, the absolute absorp-
tion cross-sections at the Lyman-o wavelength are
not yet available for a number of atmospherically
important molecules. Although for most of these
molecules, absorption spectra covering the range
of the Lyman-a wavelength have been reported.
However, in most cases absolute values at 121.567
nm are not reported. Also for a number of mole-
cules where absolute values of the Lyman-o ab-
sorption cross-sections have been reported, the
values obtained by different workers have been
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found to differ depending on the bandwidth of the
VUV radiation used in the experiments. In this
Letter, we report absolute values for the Lyman-o
absorption cross-sections of some atmospheric
important molecules which were measured using
narrow band VUV laser radiation generated by
resonant third-order sum-difference frequency
conversion.

2. Experimental

The apparatus schematically shown in Fig. 1
was used for measurement of Lyman-a absorption
cross-sections and has been described earlier in
detail [7-9]. VUV laser light was generated by
resonant third-order sum-difference frequency
conversion (wyyy = 2wr — wr) in a phase-mat-
ched Kr-Ar mixture [10,11]. In this scheme
wr = 212.55 nm is two-photon resonant with the
Kr 4p-5p (1/2, 0) transition and fixed during the
measurements. The second frequency wr could be

tuned over the wavelength region 844-846 nm to
generate narrow band VUV laser light tuneable
around the H atom Lyman-o transition (121.567
nm). A bandwidth of A4 = 0.0006 nm was deter-
mined for the VUV laser radiation in separate
experiments by recording H atom Doppler profiles
under thermalised conditions. In the present
measurements the following wavelength calibra-
tion was adopted. H atoms produced via laser
photolysis of HCI at 193 nm were cooled down to
a translational temperature of Ty.,s ~ 300 K by
collisions with room-temperature inert gas argon
and the maximum of the H atom Doppler profiles
(measured by recording the VUV laser-induced
fluorescence spectrum) corresponding to the cen-
ter-frequency of the H atom Lyman-a transition
was determined. In the subsequent absorption
measurements o was locked at this position.

In the absorption cross-sections measurements,
the pulse to pulse change in the VUV laser inten-
sity was monitored using a solar blind photomul-
tiplier placed just before the laser light enters the

(Kr/Ar)-Mixture

sum-difference frequency
conversion in Krypton O
4p>5p (112, 0) y=g
—
N [} + . M
| ADC
R A : Ly BoxCars
XeCl Exci ! 6
€ xcimer round state (4p®°1S
y 308 nm | acer g (4p°1S)
BBO Il v b
t
308 nm Dye Laser Pellin-Broca Prism 0 Yacuum Fump
425 nm
AR =212.5nm LM
N N T T 11
308 nm Dye Laser IZ:/—< Ry BB D
AT =845 nm \ /

Avuv~ 121.6

>

m

Baratron Gas Inlets

Fig. 1. Schematic diagram of the experimental setup used for the Lyman-a absorption cross-section measurements (PM: photomul-
tiplier, LM: lens monochromator, ADC: analogue to digital converter). The Kr four-wave mixing scheme for the generation of narrow
band Lyman-o laser radiation (Ayyy = 121.567 nm, A/ = 0.0006 nm) is shown as an inset.
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sample section (PM 1 in Fig. 1). A second photo-
multiplier (PM 2 in Fig. 1) kept after the sample
compartment was used for measuring the attenu-
ation of Lyman-a radiation by the sample. Typi-
cally 50 laser shots were averaged to get
absorbance value at a given sample pressure. The
absorption path length was (20.0 +0.2) cm. The
pressure range employed in the measurements was
10-500 mTorr depending on the attenuation of the
Lyman-o radiation. H,O used in the measure-
ments was double distilled and deionised. Prior to
use in the absorption measurements, H,O, (85%,
PEROXID Chemie) was pumped through the cell
for at least three days until it reached a final
concentration of >99.8% (determined by titra-
tion). HNCO synthesised using the method de-
scribed in our earlier work [7,8] was purified by
repeated distillation. Its purity was found to be
~97% as checked by gas chromatography and
mass spectrometry. The other samples were ob-
tained from different manufacturers with the fol-
lowing purities: HCI (99.999%, Messer Griesheim:
MG). CH;Cl (>99.8%, MG): the CH;Cl flow was
started several minutes before the experiments in
order to ensure the removal of the small amounts
of impurities, which were stated by the manufac-
turer to be mainly HClI and CHy4, and higher
hydrocarbons, all of them having a considerable
higher vapour pressure than CH;Cl. CH,Cl,
(>99.5%, Fluka Chemie, amylene-stabilised) and
CHCl; (99.8%, Riedel-de Haen, CHROMASOLYV,
amylene-stabilised): the liquids CH,Cl, and CHCl;
were degassed prior to the measurements by sev-
eral freeze-pump-thaw cycles at liquid N, tem-
perature. CHBr; with a purity of >98% was
obtained from Merck—Schuchardt and the sample
was also degassed prior to the measurements by
several freeze-pump-thaw cycles. CH, (>99.998%
MG), CHF,CI (99.9% MG), CH;CF,Cl (>98%,
MG, as stated by the manufacturer, the amount of
CH;CFCl, in the sample was less than 0.1%, with
a water content of less than 5 ppm), CH;CFCl,
(99.7%, ABCR Chemicals, Karlsruhe) as well as
H,S (UCAR celectronic grade, 99.99%) and NH;
(99.998 MG) were used without further purifica-
tion.

Flow rates of the gases were controlled by mass
flow controllers (Tylan), which were calibrated

using N, before each measurement. The main
source of uncertainty in the measurement of ab-
sorption cross-sections apart from sample impu-
rities could come from the pressure measurement,
the accumulation of photolysis products and the
variations in the intensity of the Lyman-o radia-
tion. As mentioned earlier the purities of most of
the compounds were around 99% or more. Accu-
mulation of photolysis products was avoided by
measuring under flow conditions. Depending on
the actual attenuation of the Lyman-o radiation,
sample pressures ranging from 10 to 200 mTorr
were employed. The pressure was monitored using
a capacitance manometer (MKS Baratron, 10 Torr
head) with an accuracy of +£0.1%. The major un-
certainty in the present measurement is due to
variations in the VUV light intensity (+5% aver-
aged over 50 laser shots). The total cumulative
uncertainty in the cross-section value is calculated
to be £7%. In some runs the Beer—Lambert plots
showed small negative intercepts with the y-axis
(see Fig. 2) due to small time-independent pressure
offsets of the capacitance manometer. However,
this being a constant factor does not affect the
value of the slope of the Beer—Lambert plots which
yields the absorption cross-section.

3. Results and discussion

The optical absorption cross-section ¢ was de-
termined by measuring the attenuation of the Ly-
man-o laser radiation and is defined as

0= ln(IO/Itrans)/(n X labs)a (1)

where 7 is the number density of gas molecules, 7,
is the absorption pathlength and /.,s and I, are
the intensities of the Lyman-a radiation measured
with and without attenuation by the gas sample.
Values for the absorption cross-sections were ob-
tained from the slope of In (fo/fians) Vversus
(n X lps) plots as shown in Fig. 2. Absorption
cross-sections obtained in the present work are
listed in Table 1 and compared — whenever avail-
able — with reported literature values or with esti-
mates obtained from absorption spectra
reproduced in the literature.



292 R.K Vatsa, H.-R. Volpp | Chemical Physics Letters 340 (2001) 289-295
2.5
(@) H,0 (c) CHyCI
2 20f -
o
= 15} -
=
= 1.0} -
<
0.5 -
0.0 ! ! ! ! ! ! I ! L I 1
"0 2 4 6 8 10 12 14 0 05 10 15 20 25 3.5
1.6
| (b) CH, L (d) CHyCl,
—~ 1.2 -
= o8| _
= 04| i
0.0 | 1 | I | I | | 7/?/( ] ] 1 | |
0 2 4 6 0 1.0 2.0 3.0

n x 1 (1076 molec cm-2)

n x 1 (1016 molec cm-2)

Fig. 2. Beer—Lambert plots for: (a) H,O, (b) CHy, (c) CH;Cl and (d) CH,Cl,. The corresponding Lyman-o absorption cross-sections
derived from the slope of the Beer—Lambert plots (for details see text) are given in Table 1.

For CHy, the absorption spectrum around the
Lyman-a wavelength exhibit no pronounced
structure [12]. Therefore the influence of the
spectral bandwidth of the light source used in the
measurement should have only minor influence on
the actual value of the Lyman-a absorption cross-
section. The fact that the value obtained in the
present study, (2.0 £0.2) x 1077 cm? (see Table
1), is in good agreement with the value of
(1.940.1) x 107 cm? which can be estimated
from the spectral data depicted in Fig. 1 of Ref.
[13] (spectral resolution 0.2 nm) is in line with this
conclusion.

For HCI, a VUV absorption spectrum in the
106-185 nm region was recorded by Nee and co-
workers with a spectral resolution of 0.05 nm [14].
These authors measured the absorption cross-sec-
tion close to the Lyman-o wavelength and
estimated that the corresponding absorption cross-
section is not higher than 3 x 107" cm?. This
estimate is in general agreement with the present
measurement which yielded a value of
(14+0.1) x 10" cm? for the Lyman-o absorp-
tion cross-section of HCL

VUV absorption spectra of H,O have been
recorded by different groups [15-22]. For H,0, the
following Lyman-o absorption cross-sections have
either been reported [18-20,22] or can be estimated
from the literature absorption spectra [17,21]:
(1.540.1) x 107 cm? [17] (spectral resolution
0.003 nm), (1.440.1) x 107 cm? [18] (spectral
resolution 0.2 nm), (1.57 £0.1) x 1077 cm? [19]
(spectral resolution 0.005 nm), (1.59+0.1)x
107 cm? [20] (spectral resolution 0.005 nm),
(1.340.05) x 10717 em? [21] (spectral resolution
0.5 nm) and (1.4 +0.03) x 10~"7 cm? [22] (spectral
resolution 0.007 nm). In summary, the values for
the Lyman-a absorption cross-section reported in
the literature are found to range from 1.3 x 107"
to 1.6 x 107'7 cm? depending on the spectral res-
olution of the measurement. In the present work,
we obtained a value of (1.6+0.1) x 1077 cm?
which is in good agreement with the results of the
three higher resolution studies [17,19,20].

For H,S, Watanabe and Jursa recorded an ab-
sorption spectrum in the wavelength region 120-
160 nm with a resolution of 0.1 nm [23]. From this
spectrum (Fig. 3 of Ref. [23]) an absorption cross-
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Comparison of room-temperature (300 K) gas-phase absorption cross-sections (o) for the H atom Lyman-a wavelength (121.567 nm)
obtained in the present study with the corresponding values estimated from literature data obtained with various spectral resolutions

(for details see text)®

Molecule ¢ in cm? (this work) ¢ in cm? SR in nm Reference
HCl (14+0.1) x 107" <3 x 107" 0.05 [14]
H,0 (1.6 £0.1) x 107 (1540.1) x 107 0.003 [17]
(1440.1) x 1077 0.2 [18]
(1.574£0.1) x 1077 0.005 [19]
(1.59 £ 0.1) x 10717 0.005 [20]
(1.340.05) x 1077 0.5 [21]
(1.4+0.03) x 10-17 0.007 [22]
H,S (2.84£0.2) x 1017 (2.5+0.5) x 1017 0.1 23]
(3.0£0.2) x 107 ~12 [24]
3141077 ~12 [25]
NH, (7340.5) x 1018 (8.0+0.5) x 1018 0.2 [26]
(7.0 £0.5) x 10718 0.007 [27]
H,0, (9.6+0.7) x 1018
HNCO (254£0.2) x 1017 (20+0.5) x 1017 0.5 [30]
CH, (20£0.2) x 107 (1940.1) x 107 0.2 [13]
CH;Cl (8.8£0.6) x 107 (5.0£0.2) x 107 0.6 [28]
(7.54£0.3) x 10777 0.04 [29]
CH,Cl, (4.04£0.3) x 1077 (4.040.2) x 1077 0.04 [29]
CHCl (3.5+03) x 1077 (4.0£0.2) x 107 0.4 [29]
CHF,CI (1840.2) x 1077 (5.840.5) x 107 Not given [31]
CHBr; (7.1£0.5) x 107
CH;CF,Cl (3.14£02) x 107 (32403) x 107 Not given [32]
CH,CFCl, (6.6+0.5) x 1017

#The spectral resolution (SR) of the present work was 0.0006 nm.

section of (2.5 +0.5) x 1077 can be estimated for
the Lyman-o wavelength. Brion et al. [24] applied
dipole (e,e) spectroscopy with an energy resolution
of 1 eV. From the latter work (Fig. 1 of Ref. [24]) a
value of (3.0 - 0.2) x 10~!7 cm? can be derived for
the Lyman-o absorption cross-section. Recently,
Feng et al. [25] reported a Lyman-o absorption
cross-section of 3.14 x 1077 cm? for a photon
energy of 10.2 eV corresponding to a wavelength
of 121.55 nm (the energy resolution in their ex-
periment was also 1 eV). Within the combined
error limits, the Lyman-a absorption cross-section
of (2.8 4+0.2) x 107'7 ¢cm? obtained in the present
study is in good agreement with the value derived
from the spectrum reproduced in [23,24].

For NH3, a value of (8.0 £0.5) x 10~'® ¢cm? for
the Lyman-o absorption cross-section can be es-
timated from the spectrum shown in Fig. 1 of Ref.
[26] (spectral resolution of 0.2 nm). However, the
absorption spectrum reported in Fig. 3 of Ref. [27]
(recorded with a higher spectral resolution of 0.007
nm) yields a smaller value of (7.0 +0.5) x 1078
cm?, which is in better agreement with the value
of (7.34£0.5) x 10°!® cm? obtained in the present
work.

In case of CH;Cl, a value of (5.0 £0.2) x 1077
cm’ can be estimated from the spectral data de-
picted in Fig. 3 of Ref. [28]. The latter data have
been obtained using dipole (e,e) spectroscopy in
the energy range 6-12 eV with a resolution of
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0.05 eV (corresponding to a resolution of 0.6 nm at
the Lyman-o wavelength of 121.567 nm). Using
synchrotron radiation with a spectral resolution of
0.04 nm, Lee and Suto [28] determined a Lyman-o
absorption cross-section of (7.540.3) x 10"
cm?. In the present work we obtained a value of
(8.840.6) x 1077 cm? which is slightly higher
than the values derived from the earlier measure-
ments.

For CH,Cl, and CHCl;, Lyman-a absorption
cross-sections of (4.040.2) x 107" cm? and
(4.0 £0.3) x 1077 cm? can be estimated from the
absorption spectra given in Fig. 6 (spectral reso-
lution 0.04 nm) and Fig. 3 (spectral resolution 0.4
nm) of Ref. [29]. The values (4.0 40.3) x 10"
cm? and (3.540.3) x 1077 cm? obtained in the
present study for CH,Cl, and CHCl;, respectively,
are within the combined error limits in agreement
with these estimates.

Uno et al. measured the VUV absorption
spectrum (Fig. 1 of Ref. [30]) of HNCO from 107
to 180 nm using synchrotron radiation with a
spectral resolution of 0.5 nm which allows to es-
timate a value of (2.0 £0.5) x 107'7 ¢cm? for the
Lyman-a absorption cross-section. The latter va-
lue agrees within the combined error limits with
the value of (2.540.2) x 1077 cm? obtained in
the present work.

For CF,HClI and CH;CF,Cl, absorption spectra
covering the Lyman-a wavelength were recorded
and reproduced in Fig. 7 of Ref. [31] and Fig. 4 of
Ref. [32], respectively (unfortunately the actual
spectral resolution is not given). From the spectrum
of [31] the Lyman-o absorption cross-section for
CF,HCl can be estimated to be (5.8 +0.5)x
107! cm?. This value is about three times higher
than the value of (1.8 +0.2) x 107" measured in
the present work. The reasons of this large difference
in the two measurements are not clear as yet. For
CH;CF,Cl, however, the value (3.2+0.3)x
107"7 cm? estimated from the spectral data of [32]
is in good agreement with the value (3.1 £0.2)x
1077 cm? of the present measurement.

The results of the present study are summarised
in Table 1 and compared with the corresponding
values/estimates derived from literature absorption
spectra. For HCI, H,0,, CHBr; and CH;CFCl,
the present study provided absolute absorption

cross-sections which to best of our knowledge are
not yet available in the literature. For the other
molecules, apart from CH;Cl and CHF,Cl, rea-
sonable and in some cases (H,O, H,S, NH;j,
CH,4, CH,Cl,) quite good agreement was found
with Lyman-o absorption cross-sections estimated
from the presently available literature absorption
spectra. For H,O, for which a number of optical
absorption spectra obtained with different spectral
resolutions are available, the data collected in
Table 1 suggests that absorption cross-values es-
timated from spectra recorded with higher spectral
resolution [17,19,20] are generally in better agree-
ment with the present results than the values esti-
mated from spectra recorded with lower
resolutions [18,21]. At this point it should be noted
that all molecules listed in Table 1 except CHy
exhibit structured absorption spectra near the
Lyman-o wavelength. Hence, it can be expected
that for these compounds the determination of
absolute absorption cross-sections depends on the
spectral resolution of the measurement. A similar
trend as observed for H,O might be present in case
of NH3, and CH;Cl (see Table 1). For CH3Cl, the
presence of structure in the absorption spectrum
which could not be resolved in measurements of
[29], would also explain the higher Lyman-o ab-
sorption cross-sections obtained in the present
study.
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