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In critical cases, single-reference correlated methods like coupled-cluster theory or its quadratic CI approximations fail because 
of the importance of additional highly excited excitations that cannot usually be included, like connected triple and quadruple 
excitations. Here we present the first, non-iterative method to evaluate the full set of fifth-order corrections to CCSD and QCISD 
and assess their accuracy compared to full CI for the very sensitive Be2 curve and other cases. 

1. Introduction 

Today it is well known that coupled-cluster (CC) theory provides highly accurate results for molecular ener- 
gies and properties (see ref. [ 1 ] for a recent review). For routine applications CC methods have frequently 

been limited to double (CCD=exp(T,) 10) [2]), and single and double CCSD=exp(T,+T,) 10) excita- 
tions [ 31, since these are efficient (they scale with the number of basis functions as Niln6 where Nit is the num- 
ber of iterations with n the number of basis functions). Both methods include the principal (disconnected) 

part of the quadruple excitations ( f T$ ) while CCSD also adds disconnected triples like TlT2, etc. Although 

the CCSD results are far better than the corresponding single reference CISD methods because of the elimi- 
nation of size-inextensive terms and the additional higher levels of excitation introduced, they will still fail 
when the reference function is too poor an approximation to the particular electronic state of interest. This 

failure occurs when multiple bonds are broken, for example, because several configurations might be necessary 
to provide the correct zero-order description. Whereas a single electron pair bond breaking only requires double 
excitations to get correct separation, double bonds require quadruple, and triple bonds, hextuple excitations, 
which often recommend multi-reference methods [ 41. Nevertheless, the unambiguous application of a single 

reference method has merit for many problems. To obtain sufficiently accurate answers, however, generally 
requires consideration of connected triple (T,) and for difficult cases, connected quadruple (i.e. T4) cluster 

operators. The former has been included previously in CCSDT- 1 [ 5 1, which unlike CCSD is correct through 
fourth-order in the energy. Additional fifth- and higher-order terms are introduced in CCSDT-2 [6] and in 
the full CCSDT [ 71 method. Whereas CCSDT-I,2 are Niln7 methods and do not require storage of the T, 
amplitudes, the full CCSDT method requires storage of T, plus an Ni,n* step in its evaluation. However, for 
difficult cases, the improvement of CCSDT compared to CCSDT-1,2 can be significant [7-91. 

Repeating an rt’ step Nit times makes such methods much more expensive computationally than a non-it- 

erative n 7 step that may be added onto CCSD. Such a method, CCSD +T( CCSD), correct through fourth or- 
der, has been proposed [ lo], along with others that added non-iterative singles and triples to CCD [ 111. For 
energies, CCSD+T( CCSD) is usually close to the CCSDT-1 results, hut closer inspection for difficult cases 
such as for some diatomic potential curves, where CCSD results are equally good [ 12 1, or the frequencies of 
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03, where it fails [ 131, emphasizes the necessity of including some higher-order correlation corrections, pri- 
marily those that occur in fifth order [ 141. 

For a CC method to be correct through fifth order in the energy, however, consideration of T4 is also re- 

quired. Two iterative CC methods that are correct through fifth order have been presented: the CCSDTQ-1 
method [ 151 and the alternative expectation value ansatz, XCC( 5) approach [ 16,171. The considerable im- 
provement of the former over CCSDT has been demonstrated [ 15 1. However, the iterative inclusion of T4 in 
CCSDTQ-1 requires an Ni,ng step, which is one power of n worse than CCSDT. Hence, T4 can also benefit 
from a non-iterative inclusion of these effects. In this regard, XCC( 5) introduces a new factorization that does 
not occur in standard CC theory. This makes it possible to evaluate the fifth-order T, correction with only a 
single n’ procedure [ 14,151. In the following the theory is derived and results presented for the first full non- 
iterative inclusion of all terms that contribute in the fifth-order energy with only one term, the T3 to T3 con- 

tribution, which scales as n *, scaling worse than n’. Such a method, CCSD+TQ*( CCSD), or the alternative 
n7 method we present, can be easily added to a converged CCSD result to obtain a measure of the higher-order 
correlation corrections, should be close to the full CI limit, as shown here for some examples, including the 
difftcult Be2 curve. Hence it might well offer a single-reference method of high and routine applicability. To 
illustrate, for a 100 basis function example, the non-iterative method presented here is about = lo3 times less 

expensive than CCSDTQ-1, and about z 10’ compared to a full CCSDTQ or CISDTQ result. 

2. Theory 

In operator form, we can write the CCSDTQ equations for an SCF reference as 

DzT2=WN+WNT2+WNT,+WNT,+WNT:/2+WNT4+WNT,TZ 

+( W,T,T,+ W,T:/2+ W,T?T,/2+ W,T:/3!+ W,T:/4!), 

D,T,=WNTz+WNT,+WNT,+(WNT,T,+WNT;/2+WNT;/3!), 

( la) 

(lb) 

+ W,T;T,/Z+ W,T:T,/2+ W,T:T,/2+ W,T;T,/3!), 

D~T4=WNT3+WNT:/2+(WNT~+WNT:/3!+WNT:T4/2+WNT2T3+WNT,T3+WNTZT4 

+W,T,T,T,+ W,T:T,/2+ W,T:T:/4+ W,T,T,+ W,TfT,/2+ W,T:T,/3!). 

(ICI 

(IdI 

These equations operate on the right on the Fermi vacuum 1 O}, and are to be projected from the left by the 
appropriate category of n-fold excitation space, Q, = 1 k, > (h, 1, where h, are the n-fold excited determinants, 
to determine T,, and the appropriate denominator D,. For lrs, e.g. QjD3T,= ( ~i+~j+ek-~a-~b-~,)f~~. The 
resolution of the identity is 1 = ] 0) (0 ] + E,,Qn. In all cases, the restriction to connected terms is understood 
except when it is necessary to make it explicit. The inability to obtain connected terms for W,T,, W,Tf TJ 
2 or W,TT/4! eliminates such contributions to D4T4, e.g. 

The operator HN is the usual normal-ordered two-electron operator 

HN=~&~[!'+~ +: c (pqb)~[p+qt~f-]=~ c,~N[p+p]+ wN=H!?+ WN (2) 
8.4 P,WJ P 

in the canonical SCF case. The orders in the correlation energy, WN, in which the various terms first appear 
are determined by noting that T, is first order, T, and T3 second order, and T, third order. The correlation 
energy expression is 

hE={OlW,T,IO)+(OIW,T:/210). (3) 
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Hence, all terms included in parentheses in eq. ( 1) only contribute beyond fifth order to AE. For T, such terms 

are higher than fourth order in W,, while for T,, T3 and T4 nothing higher than third-order contributions can 
contribute within fifth order in AE. 

In CCSD the wavefunction is defined as exp ( T, + T2) ] 0) , hence all contributions composed exclusively of 
T, and T, in eqs. ( 1 a) and ( 1 b) are retained regardless of order. In the QCISD approximation to CCSD [ 181, 

all the T, and Tz terms in eqs. ( la) and ( 1 b) which are not in parentheses are included, except for the W,T,T, 
term in eq. (la), contributing in fifth order while the sixth-order W,T, T, term in eq. (lb) is retained. QCISD 
also neglects the second term (also fifth order) in eq. (3 ). 

The first correction to CCSD results from triple excitations. The only fourth-order energy contribution comes 

from the Q3 projection of the second-order term in eq. (lc), 

QJ~Ts=Q~WNTZ. (4) 

Taking T2 from a converged CCSD calculation, T,= T2, within the spirit of the CC method we can evaluate 

the energy correction as 

QJhT!21 =Q, W,Fz, (Sal 

where Ttzl indicates that this T, contribution involves second-order and higher terms. T$*) would indicate 3 

the pure second-order contribution, with AEY’ the pure fourth-order MBPT triples correction. Then 

Q~D~T~:‘=QzWNT~~‘=Q~WNQ~WN~~;/D~ (5b) 

and 

AE&(O] W,T$'lO) . (6) 

This then defines the energy, 

AE= AEc-sb + AEFl ll * (7) 

Replacing AE, t4] by AEP) would also be correct through fourth order but would not benefit from the infinite- 
order effects in Fz. 

Alternatively, we could also consider the expectation value expression for the energy, 

AE=(O1[expTtHNexpT],lO), (8) 

where the denominator is eliminated by virtue of restricting AE to just connected terms. This expression is 
only exactly true for an untruncated T operator. Hence, for T= T, + T,. 

(01 [exp(Tt +Tf) &ew(T, +T2)lc10) 

=~~cso+(O~~f2/2(WN~~/2)c~0)+(O~~~~~(WNT2)C:~O)+higher-orderterms. (9) 

The extra fifth-order terms in eq. (9 ) will be discussed later. We should note, however, that the Hermitian 
conjugate of the third term in eq. (9) does not occur because it contributes to AE,,,,. Adding the connected 
triple excitation term, we have the increment to eq. (9 ), 

~~=((OI[expTf~~exp(~~+$~)l,I0)+h.c.)+(OI(expT~~~expT,)cIO)-~,,,,. (10) 

Restricting to just triple excitation terms that are initially fourth order in eq. (lo), 

AE~4’=(O~T~21+fNT~21~O)+((0)T~21+WN~2~00)+h.c.) 

with h.c. indicating the Hermitian conjugate of the other term(s) in the same parentheses. Recognizing that 

Q3fNT;2’=-QjDnT$21=-Q,WNl”,, 

~~l=(OIT~21+D3T~2’10)~ (11) 
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Using this quadratic measure of the converged triple excitations gives what we have called CCSD+ T( CCSD) 

[101, 
AE= AE#-csD + AEg . (12) 

The difference in eq. (7) and eq. (12) is that the higher-order correlation corrections contained in TI are 
introduced twice in the latter. All such fifth- and higher-order terms introduced are valid (non-redundant) 
correlation corrections. For correlation energies, the errors in AE$,’ are generally in the correct direction, so 

CCSD+ T( CCSD) will frequently give excellent agreement with full Cl energies (see table 1 ), although in some 
difficult cases the shape of the energy surface may not be as reliable or even better than that for CCSD [ 12,13 1. 

To introduce non-iterative fifth-order corrections we need to consider all terms not in parentheses in eq. ( 1) 
that depend upon T, or T+ Since eq. (5a) provides us with the approximation TJ’] that results in an energy 

correct to fourth order, we can define the terms that will first contribute in fifth order as 

Q3D,Ti3] =Qz WN(T:/2+Ti29 

Qs,D4T;31=Q4 W,(F’:/2+T{‘]) : 

(13a) 

(13b) 

The Tit1 to Ti3) term in eq. ( 13a) is n8, while eq. (13b) would be n9 without further simplification. Then 

by determining the contributions of eq. ( 13) to Tz and T,, we have 

Q,D3T;:] =Q, WNTi3’, (14a) 

QzD2Tg =Q2 W&’ , (14b) 

Q2D2T;;+=Q2WNTL31 IT 3 (14c) 

Q,D, T? =Q, WNT, 121 > (14d) 

Q,D, Ti2 =QI WNTZ. (14e) 

Defining Ty’ = T$:] + TyQ1 f T$ within the standard projected scheme using eq. (3), we have the energy 

contributions, 

AE[51=(Ol W,T~‘~O)+(O~ W,T~212/210)=~~1+~hh]+aE~~~+aEQ~. (15) 

The direct T, contribution to the energy contributes for the first time in fifth-order subject to an SCF reference, 

so that is absorbed into AE,, Is1 along with the other fifth-order terms included in CCSD. In the form of eq. 

( 13b), the T&l term would require an n9 algorithm, although as shown elsewhere this term called Q(l) [ 151 

Table I 
Non-iterative contributions of triple and quadruple excitations to the coupled-cluster energy (hartree) ‘) 

J&F + A&cm AEp AEg1 AEg AEg &Es’ = Q* Q[T(CCSD)] b, 

BH R, -25.225834 

ISR, -25.173332 
2.OR, -25.122298 

HF R. 
1.5R, 
2.OR, 

- 100.247963 -0.002908 
- 100.155296 -0.004951 
- 100.070927 -0.012093 

Hz0 R, 
1.5R, 
2.OR, 

- 76.252502 
- 76.061247 
- 75.930865 

-0.001406 +0.000026 
- 0.002257 +0.000165 
-0.005477 +0.000835 

+0.000299 
+0.000738 
+0.002169 

-0.003560 +0.000155 
-0.008780 +0.000620 
-0.028115 +0.002077 

+0.000041 

+0.000038 
-0.000028 

+0.000222 
f0.0003 16 
+0.000655 

+0.000254 
+0.000754 
f0.004362 

-0.000359 -0.000050 

-0.000565 +0.000022 
-0.001328 +0.000359 

-0.000032 
+0.000009 
fO.000176 

-0.000134 -0.000155 -0.000155 
- 0.000244 -0.000392 -0.000406 
-0.000825 -0.000270 -0.000368 

-0.000344 -0.000438 -0.000442 
-0.001118 -0.001506 -0.001527 

- 0.004499 +0.002812 +0.000433 

‘) All basis sets are DZP as defined in ref. [ 211. 
b~ThealternativeQ[T(CCSD)]appmximationisgivenby~(O~T~“t~~(W~f~/2+T~)c~O),ref. [15]. 
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can be reduced to an n’ evaluation by the factorization theorem. To introduce more infinite-order effects one 

can again appeal to the alternative energy expressions, eqs. (8) and (9). 
From eq. (lo), the fifth-order contributions from T3 are 

AE~5,1=({0~T~31+f.,T~21 IO)+{OIT, ‘3’+WN~~~O}+h.c.)~((O~T~21+f~~,~~’ZO}+h.c.) 

+((O~T~2’+WN~:/2~O)+h.c.)+(O~T~ [21+WNT~Z1~0)+((O~~‘fWNT~21~0)+h.c.). (16) 

Through Jijlh order, the first parenthesis vanishes by virtue of eq. (5a) that says that through second-order 

Q,cfNTkzl + WNT2) =0-t& 3) making any non-vanishing corrections to this term sixth and higher order. 
To begin to simplify the remaining terms in eq. ( 16) we employ the concept of internally disconnected terms 

[ 161. This recognizes that some quantities in eq. ( 16)) even though connected en toto, may be written in terms 

of a connected and a disconnected part, 

(01 [T~*1+WN~‘2/2]C~0)=(O~[T~2’+(WN~2/2)]c~0)+(O~ [T~21+(WN~2/2)D]c10) 

and 

(17a) 

Similarly, the h.c. of the last quantity in eq. (16) is 

(O~[T~21+WN~,]C~0)=(O~[T~21+(WN~~)D]C~0)=(0~[T~21+~,W~]C~0). (17c) 

We are separating these terms asymmetrically, as may be noted by recognizing that the conjugate of the term 
in eq. ( 17a) must have the two right-hand operators connected. The alternative of symmetrizing these quan- 

tities that distinguishes the unitary (UCC) method from the expectation value (XCC) method [ 161 will be 
considered elsewhere. The purpose of the separation into connected and disconnected parts is that it is possible 

to eliminate all fifth-order internally disconnected terms up to sixth order. That is from eqs. ( I7b) and ( 17~) 

~~I[~~‘1’~,~,l,I~~~~~I[~~2’t~~;~~,),1,l~~=~+~~~~, (18) 

since QZcfNT2+ W,) =0+6(2); and recognizing that the resolution of the identity may be inserted with only 
the double excitation part Q2 surviving. Similarly, from eqs. ( 17a) and ( 17b) 

(~I[~~21+~~~W~~~Z)~l~10~+(OI ~~s”‘+~~~~,~c1cI~~=~+~~~~. 

The { 01 TIrJ ( W,T,),lO) term in eq. (9) is cancelled by the h.c. of eq. ( 17b). The remaining terms derived 
from T, in eq. (16) plus the remaining internally connected term from eq. (17a) may be written as 

~~5,1=(O~T~21+DjT~31~O)+(O~~‘t2/2W~T~21~0)+(O~~~D,T~~1~0), (19a) 

= my; f AE:5d -I- AE&y + A@ . (19b) 

The first two terms in eq. ( 19b) follow simply from eq. ( 13a). while the third is the h.c. in the third parentheses 
of eqs. ( 16). The last term derives from the simplified form of the remaining conjugate in the last parentheses 
of eq. (16), using eq. (14d). 

The connected quadruple contributions in fifth order potentially have two parts: the extra term in eq. (9) 

and that derived directly from T4, 

((OI~~WNT~31~O)+h.c.)+((O~ii~/2fNT~31~0)+h.c.). (20) 

But from the fact that T’5Q2( W,+ T&) =0+6(3), we see that eq. (20) can only contribute in sixth and 
higher order. Hence, through fifth order, we only need to consider the fifth-order term of eq. (9), 

A.Etzl = (01 [ Tj2/2( W,Ti/2),], IO} ) QQ (21) 

which together with the second term on the right-hand side of eq. (19a), i.e. A!?&+, gives 
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AEy dE~~+AE~;. (22) 

Closer inspection demonstrates [ 161 that though formally independent of T,, these two terms are the factorized 
form of the fifth-order T4 corrections, 

Computationally the first term in eq. (22) is n6 while the second is n ‘. Consequently, by taking the initial 
n7 approximation to T’, i.e. T, 121 from eq. (5a) all fifth-order non-iterative correction terms are determined 
by an n’ non-iterative procedure except for the pirt of (0 ] I?‘:z1DjF’:31 IO} that comes from T$*] in eq. ( 13a) 

(i.e. the A,$$$ part), which requires a single n* step. Using converged T3 amplitudes from CCSDT, we call 
the quantity in eq. (22), Q*(CCSDT) to distinguish it from Q and Q (l) discussed elsewhere [ 151. Limiting 
ourselves to a fourth-order approximation to the T3 amplitudes, T izl A.Eg] =Q*[T(CCSD)]. Putting all of , 
these terms together we have the CCSD+TQ*(CCSD) method, whose energy is 

AE= AEo-s, + A# + AE-l_J + AE@ + AEi;j . (23) 

We previously [ 151 considered a slightly modified form of the T_, correction, defined as 

Q=${Ol T:“tT2( WNT~/2+~3),10> which differs from Q* by having one T$ limited to first order rather 
than infinite order. The origin of the approximation lies in the XCC( 5) method [ 161. 

Of the four distinct terms contributing in fifth order, two will normally be negative away from quasi-de- 

generate situations, the AEgl and AEg contributions, while AEi:’ and AE$ will usually be positive. Hence, 
we can propose a model involving only one of these terms as CCSD + T *( CCSD) which will be 

AEcc-D + LEF”] + AE,, . PI The numerical justification for this approximation is the degree of cancellation of the 
remaining three terms, or better, the cancellation of all higher correlation corrections as judged by comparison 

with full CL From a theoretical viewpoint, this term derives from converged T2 amplitudes in CCSD and re- 
quires only a single n7 step in its evaluation, which is easy when the two terms W,( Tz+ T:/2) are properly 
evaluated in terms of the intermediates discussed elsewhere [ 191. Similarly, we could choose only the 
AI?&:] term, which defines AEccsu+AE~41 + AEitl or what has been called CCSD (T) [ 201. From the CC 
viewpoint this involves T, instead of just T, and T,, since W,T, provides a connected contribution to D,T,, 
but since W,T, is not a connected contribution to D3T3, it does not appear directly in the CC equations. 

3. Numerical results 

In table 1 the individual contributions for the fifth-order corrections are shown for the BH, HF and Hz0 
molecules at R,, 1.5R, and 2.OR, in the DZP basis defined elsewhere [ 2 11. An RHF reference is used in each 
case. A_Eiy is negative in all cases, while AEcl is usually negative except when highly degenerate cases are 
encountered like 2.OR, for H20. The fourth-order triples correction AE y1 =T(CCSD) is always at least an 
order of magnitude larger than AEt5J. Of the other terms, A_E&:l and A,!?$; are usually positive. Depending 
upon the system, either can be larger positive correction, however, and no single correction dominates. For 

example, in the most difficult case of H,O at 2.OR, all the terms in eq. (23) exceed 2 mhartree in magnitude. 
The alternative quadruple formula Q [T( CCSD) ] has a smaller value. 

Comparisons with full CI are shown in table 2, along with CCSDT [ 71 ad CCSDTQ-1 [ 151. Whereas CCSDT 
already reduces the mean absolute error to the order of 1 mhartree for R, and 1_5R,, CCSDTQ-1 improves 
upon this result by an order of magnitude, and about a factor of 2 at 2.OR,. Limiting the infinite-order sums 
to CCSD, with T3 and T4 effects evaluated as described in the text, i.e. CCSDtTQ*( CCSD), loses some of 
the accuracy of CCSDTQ-1 but still offers an improvement over CCSDT. It is also somewhat better than the 
alternative CCSD+TQ(CCSD) for these few examples. The dramatic improvement of any of the partial in- 
finite-order methods over MBPT (5) is notable. 

Since the fourth-order CCSD+T(CCSD) can be too low, selecting just one positive non-iterative fifth-order 
correction to augment it to damp the overestimation of the correlation energy, we choose to add the AEyd 
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term to define the n’ CCSD+T*( CCSD) model. This is the same term that when evaluated iteratively gives 
the CCSDT-2 method [ 61. CCSDT-2 was previously shown to be able to correctly describe the vibrational 
frequencies of O3 [ 22 ] when lower-order methods like CCSDS T (CCSD) and CCSDT-I could not [ 13 1. The 
considerable improvement compared to the fourth-order CCSD+T(CCSD) is apparent. Although less ac- 

curate than CCSD + TQ* (CCSD), for these examples the error is on the order of 1 mhartree. The other choice 
of using the AEysl term as in CCSD( T) has been considered by others [ 201. At least for these examples, the 
mean energy errors would appear to be greater, but the errors tend to lie on the positive side of the full CI 
helps to avoid the characteristic turnover of a potential curve. 

We also show results based upon QCISD instead of CCSD. The difference in obtaining TQ*( QCISD) is that 
QCISD ignores the T:/2 term in eq. (3) and the W,T, T, contributions to eq. (la). Through fifth-order, these 
contributions are the same as AEA.‘, so this term is added twice to obtain the proper fifth-order estimate. Also, 
since QCISD is a truncation of CCSD, it neglects some energy contributions that are normally positive, giving 

lower energies than CCSD. 
Since the connected quadruple correction can change depending upon the choice for the T, amplitudes, and 

the particular choice for the Q approximations, we illustrate that behavior in table 3. At R, and 1.5R, the meas- 

ures are quite similar despite the different choices for T,. Once large amounts of quasi-degeneracy apply as in 
H,O at 2.OR,, the differences can be large. For example, using converged T, and T, amplitudes from CCSDT 
adds over 4 mhartree to the Q” estimate for 2.OR, HzO. Of course, such estimates of Q lose the clear fifth- 
order breakdown of T, and T+ 

A final result that is unusually informative is the Be2 potential curve where only four electrons are correlated. 

In the 7s3p 1 d basis used [ 24 1, only CCSDT has accounted for a curve whose shape is in good agreement with 
full CI [ 8,251. Lower approximations correct to fourth-order like CCSD + T (CCSD), QCISD( T), and CCSDT- 
1 give the results shown in fig. 1. However, CCSD+TQ*( CCSD) does an excellent job as shown in fig. 2. Here, 
the most important effect is the AEg term, but AE, t5t is still significant. When the bond length is stretched 

to 100 a,, so that the system corresponds to two separated Be atoms, TQ*(CCSD) =O, as it should, since the 
CCSD method is size extensive and exact for a two-electron system. 

Other systems we have considered like the N2 and.F, potential curves offer very different kinds of correlation 

-29.2353 

29.2362 

.29.2371 

6.10 6.90 

Internuclear distance la.u.1 

Fig. 1. Potential energy curves for the ground state of the Bea molecule calculated at the CCSD+T (CCSD), CCSDT- 1, QCISD( T) , 
CCSDT, and FCI levels of theory. The CCSD+T( CCSD), CCSDT- I, and CCSDT data are from ref. [ 81, and the FCI data are from ref. 
[ 25 1, Note that on this scale the CCSD+T( CCSD) and QCISD(T) curves are almost exactly superimposable. 
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-292366 , I I 1 I'"'1 

I A CCSD + TQ*(CCSD) 

o CCSDT 

4.50 5.30 6.10 6.90 7.70 8.50 

Fig. 2. A comparison between the potential energy curves of the Be2 molecule calculated at the CCSD+TQ*(CCSD), CCSDT, and FCI 
levels. The CCSDT and FCI data are from ref. [S] and ref. [25] respectively. 

corrections than the simple systems studied here. These will be presented elsewhere to further substantiate the 
reliability of single reference non-iterative corrections for higher-order correlation corrections. 
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