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A new method for evaluating one-particle coupling coefficients in a general configuration interaction calculation is presented. 
Through repeated application and use of resolutions of the identity, two-, three- and four-body coupling coeffkients and density 
matrices may be built in a simple and efficient way. The method is therefore of use in both multiconfiguration SCF (MC SCF) 
and multireference configuration interaction (MRCI) calculations. Examples show that the approach is efficient for both these 
applications. 

1. Introduction 

In recent years, there have been many significant advances in the methodology for performing direct con- 
figuration interaction (CI) calculations [ l-l 11. In particular for the case of a multiconfiguration reference CI 
(MRCI) configuration basis consisting of single and double excitations into a large orbital set out of a reference 
function built from a small orbital set, efficient methods are now available, which run at very high execution 
rates on vector computers. This is because in direct MRCI (SD) calculations, most quantities can be obtained 
in terms of multiplications of large integral and coefftcient matrices. 

Distinct from this is the case of a CI calculation in a small (less than 20) orbital space. This situation arises 
in MC SCF calculations, and the reference function for MRCI calculations is also of this form. The config- 
uration basis may be complete within the orbital space, but frequently it is desirable that it is not; in MRCI 
calculations, the effort often depends quite strongly on the number of reference configurations. However, even 
in incomplete configuration expansions, if all the chemically important orbitals are included, the size of the 
basis often lies in the range 1 03-lo’, and so efficient methods for calculating Hamiltonian matrix elements are 
required. 

For these calculations, the techniques of single and double excitation CI, involving multiplication of matrices 
whose dimension is the orbital basis size, are not of use. Their application to cases involving more than double 
excitations is very complicated, and often there may be only three or four internal orbitals of each symmetry 
anyway, making matrix multiplications over these dimensions rather inefficient. Additional complication is 
introduced by the fact that we wish to compute three-particle density matrices and other special quantities for 
use in internally contracted MRCI calculations [ 6-91, 

“Conventional” methods for performing CI calculations in a small orbital space involve a single computation 
of the one- and two-particle coupling coefficients in essentially random order. These coupling coefftcients are 
then read from disc each time the Hamiltonian or density matrices are required. This approach has enabled 
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MC SCF calculations involving up to about 1 O4 configurations to be carried out. However, the file of coupling 
coefficients gets extremely large for bases of this size, and with advances in computer hardware, it becomes 
more and more the case that the cost of storing and eventually reading these coupling coefficients dominates 
an entire calculation. Furthermore, we cannot possibly contemplate storing the much larger numbers of cou- 
pling coefficients which are required in MRCI calculations, where there are often also very many internal N- 1 
and N- 2 electron states, for which coupling coefficients are also required [ 91. In addition it is often the case 
that one wants the coupling coefficients in some specific order, necessitating an expensive sort of the formula 
file. All this means that “direct” methods, which recompute all coupling coefficients when needed, are highly 
desirable. 

The first large-scale direct CI calculation in a small orbital space was that of Handy [ 121, which involved 
a basis of 2.5 x 1 O5 configurations, the calculations actually being performed in a basis of 5 X 1 O5 determinants. 
The key to this calculation was the use of Slater determinants, for which the coupling coefficients are very 
simple, and a special addressing scheme for complete configuration bases, similar to the graphical schemes in 
common use for unitary group [ 131 and symmetric group [ 141 bases. 

Later, Siegbahn [lo] presented a method whereby the two-body interactions are computed from the one- 
particle coupling coefftcients through introduction of a resolution of the identity. This has the advantage that, 
for larger orbital spaces at least, the computation cost is dominated by large matrix multiplications, leading to 
efficient execution on a vector computer. However, it is still necessary to sort and store the one-particle cou- 
pling coefficients on disc. 

Knowles and Handy [ 111 combined the Siegbahn approach with the simplifications that arise from using 
Slater determinants to give a method for full CI calculations in which no external storage is needed, and all 
coupling coefficients are computed as needed. This algorithm has been used in full CI calculations exceeding 
10’ in dimension [ 15 1. 

Because of the special addressing scheme for the configuration basis, it is hard to generalise the method of 
ref. [ 111 to the case of a restricted CI expansion. Furthermore its use of Slater determinants, whilst efficient 
for full CI, is inconvenient for the MRCI reference space, where we wish to minimise the number of config- 
urations, i.e. it is essential to work in a basis of pure spin eigenfunctions. The aim of this Letter is to show 
how it is possible to generate one-particle coupling coefficients in a spin eigenfunction basis directly in a simple 
and efficient way, in any desired order; this then allows us to use the Siegbahn approach [ lo] for diagonalising 
the Hamiltonian without any formula file. Similar techniques [ 8,9] allow efficient calculation of three-body 
and other terms needed in MRCI. 

2. Method 

We define the N-electron orthonormal basis for the calculation as the set of functions 

IZ,) =d( IZ)@%‘l, (11 

where 1 Z), an orbital configuration, is a simple product of L doubly occupied and M= N- 2L singly occupied 
orbitals, 

IZ)=@~~(ll &ri,(2) @jz(3) @j~i,(41**&(2L-l] &(2L] $i,(2L+l) &(2L+2)..&,+,(N). (2) 

The spin function e&5) is a function of the spin of particles 2Lt 1, 2Lt 2,..., N, and we use the set of functions 
which form a basis for the appropriate representation of the symmetric group S,, such that the total spin is 
S. These are the genealogical functions [ 16 1, which arise from successive coupling of electron spins in order 
of increasing orbitals. The index A labels the component of the representation, and throughout we assume that 
for each of the orbital configurations ]Z) we include all spin couplings, i.e. we have the complete spin basis 
{ @&‘? } . The configurations { I In ) } may be conveniently arranged into a standard order, such that all spin cou- 
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plings 1 for a given orbital configuration 1 I> are contiguous. The orbital configurations may be classified by 
spatial symmetry and shell number K= @f-S+ 1, where A4 is the number of singly occupied orbitals. 

The one-particle coupling coefficients are the matrix elements, in this basis, of the orbital excitation operators 
,$,, which make the single orbital excitation @j+@i when acting on iv-electron wavefunctions. Given a function 
1 J,l) and excitation operator .Z?ij, there is at most one orbital configuration 1 Z) , obtained by replacing orbital 
#j by di in IJ), for which the coupling coefficients 

A~“=(I~I#GijIJfi) (3) 

are not zero. Therefore, by grouping all configurations with the same orbital part together, we deal naturally 
with matrices A’J: ii of coupling coefficients, whose dimensions, the ranges of A and p in (3), are the numbers 
of spin functions 

AM’= (;MM_J - (;l&_J 
for bra and ket. 

Explicit formulae for the matrix elements (3) in the symmetric group basis are now well known. Simple 
considerations show that there are four distinct cases for the evaluation of (3), depending on the occupancies 
of orbitals &, $j in 1 Z) and I J) , and these are summarised as follows [ 17,18 ] : 

(a) $i singly occupied, $j unoccupied in 1 I}, 

(Z~~~,~J~)=(-l)“““‘-“‘“.“(S~~~(~(l~i)~p(J,j))~8~); 

(b ) $, doubly occupied, 9, unoccupied in I Z) 

(5a) 

(418ijlJp>=JT(-1) pus i)pp(J,j)(@A IQ l,p(.Z, min(i,j))) 6( l,p(.Z, max(i,j))) I@,); (5b) 
(c) 9; singly occupied, $j singly occupied in (I) (Hermitean conjugate of (5b)) 

<Z&jIJ,)=&1) p(r,i)-p(l,j)(~~l~(P(Z,max(i,j)), 1) C(a(Z,min(i,j)), l)]@,); 

(d ) $i doubly occupied, @j singly occupied in I I) 

(5c) 

(lIl~~jIJp)=f(-l) p(~,j)--p(J,i’4’{(9~I~(p(z,j),p(J,i))l$). (5d) 

In the above, p(Z, i) is the position of orbital ei amongst the ordered set of singly occupied orbitals appearing 
in I I), and &J, q) is a cyclic permutation operator acting on the labels of the coordinates which are the ar- 
guments of the spin function @,, 

Straightforward application of these formulae involves two significant stages: first, the orbital positions p(Z, i), 
p(J,j) must be computed; this is the problem of finding the “line’-up” permutation. Secondly, the represen- 
tation matrix for the cyclic permutation must be calculated. Most algorithms currently used [ 141 construct 
the representation matrices directly when needed, since the @Z(M+ 1) possible matrices for each of the four 
cases (5a)-( 5d) usually exceed storage capacity available. For example, for a triplet state with up to 10 open 
shell orbitals, there are up to 90 spin functions, giving a total of the order of 1 O6 matreix elements which would 
have to be stored. 

The problem of determining line-up permutations can be solved with a graphical representation of the basis 
(analogous to the graphical unitary group approach to the equivalent problem in a unitary group basis of con- 
figurations [ 13 ] ), and this approach also allows relatively simple evaluation of the two-particle coupling coef- 
ficients. But the applicability of the graphical scheme is limited to certain special types of configuration expansion, 
for example full CI, or a limited general excitation level from one reference. More general expansions must be 
mapped onto a graphical basis using an index vector, and this can be extremely wasteful. Therefore, we seek 
a method which avoids the use of special addressing schemes, using simply a list of orbital configurations which 
may be completely arbitrary. We wish to minimise the cost of calculating the line-up permutations, and cal- 
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culating the representation matrices. More importantly, perhaps, we require a method whereby we can calculate 
the coupling coefficients (3) in any desired order, for example all Ark ij for fixed Z, J, of fixed J, j, etc. These 
considerations are vital for multireference CI calculations in particular [ 8,9]. 

We propose to fulfdl these requirements by making use of the identity 

which holds for any orbital $a which is always unoccupied in any function on which the operator ~ij acts. We 
take $J~ to be a hypothetical orbital of higher sequence number than all occupied orbitals. Then, inserting the 
identity, (3) becomes 

(7) 

where ( S“) is the single orbital configuration with N- 1 electrons in the occupied orbital space, plus one elec- 
tron in an orbital $,, the occupancy of ISa) being such that the matrix element is non-zero. Notice that 
{ IS; ) } is exactly the basis of functions appearing in a first-order CI calculation, where @a is an external orbital, 
except that we choose to couple the spin of @a last rather than first, since this leads to simplifications for matrix 
elements involving excitation of doubly occupied orbitals. Note also that (6) is no more than an expression 
of identities for cyclic permutations in the symmetric group S M, for example for case (5a), (6) is equivalent 
to 

C(P, q)=&, M) %(M, q), where 1 <<p, qGf, (8) 

since the position of orbital & is always last. The advantage of this formal step is that it can drastically reduce 
the number of possible cases, such that all required matrix elements and permutations can be stored. The four 
cases of (5 ) reduce to two, for which the matrix elements are given by 

(Z~I~iinIS~)=X~S=W~I),n(l,I), (9) 

with 

w~‘=(-l)M-p(e,Ie(p,M)l8,), Wa) 
W~;‘=J?(-l)“-P(S,I~(l,p) Ql,M)18”). (lob) 

In the above, n(i, I) is the occupation number of orbital $i in configuration IZ>, i.e. (10a) and (lob) cor- 
respond to the cases of #i singly occupied and doubly occupied, respectively. The definition of p( i, I) is also 
extended to mean, for the case that 4i is doubly occupied, the position of orbital & in the set of singly occupied 
orbitals in the (N- 1 )-electron configuration IS). M is the number of singly occupied orbitals in IS“) (in- 
cluding the fictitious orbital @=a). Instead of considering all fM(M+ 1) cyclic permutation operators c(p, q), 
(7) involves of the order of A4 operators and, for all reasonable cases, the representation matrices for these 
operations W JJ, ” can be computed once using standard techniques [ 16,19 ] and then held in high-speed mem- , 
ory. Additionally, we note that it is necessary to store the W p, n matrices only for the highest shell of config- 
urations (those with largest M); if the spin functions are arranged in reverse dictionary ordering [ 201, the 
matrices for lower shells are obtained as submatrices. Given the matrices XP and Wp, the coupling coefficients 
are then given by 

AI4 rj = x.1, %jJ. St 
(11) 

Although in principle ( 11) requires a full matrix multiplication, usually one processes the coupling coefficients 
in an expression of the form C,Ag “c ,, P, and so it is sufficient to perform matrix vector multiplications of the 
form 
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(12) 

The remaining problem is the determination of the orbital positions p (Z, i) ; additionally, in order to generate 
coupling coefficients in the correct order, we need to be able to rapidly find, given Z, i, j, the orbital config- 
urations 1 P) and thence 1 J) appearing in (7). In our computer program, we store the orbital configurations 
{ I Z) } (and also, in separate areas { I S) } and possibly { I J) } ) as single-word bit patterns. Then all of these 
functions can be achieved through simple logical operations and pattern matching. However, if, as is usually 
the case, one eventually uses each p(Z, i) more than once, it becomes much more efficient to precompute and 
store all information. Specifically, we set up two lists: 

(i) Y(Z, i) = canonical index of orbital configuration I S} in (I] Z$ I Se), or zero if $i is not occupied in I Z). 
(ii) Z(Z, i) = address of matrix Xi4 ‘. 
To complete the evaluation of (7), one needs also similar lists in order to map the space { ) S”) } to the space 

{ 1 .I)}. The storage requirement for each set of lists is 2 x number of orbitals x number of orbital configurations. 
Introduction of this appraoch speeds up the determination of the interacting orbital configuration, and the 
address of the representation matrix, to such an extent that on a CRAY-XMP, the computation time is dom- 
inated by the matrix algebra of ( 12). 

For MRCI calculations, many other types of coupling coefficient are required between various combinations 
of N-, (N- 1 )-, and (N- 2)-electron functions [ 8,9 1. All of these may be computed directly in a similar way 
using exactly the same set of W p, n matrices; this is possible because of the genealogical spin coupling scheme 
with external orbitals coupled last. Also one may use the same subroutines to construct the lists Y(Z, i) and 
Z(Z, i) for different configuration spaces, resulting in a simple, transparent and efficient implementation of 
formulae. 

We note that our convention of coupling external orbitals last, rather than before all other singly occupied 
orbitals, differs from most other MRCI implementations. We have chosen this coupling order because, as noted 
above, it allows the simple use of the same set of basic coupling coefficients W p, n for interactions involving 
configurations of any number of internal electrons and any shell number. For uncontracted MRCI calculations, 
this approach would have the disadvantage that external singlet and triplet pair functions would become mixed; 
but for internal and singly external CI bases, and for internally contracted doubly external functions, this is 
of no consequence [ 91. 

Given the one-particle coupling coefficients, higher-particle quantities may be constructed through insertion 
of resolutions of the identity [ 10 1. For example, construction of the action of the two-electron part of the Ham- 
iltonian on a trial wavefunction 

al,L=l g, (ijlkz)(z~I~i~~~,IJ~)c,,, (13) 
JP 

the basic operation in diagonalising the Hamiltonian can be accomplished through the sequence [ 10,111 

D$'= ~A$+,,, (14) 

E$"=i s (ij(kl)D$", (15) 

Note that in the summations in eqs. ( 14) and ( 16), the formal summations over .Z and K respectively run only 
over the number of spin couplings, since for fixed orbital labels and a given configuration appearing on the 
left-hand side, only one-orbital configuration at most interacts. Note also that the set of intermediate config- 
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urations ( I&>} may be larger than the set { 1 I,)} which form the basis for the calculation, so they must be 
stored in different areas. 

The three-particle density matrix is a crucial quantity in the calculation of the interaction of pair functions 
in the internally contracted MRCI method. Its construction in this context is described in detail in ref. [ 91, 
but here we sketch the important details as an illustration of how the techniques described in this section can 
be applied to the efficient evaluation of rather complicated quantities. The third-order density matrix is defined 
as 

where IO) is a reference wavefunction defined as a linear combination of reference configurations 

(18) 

For the pair-pair interaction it is necessary to calculate this matrix in a specific order (since it is usually too 
large to hold in memory), namely all matrix elements for a given i, j together. To achieve this conveniently, 
( 17) may be rearranged using the technique of (6) to give 

Dk,, mn = g (OI~~,k,,,I~~~(4I~mnI~~-~km(~I~~in,,ll~~-~lm(~I~~rk,,nI~~~ (19) 

where 

gik, jl = giaEjbEaakgb61 (20) 

and we have introduced two fictitious orbitals &, & and we assume a> b. Our algorithm for the first and most 
significant term in (19) then proceeds as follows. 

(i) Calculate and store all (&I E,, IO). 
(ii) For each i, j: 

Loop over orbital configurations I Z) which are occupied in IO). 
Determine orbital configurations IS) , I P} interacting with 1 Z) , and 

Loop over k. 
Determine orbital configuration I T) interacting with I P), and 

(21) 

(22) 

Loop over 1. 
Determine orbital configuration I K) interacting with I T) , and 

(Ol@i~,j/l&)= C (KoIfi,aIT~)~p. (23) 
P 

Assemble contributions to third-order density according to the matrix multiplication in ( 19). 
The crucial computational stages are firstly the innermost loop (23) in the determination of the two-particle 

coupling coefficients (0 JEik, j/l K,), which is performed by direct matrix-vector multiplication with the ma- 
trices #VP, n using the addressing lists as described above, and secondly the final assembly ( 19) which can be 
performed most efficiently as a matrix multiplication with long vector lengths. 
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3. Examples 

The techniques described in section 2 form part of our new internally contracted MRCI program. The full 
capabilities of this code are described in ref. [ 91, but here:we give some demonstration of the efficiency of the 
coupling coefficient evaluation techniques. 

As a first example, we have performed a full CI calculation for Hz0 at the equilibrium geometry in a 6-21G 
basis set [ 211. The number of orbital configurations is 8090, giving a total of 18385 spin eigenfunctions, or 
6144 1 Slater determinants. Table 1 shows the total energy, and CPU time per iteration. Comparison is made 
with the determinant full CI approach of Knowles and Handy [ 111, which is probably the most efficient method 
for this problem. Although the determinant program is more than twice as fast, it should be remembered that 
the new method is completely general, and deliberately does not take advantage of the special structure of the 
full configuration space in the way that the determinant program does, This is demonstrated by the subsequent 
rows of table 1, which show timings for smaller calculations where the configurations are selected, either against 
a threshold according to their weight in the full CI wavefunction, or by excitation level with respect to the SCF 
wavefunction. These are the kinds of selection procedures commonly used in obtaining reference configurations 
for a MRCI calculation, and the configuration lists now posssess no special structure which could be taken 
advantage of in some graphical addressing scheme. It is seen that the CPU times are rather favourable, scaling 
approximately linearly with the size of basis. The advantage of using spin eigenfunctions rather than Slater 
determinants is seen in the reduction by a factor of nearly three in the CPU time for the matrix multiplication 
( 15) for the case of a full CI calculation, consistent with the reduction in the number of intermediate states 
I&> in (14)-(16). 

Our second example consists of the construction of the three-particle density matrix according to ( 17)-(23) 
during the evaluation of the pair-pair interaction in a MRCI calculation for the ground state X ‘Z+ of CN at 
its equilibrium bond length. The reference configurations for this calculation are those whose weight in a com- 
plete active space MC SCF calculation, with the orbitals 30-60 and 1x-2x active, is greater than a given thresh- 
old. Table 2 shows the CPU time spent in each of eqs. (2 1 )- (23 ) and ( 19) for various values of the selection 
threshold. We observe again that the effort is approximately linear in the size of the reference space, and that 

Table 1 
Full and restricted CI calculations for I-&O ‘) 

Selection Configuration b, Energy CPU c, 

full CI 8090/ 18385 
full CI d, 8090/61441 
0.0001 c’ 179114664 
0.001 5’ 3551936 
6 ” 6540/15421 
4” 2076/4313 
3 f’ 645/l 105 
2 f, 133/177 

-76.018515 6.22 (7%) 
-76.018515 2.61 (45%) 
-76.018467 1.73 (15%) 
-76.016910 0.41 (22%) 
-76.018514 5.11 (9%) 
-76.018376 1.74 (13%) 
-76.014172 0.57 (16%) 
-76.012837 0.12 (18%) 

‘) Geometry: 0: (O,O,O); H: ( i: 1.4744323,0,1.0781534) au. Orbital basis set: 6-21G (211, with the SCF la, orbital doubly occupied in 
all configurations. 

b, Number of orbital configurations/Number of variational parameters. 
‘) Single processor CRAY-XMP48 CPU time per iteration. The figure in parentheses shows the percentage of the iteration time spenl in 

the matrix multiplication ( 15), the remainder being in evaluating and processing the coupling coeffkients in eqs. (14) and ( 16). 
d, Determinant full CI program J 111. 
e, Configuration selection threshold. All configurationa in the full CI wavefunction with weight larger than this threshold are included. 

The weight is calculated as the root of the sum of squares of CI coefftcients of all configurations having the same orbital occupancy, 
but different spin couplings. 

f, Excitation level with respect to SCF determinant. 
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Table 2 
Third-order density evaluation for MRCI calculations on CN(X 2C+) 

Selection a) Ref. ‘) rc, D d' CPU(T) c, CPU(D) f, CPU 8’ 

0.0 616 435 693 65814 1.631 0.202 1.884 
0.001 455 316705 65803 1.142 0.156 1.340 
0.01 141 94401 51536 0.366 0.055 0.447 
0.05 26 18331 11927 0.096 0.015 0.131 

a) Threshold for selection of reference configurations from MC SCF wavefunction, as in table 1. The active orbital space consists of the 
orbitals 3u-60, lx, 2x. 

b, Number of reference CSFs. 
‘) Number of non-zero two-particle transition density matrix elements (0 1 k,j,l K,) from (23 ). 
d, Number of non-zero three-particle density matrix elements D& mn from (19). 
e, Single processor CRAY-XMP48 CPU time for evaluation of two-particle transition density matrix through (21)-( 23). 
f, CPU time for assembly of three-particle density matrix in ( 19). 
8) Total CPU time for evaluation of complete third-order density matrix. 

the introduction of the resolution of the identity [lo] is an efficient procedure, in the sense that the com- 
putational effort expended in the central matrix multiplication of ( 19) is not excessive. It should be empha- 
sized that, up until now, MRCI calculations with several hundred reference configurations have been considered 
too expensive for normal applications. The results of table 2 demonstrate that the evaluation of pair-pair cou- 
pling coefficients for such very large reference spaces can be performed in just a few seconds of CRAY-XMP 
time. 

4. Conclusion 

We have presented a technique for computing coupling coefficients in a completely general CI efficiently in 
any required order. Because of the simplicity of the formulae, it is easy to design algorithms to construct almost 
any type of CI matrix element arising within a small orbital space. This has enabled us to develop a powerful 
new program for internally contracted MRCI calculations [ 91. 
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