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Electron correlation theories such as conftguration interaction (CI), coupled-cluster theory (CC), and quadratic configuration 
interaction (QCX) are assessed by means of a Meller-Plesset perturbation expansion of the correlation energy up to fifth order. 
The computational efficiencies and relative merits of the different techniques are outlined. A new augmented version of coupled- 
cluster theory, denoted as CCSD(T), is proposed to remedy some of the deficiencies of previous augmented coupled-cluster 
models 

1. Introduction 

There are several existing theoretical methods for 
treating the electron correlation problem starting 
from a Hat-tree-Fock (HF) single determinantal 
wavefunction (for a general introduction to Har- 
tree-Fock-based methods, see ref. [ 1 ] ). One of the 
most commonly used techniques is Moller-Plesset 
(MP ) (or many-body) perturbation theory [ 2-71 
which is often carried out to fourth order. Among 
the non-perturbative methods are configuration in- 
teraction [ 8-101 (CI), the coupled-cluster (CC) 
method [ 1 l-231, and the recently introduced qua- 
dratic configuration interaction (QCI) technique 
[ 24,25 1. These all are iterative techniques which in- 
clude at least some terms up to infinite order in per- 
turbation theory. In addition, there are several aug- 
mented techniques [ 19,24,26] which contain an 
iterative procedure followed by a non-iterative treat- 
ment of the effects of high excitations. 

In this paper, we compare the different correlation 
methods by means of a perturbation expansion of 
the correlation energy up to fifth order. This gives an 
indication of the type of effects which are neglected 
in the approximate schemes. Our algebraic treat- 
ment and partitioning of the terms in fifth-order per- 

turbation theory is different from and complemen- 
tary to the diagrammatic treatment carried out 
previously by Kucharski and Bartlett [ 71. Only the 
summary of our results is given in this brief report 
and fuller details of our formulation including nu- 
merical comparisons will be discussed in a future 
publication [ 27 1. 

An important aspect of any correlation scheme is 
the computational dependence, which determines the 
range of applicability of the method to interesting 
chemical problems. In this paper, we focus attention 
on the computational aspects of all the methods, dis- 
tinguishing clearly between iterative and non-itera- 
tive requirements. In this context, the augmented 
QCI or CC treatments probably represent the best 
compromise between accuracy and applicability. 
However, our fifth-order analysis reveals a de& 
ciency in the currently available augmented CC 
method [ 191. We propose a new augmented method 
(labelled CCSD(T)) in this paper to remedy this 
deficiency, and report some interesting results on the 
asymmetric stretching frequency of ozone [ 28,29 I. 
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2. Correlation schemes considered 

In this section, we give a brief summary of the 
methods considered in this paper and present the de- 
lining equations. This enables the different schemes 
to be compared to each other in section 3. The CI 
method [ 81 is generally performed in the configu- 
ration space of all single and double substitutions 
(CSID) from the HF determinant. The CISD pro- 

jection equations can be written as 

<Y0l~~l~,Y0u,>=~,,,,, (1) 

(Y~IHI(T,+T,)Y~h==afE,,,,, (2) 

(Y~“~A~(l+T,+T,)Y~}==a~~E,,,,, (3) 

where Y,, is the starting HF determinant, EC,,, is the 
correlation energy, E;i=H-E,,, EHF is the Hartree- 
Fock energy and T,, T,, __. are operators which gen- 
erate linear combinations of all single, double, . . . 
substitutions ( Yp, Y;b, ..,) involving unknown coef- 
ficients up, (I;‘, . . . As is well known [ 9,10 1, the CISD 
method is not size-consistent (i.e. the energy is not 
additive for infinitely separated systems) and an ap- 
proximate size-consistency correction (Davidson 
correction) [ 1 O] is usually applied to the final energy. 

The quadratic configuration interaction method 
[ 241 including all single an double substitutions 
(QCISD) is exactly size-consistent. The projection 
equations defining the QCISD method are 

(Y0IHI~,u/,)=&,,,, (4) 

(Y~I~l(~,+~,+~,~*)Y~)=~P~corr, (5) 

(Y~~IAl(l+T,tT~+iT:)Y~)=a”,hE,,,,. (6) 

The additional quadratic terms introduced, T, T, in 
(5) and {T$ in (6) are responsible for restoring size- 
consistency to the QCISD equations. 

In order to obtain quantitative accuracy, the aug- 
mented QCISD(T) procedure was also proposed 
[24] where the effects of triple substitutions were 
evaluuted once using the converged a amplitudes, 

&(QCISD) 

where Vdenotes the perturbation operator. It should 
be noted that the triples correction formula in (7) 
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has contributions resulting from the interaction with 
both single and double substitutions. Previous works 
by Raghavachari [26] and by Urban et al. [ 191 have 
included similar corrections to coupled-cluster 
methods but based only on the converged doubles 
amplitudes. 

Coupled-cluster theory [ 11,121 starts with an ex- 
ponential form of the wavefunction Y=e”U, where 
T= T, + T, +... and the projection equations for the 
CCSD method [ 171 can be written as 

In addition to the CCSD method, the equations 
for the full CCSDT scheme (Y=e”U, where 
T= T, + T2+ T,) have been implemented first by 
Noga and Bartlett [ 2 I ] and more recently by Scu- 
seria and Schaefer [ 231. Several approximate iter- 
ative treatments denoted by CCSDT-n (n = 1,2, 3...) 
have also been proposed by Bartlett and coworkers 
[ 18-201 to simplify the equations to be solved. In 
addition, a non-iterative treatment of triples leading 
to the augmented method CCSD+T(CCSD) has 
been proposed by Urban et al. [ 191, 

using the converged CCSD doubles amplitudes. 

3. Fifth-order perturbation expansion 

In M&r-Plessct theory [ 21, clcctron correlation 
is treated as a perturbation on the Hat-tree-Fock 
problem. The correlation terms at different orders 
can be considered as arising from single, double, tri- 
ple, quadruple, . . . substitutions from the HF deter- 
minant. The second and third orders contain con- 
tributions from only double substitutions and, as a 
consequence, all commonly used iterative tech- 
niques are correct to third order. The fourth- and 
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fifth-order correlation energy contributions can be as CEPA [ 301 or CPF [ 3 1 ] methods do not obtain 
conveniently partitioned as follows: the fourth-order TQ contributions correctly. 

E4=E;+E4,+E+SE& (12) 

ES=E&+E&D+E+T+E&Q+2E&,+2E;T 

+2E~,+2E~,+2E:,, (13) 

where S, D, T and Q refer to single, double, triple, 
and quadruple substitutions. In these expressions, the 
renormalization terms which occur in fourth and fifth 
orders have already been cancelled by parts of Et, 
2E&, and E&. Note that we have included factors 
of two in off-diagonal terms such as E&, , since there 
are really two equal parts E&, and EL,. 

In table 1, we summarize the fifth-order expan- 
sions of different correlated treatments. In the first 
column, we have also included the computational re- 
quirements of the methods in increasing order of 
complexity. In this context, it is important to distin- 
guish between the iterative and non-iterative com- 
putational requirements in methods where there is a 
one-off evaluation at the convergence of an iterative 
scheme. In addition, the fifth-order terms have been 
arranged in such a manner so as to motivate a per- 
turbative consideration of the effects of higher sub- 
stitutions. Thus, the terms E&, 2E&, and EbD are 
arranged together as a unit, the terms 2E&, 2E&, 
and 2E&, which are linear in T or Q as the next unit, 
and finally E&, 2E&, and E& which are all qua- 
dratic in T and Q as the last unit. This partitioning 
is useful in considering T and Q as a perturbation to 
SD-based methods. 

4. Computational effkiencies and relative merits 

In this section, we summarize a comparison of the 
fifth-order terms as well as the computational re- 
quirements of each of the methods which we have 
discussed in this paper. In particular, we consider in 
detail those methods which are correct to fourth or- 
der either directly or in an augmented form. For ex- 
ample, it is known that the QCISD and CCSD pro- 
cedures are correct to fourth order in the SDQ space 
[ 14,241 and, hence, any of the augmented or iter- 
ative QCI or CC procedures containing triples are 
fully correct to fourth order. The CISD method itself 
is not listed since it contains only the SD terms in all 
orders and contains no TQ terms. The other corre- 
lation techniques not considered in this paper such 

Table I 
Comparison of correlation techniques in fifth order ‘) 

First, we consider the QCISD and CCSD meth- 
ods. If n is the number of occupied orbitals and N is 
the number of virtual orbitals, the leading order terms 
( B(n2N4)+ iJ(n3N3)) are identical for the two 
methods [22] and larger than that of the CISD 
method. However, the number of 0 (n*N ‘) terms 
which have to be evaluated increases progressively 
as we go from CISD to QCISD to CCSD. In addi- 
tion, each of these methods require an iterative treat- 
ment for their solution which introduces a multipli- 
cative factor of nlLer where niter is the number of 
iterations required for a converged solution. 

The triples contributions i traduce another order 

cost Method ss 2SD DD 2ST 2DT 2DT TT 2TQ QQ 

iterative N6 QCISD I/ Ir I/ I/ X 
CCSD v v v l/2 V X X 

iterativeN”+oneN’ CCSD+T(CCSD) d @ rr l/2 fl v X X 
QCISD(T) V V V V V V X 
CCSD(T) 1/ I/ 1/ V V V X X 

iterative N’ CCSDT-I V V V V V V X X 
CCSDT-2,3 V V V V V V l/2 X 

iterative N 8 CCSDT V V V V V V V l/2 x 

a1 V indicates that the term is included fully. X indicates that the term is included only partially. l/2 Indicates that only half this term 
is included correctly. 
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of complexity but are usually necessary for quanti- 
tative accuracy [5,6]. The schemes QCISD(T) and 
CCSD ST (CCSD) introduce the triples in a non-it- 
erative manner and thus the B (n 3N4) term needs to 
be evaluated only once. The result is a method which 
is still practical and can be applied to reasonably large 
problems where such effects may be important. 

The approximate CCSDT-n models all include tri- 
ples contributions in an iterative manner including 
at least the linear terms. Therefore, all these methods 
require an 6 (n ‘N “) computation to be performed 
in each of nlter iterations. This may limit the appli- 
cability of such methods in the case of larger 
molecules. 

The complete CCSDT calculation which requires 
the evaluation of the TT interactions requires 
0(n3N5) computational steps in each iteration. Thus 
such a scheme is applicable to only the smallest 
problems of practical interest. It should be note that 
the CISDT method, though not discussed in this pa- 
per, also requires 0 ( n3N ‘) computational steps in 
each iteration resulting from the calculation of the 
TT interactions. 

Thus, we conclude that the most widely applicable 
of the available size-consistent schemes which re- 
quire inclusion of triple substitutions are QCISD(T) 
and CCSD + T (CCSD ) . Both methods are fully cor- 
rect to fourth order and differ only slightly in fifth 
order. However, detailed comparison of the fifth-or- 
der components from table 1 shows that the 
QCISD( T) methods fully includes all terms linear in 
T and Q whereas the CCSD +T (CCSD) method in- 
cludes only half of the contributions of the 2E&- term. 
This is due to the fact that in the CCSD + T( CCSD) 
method the triples correction arises only from D 
whereas the QCISD(T) method includes such cor- 
rections from both S and D. This may cause an im- 
balance in the relative contributions of the different 
terms in the CCSD+T(CCSD) method in cases 
where the correlation effects are large, 

This conclusion can also be considered in a non- 
perturbative manner. The basic philosophy of the 
QCISD and CCSD methods is to treat singles and 
doubles on an equal footing by considering them it- 
eratively. Thus, calculating a triples correction from 
both of them as in the QCISD(T) method is quite 
logical and consistent with the basic iterative 
schemes. The fifth-order discrepancy noted for the 
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CCSD+T(CCSD) scheme is then the lowesi-order 
realization of deficiencies which are present in all 
higher orders. 

5. A new augmented coupled-cluster technique 

In this section, we consider the performance of the 
QCISD (T ) and CCSD + T (CCSD) schemes in more 
detail and suggest an improved augmented coupled- 
cluster technique. We illustrate the differences be- 
tween these methods by considering the asymmetric 
stretching frequency of ozone which is well known to 
be particularly sensitive to the correlation effects in- 
cluded in the calculation [ 28,291. Using a polarized 
double-zeta basis set [ 281, the basic QCISD and 
CCSD methods obtain values for this frequency 
[ 28,291 which are within 15% of experiment though 
the errors have opposite signs. However, after add- 
ing the triples correction, the QCISD(T) method 
obtains a value [ 29 ] of 934 cm- ’ which is still in 
fairly good agreement with experiment ( 1089 cm - ’ ) 
[32] whereas the CCSD+T(CCSD) method yields 
an imaginary frequency [ 28 ] ( 12% indicating an 
asymmetric geometry), It is clear that the T( CCSD) 
method is overestimating the importance of triples 
to the frequency. 

In order to investigate the origin of this effect, we 
obtained the structure and asymmetric stretching 
frequency of ozone using an augmented QCISD 
method where a triples correction similar to the 
T(CCSD) scheme was used. This again yielded an 
imaginary frequency, indicating that the error in the 
CCSD+T(CCSD) method results from the use of 
an inappropriate triples correction. 

This suggests a significantly improved augmented 
CCSD technique can be obtained by using a triples 
formula which results from the interaction with both 
singles and doubles, i.e. somewhat analogous to that 
used in the QCISD(T) method. We suggest a new 
augmented technique, termed CCSD (T) , using the 
triples correction formula 

AE, (CCSD) 
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It may be noted that (14) differs from the triples 
formula (7) used in the QCISD(T) method by a 
factor of two in the singles term. This is due to the 
fact that the QCISD and CCSD procedures are 
themselves somewhat different and the CCSD 
method already contains half of the 2E& terms as 
evident from table 1. 
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