MICROWAVE ROTATIONAL SPECTRA OF ALKALINE EARTH MONOHALIDES: Cal AND Bal

T. TORRING and K. DÖBL

Institut für Molekülphysik der Freien Universität Berlin, D-1000 Berlin 33, West Germany

Received 31 December 1984, in final form 19 January 1985

Rotational spectra in the ${}^{2}\Sigma^{+}$ ground state of CaI and BaI have been measured in the 100 GHz range. Precise Dunham coefficients Y_{ik} and potential constants a_{i} can be derived from these spectra. Effects of unresolved hyperfine structure have to be considered in the interpretation of the observed γ -splitting

1. Introduction

In a series of papers we have reported millimeter wave spectra of the molecules BaF, BaCl, CaCl, CaBr, SrF and SrCl [1-4]. This systematic study of rotational spectra of the alkaline-earth monohalides is here continued with the investigation of CaI and BaI.

The optical A-X and B-X transitions in this group of molecules, especially for the heavy iodides, are very dense so that even with the use of sub-Doppler laser techniques, the spectra are often only partially resolved. The knowledge of precise groundstate data from other measurements is therefore highly desirable. This information can be obtained by a combination of different experimental techniques. The Dunham coefficients may be determined by microwave spectroscopy in the millimeter range, Although the doubling of the rotational transitions by spin-rotation interaction can also readily be observed by this technique, it has been shown that effects of unresolved hyperfine structure may give rise to systematic errors in the determination of the constant γ from microwave spectra [2,3]. Fully resolved spectra have been obtained either by microwave-optical polarization spectroscopy (MOPS) [5-8] or by molecularbeam, laser-rf (or laser-microwave) double resonance [9-15]. The latter technique gives by far the highest precision and resolution but it requires a rather detailed knowledge of the Doppler-free optical spectrum. Recently this technique has been applied to study electric dipole moments of CaCl [16,17], CaBr [18], CaF [19] and SrF [20]. These results are in good agreement with predictions from a simple electrostatic bond model [21].

The first rotational analysis of the CaI optical spectrum was performed by Reisner et al. [22] in 1981. Rotational constants for several vibrational states were given from an analysis of the A-X and B-X systems. The optical data were completed by Bernath et al. [23] who derived hyperfine constants from sub-Doppler spectra. Highly precise ground-state data of hyperfine constants and the spin-rotation interaction were recently published by Childs et al. [14]. This set of precise ground-state data is now completed by the Dunham coefficients given in this paper.

Much less complete information is presently available for BaI. Only a preliminary rotational constant derived from the analysis of the optical C—X system was published by Johnson et al. [24] in 1981 although sub-Doppler techniques and population labeling had been used to unravel this highly congested spectrum. The present search for the microwave spectrum was based on this result. No reliable hyperfine structure data are presently available, the congestion of the optical spectrum preventing an unequivocal analysis. We expect that these data will be provided in the near future by a molecular-beam, laser—microwave doubleresonance experiment which is in progress in our laboratory.

2. Calcium iodide

Cal was produced by the reaction

$$CaI_2 + Ca \xrightarrow{>1200 \text{ K}} 2CaI.$$

The substance evaporated from the oven through a small slit into a cold free space absorption cell entrained in a stream of argon buffer gas. The total oven pressure was about a few Torr under these conditions while the pressure in the absorption region was kept at about 0.01 Torr to prevent excessive pressure broadening. As in the previous experiments [1-4], saturation modulation [25] was used. The high sensitivity obtained by this technique allowed measurements of rotational transitions in vibrational states up to v = 4. The observed linewidth was about 350 kHz,

Table 1 Frequencies of rotational transitions $N \rightarrow N + 1$; $J \rightarrow J + 1$ for CaI somewhat larger than expected from pressure broadening under the experimental conditions. A slight asymmetry of the lineshape indicated the presence of unresolved hyperfine structure. The observed transition frequencies are listed in table 1. Lines have been fitted neglecting all possible effects from hyperfine structure. The energy levels are then given by:

$$E = B_{eff}N(N+1) + \frac{1}{2}\gamma_{eff}N, \quad \text{for } J = N + \frac{1}{2};$$

= $B_{eff}N(N+1) - \frac{1}{2}\gamma_{eff}(N+1), \quad \text{for } J = N - \frac{1}{2};$
(1)

with

$$B_{eff} = Y_{01} + Y_{11}(v + \frac{1}{2}) + Y_{12}(v + \frac{1}{2})^2 + [Y_{02} + Y_{12}(v + \frac{1}{2})]N(N + 1)$$

J	υ	N	v _{obs} (MHz)	ν _{calc} (MHz)	$v_{\rm obs} - v_{\rm calc}$ (MHz)
21.5	0	21.0	91328.084	91328.092	-0.008
20.5	0	21.0	91159.605	91159.606	-0.001
21.5	1	21.0	90980.739	90980.745	-0.006
20.5	1	21.0	90813.461	90813.452	0.009
21.5	2	21.0	90634.115	90634.105	0.010
20.5	2	21.0	90468.016	90468.004	0.012
21.5	3	21.0	90288.156	90288.172	-0 016
20.5	3	21.0	90123.271	90123.262	0.009
21.5	4	21.0	89942.953	89942.945	0.008
20.5	4	21.0	89779.200	89779.227	-0 027
24.5	0	24.0	103760.544	103760.542	0.002
23.5	0	24.0	103592.054	103592.056	-0.002
24.5	1	24.0	103365.910	103365.911	-0.001
23.5	1	24.0	103198.613	103198.618	-0.005
24.5	2	24.0	102972.078	102972.083	-0.005
23.5	2	24.0	102805.976	102805.982	-0.006
24.5	3	24.0	102579.065	102579.058	0.007
23.5	3	24.0	102414.139	102414.148	0.009
24.5	4	24.0	102186.858	102186.836	0.022
23.5	4	24.0	102023.144	102023.118	0.026
25.5	0	25.0	107903.875	107903.872	0.003
24.5	0	25.0	107735.391	107735.387	0.004
25.5	1	25.0	107493.492	107493.480	0.012
24.5	1	25.0	107326.178	107326.187	-0.009
25.5	2	25.0	107083.923	107083.923	0.000
24.5	2	25 0	106917.817	106917.821	-0.004
25.5	3	25.0	106675.196	106675.201	0.005
24.5	3	25.0	106510.297	106510.291	0.006
25.5	4	25.0	106267.289	106267.313	-0.024
24.5	4	25 0	106103.592	106103_596	-0.004

and

$$\gamma_{\rm eff} = \gamma_{00} + \gamma_{10}(v + \frac{1}{2}) + \gamma_{01}N(N+1).$$

It turned out that Y_{12} and γ_{01} gave no significant contribution so that they were dropped in the final fit. The Dunham coefficients Y_{ik} are related to the coefficients a_i of the power series describing the molecular potential [26]. The coefficients a_0 to a_3 can thus be derived from the experimentally determined Y_{ik} and from these a_i the additional Dunham parameters $Y_{10} \approx \omega_e$ and $Y_{20} \approx -\omega_e x_e$ can be calculated. The results are summarized in table 2. A comparison with

Table 2 Molecular constants of Cal

the results of Reisner et al. [22] shows the high quality of these optical measurements. Most results agree within $\pm 1\sigma$ with the microwave data. The largest deviation is for ω_e where it is still within 3σ . The discrepancy between our result for γ_{00} and the correct value given by Childs et al. [14] again demonstrates the systematic error introduced by neglecting effects of unresolved hyperfine structure. Since precise hyperfine constants are given in ref. [14] these systematic shifts of the microwave transitions can be calculated. In table 3 calculated frequencies are given for the rotational transition $N = 25 \rightarrow 26$, $J \rightarrow J + 1$, $F \rightarrow F + 1$.

	Thus work a)	Ref. [22] ^{b)}	Ref. [14]
Y ₀₁ (MHz)	2078.34940(40)	2078.33(25)	
Y ₁₁ (MHz)	-7.89675(15)	-7.914(105)	
Y_{21} (kHZ)	8.029(29)		
Y ₀₂ (kHz)	-0.70164(31)	-0.702	
γ ₂₀ (MHz)	[169.081(10)]	168.4(3)	169.7257(1)
) 10 (MHz)	-1.1919(33)	-0.93(33)	-1.1884(1)
γ ₀₁ (MHz)			$-1.7463(3) \times 10^{-4}$
$a_0 (\text{cm}^{-1})$	2 05353(90) × 10 ⁵		
<i>a</i> 1	-3.179772(72)		
- 42	6.59533(36)		
- 43	-10.6245(63)		
$\tilde{\omega_{o}}$ (cm ⁻¹)	238.633(52)	238.7496(33)	
$\omega_{a}x_{a}$ (cm ⁻¹)	0 6284(1)	0 62789(64)	
$r_{\rho}(A)$	2.828619(10)	2.8286(2)	

a) $\mu_{red} = 30.39204645(60)$ amu [27] and a conversion factor 505390.98 ± 3.5 amu A² MHz [28] have been used. b) Data have been partly converted from cm⁻¹ to MHz.

Table 3 Theoretical hyperfine splitting in the rotational transition $N = 25 \rightarrow 26; J \rightarrow J + 1; F \rightarrow F + 1$ of Cal

 F	J	v _{calc} ^{a)}	νav	^v exp	_
 22	24_5	107735.305			
27	24.5	107735.321			
23	24.5	107735.348	107726 200	107726 301	
24	24.5	107735.423 🕻	107735.390	107755.591	
26	24.5	107735.465			
25	24.5	107735.480			
25	25.5	107903.794			
26	25.5	107903.829			
24	25.5	107003.829	107002 881	107002 975	
27	25.5	107903.900	107903.881	107903.075	
23	25.5	107903.967			
28	25.5	107903.969			

a) γ_{eff} and hyperfine constants from ref. [14], γ_{ik} from this paper have been used for the calculation.

 $\gamma_{\rm eff}$ and hyperfine constants taken from ref. [14] were used in these calculations together with the Y_{ik} given in this paper. The average frequency of the sextet resulting from the iodine nuclear spin of 5/2 for both γ components is in excellent coincidence with our experimental results.

3. Barium iodide

Table 4

The same apparatus was used to study the rotational spectrum of BaI. This chemically unstable diatomic species was produced by reacting BaI₂ with Ba at temperatures >1300 K. The linewidth was only about 200 kHz and no asymmetry of the lineshape was observed. Measured transition frequencies are listed in table 4. As in the case of CaI, an excellent fit is obtained using formula (1) for the energy levels neglecting hyperfine structure. The resulting molecular constants are given in table 5. Although there is no indication for hyperfine effects from the line-width and -shape, systematic shifts of γ_{00} and γ_{01} must still be considered. For γ_{00} the shift can be roughly estimated by using hfs con-

Frequencies of rotational transitions $N \rightarrow N + 1$; $J \rightarrow J + 1$ for BaI

Table 5			
Molecular	constants	of	BaI

	This work ^{a)}	Previous work
Y ₀₁ (MHz)	803.61978(24)	802.8 d)
Y ₁₁ (MHz)	-1.98871(14)	
Y_{21} (kHz)	1.0212(56)	
Y ₀₂ (Hz)	-99.789(30)	
Y_{12} (Hz)	-0.061(17)	
γ ₀₀ (MHz)	(75.906(26)) b)	
	76.05(15) ^{c)}	
γ10 (MHz)	-0 3439(22)	
γ01 (Hz)	[-8(3)] ^b)	
$a_0 (\text{cm}^{-1})$	$2.15873(65) \times 10^{5}$	
<i>a</i> ₁	-3.34091(24)	
42 42	7.124(82)	
43	-11.37(66)	
ω_{o} (cm ⁻¹)	152.140(23)	152.3 ^{e)}
$\omega_{a} x_{a} (\text{cm}^{-1})$	0.2746(33)	0.270 ^{e)}
r _e (Å)	3.084798(11)	

a) µ_{red} = 66.0881253(14) from ref. [27].
b) Systematic shifts due to effects of unresolved hyperfine structure.

c) Corrected value using estimated values for hyperfine constants.

e) From ref. [29].

 υ	N	J	ν _{obs} (MHz)	$\nu_{\rm calc}$ (MHz)	$v_{\rm obs} - v_{\rm calc}$ (MHz)
0	55	55.5	89861.780	89861.785	-0.005
0	55	54.5	89786.127	89786 127	0.000
1	55	55.5	89639.063	89639.063	0.000
1	55	54.5	89563.758	89563.740	0.010
2	55	55.5	89416.575	89416.569	0.006
2	55	54.5	89341.588	89341.599	-0.011
0	64	64.5	104269.504	104269.502	0.002
0	64	63.5	104193.863	104193.870	-0.007
1	64	64.5	104010.996	104010.995	0.001
1	64	63.5	103935.714	103935.707	0.007
2	64	64.5	103752.750	103752.754	0.004
2	64	63.5	103677 816	103677.809	0.007
3	64	64.5	103994.768	103494.778	-0.010
3	64	63.5	103420.187	103420.178	0.009
4	64	64.5	103237.065	103237.068	0 003
4	64	63.5	103162.798	103162.811	0.013
5	64	64.5	102979.631	102979.623	0.008
5	64	63.5	102905.712	102905.710	0.002
0	65	65.5	105869.619	105869.613	0.006
0	65	64.5	105793.977	105793.984	-0.007
1	65	65.5	105607.132	105607.130	0.002
1	65	64.5	105531.842	105531.844	-0.002
2	65	65.5	105344.913	105344.916	-0.003
2	65	64.5	105269.979	105269.974	0.005

d) From ref. [24], converted from cm⁻¹ to MHz.

stants extrapolated for BaI from systematic trends in the group of II/VII compounds. This results in γ_{00} = 76.05(15) MHz. The given error is believed to include uncertainties from the extrapolation of hfs constants. It should be noted that the value of γ_{10} is not influenced by hyperfine structure effects while the systematic shift of γ_{01} may be quite large. The value of this constant given in brackets in table 5 may therefore be considered only as a fit parameter.

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft under "Sonderforschungsbereich 161, Hyperfeinwechselwirkungen".

References

- [1] Ch. Ryzlewicz and T. Torring, Chem. Phys. 51 (1980) 329.
- [2] K. Moller, H.-U. Schutze-Pahlmann, J. Hoeft and T. Törring, Chem. Phys. 68 (1982) 399.
- [3] Ch. Ryzlewicz, H.-U. Schütze-Pahlmann, J. Hoeft and T. Törring, Chem. Phys. 71 (1982) 389.
- [4] H.-U. Schütze-Pahlmann, Ch. Ryzlewicz, J. Hoeft and T. Torring, Chem. Phys. Letters 93 (1982) 74.
- [5] W.E. Ernst and T. Törring, Phys. Rev. A25 (1982) 1236.
- [6] W.E. Ernst and T. Törring, Phys. Rev. A27 (1983) 875.
- [7] W.E. Ernst, J.O. Schroder and T. Törring, Chem. Phys. Letters 109 (1984) 175.
- [8] W.E. Ernst, Appl. Phys. B30 (1983) 105.
- [9] W.J. Childs, L S. Goodman and I. Renhorn, J. Mol Spectry. 87 (1981) 522.

- [10] W.J. Chulds, G.L. Goodman and L.S. Goodman, J. Mol. Spectry. 86 (1981) 365.
- [11] W.J. Childs, D.R. Cok and L.S. Goodman, J. Chem. Phys. 76 (1982) 3993.
- [12] W.J. Childs, D.R. Cok, G.L. Goodman and L.S. Goodman, J. Chem. Phys. 75 (1981) 501.
- [13] W.J. Childs, D.R. Cok and L.S. Goodman, J. Mol. Spectry. 95 (1982) 153.
- [14] W.J. Childs, G.L. Goodman, L.S. Goodman and V. Pfeuffer, J. Mol. Spectry. 107 (1984) 94.
- [15] W.E. Ernst and S. Kindt, Appl. Phys. B31 (1983) 79.
- [16] W.E. Ernst, S. Kindt and T. Törring, Phys. Rev. Letters 51 (1983) 979.
- [17] W.E. Ernst, S. Kindt, K.P.R. Nau and T. Torring, Phys. Rev. A29 (1984) 1158.
- [18] S. Kindt, W.E. Ernst and T. Torring, Chem. Phys. Letters 103 (1983) 241.
- [19] W.J. Childs, L.S. Goodman, U. Nielsen and V. Pfeuffer, J. Chem. Phys. 80 (1984) 2283.
- [20] W.E. Ernst, J. Kandler, S. Kindt and T. Torring, Chem. Phys. Letters 113 (1985) 351.
- [21] T. Torring, W.E. Ernst and S. Kindt, J. Chem. Phys. 81 (1984) 4614.
- [22] D.E. Reisner, P.F. Bernath and R.W. Field, J. Mol. Spectry. 89 (1981) 107.
- [23] P.F. Bernath, B. Pinchemel and R.W. Field, J. Chem. Fhys. 74 (1981) 5508.
- [24] M.A. Johnson, C.R. Webster and R N. Zare, J. Chem. Phys. 75 (1981) 5575.
- [25] T. Torring, J. Mol. Spectry. 48 (1973) 148.
- [26] W. Gordy and R.L. Cook, Microwave molecular spectra (Interscience, New York, 1970).
- [27] A.H. Wapstra and K. Bos, At. Data Nucl. Data Tables 19 (1977) 177.
- [28] F.J. Lovas and E. Tiemann, J. Phys. Chem. Ref. Data 3 (1974) 609.
- [29] K.P. Huber and G. Herzberg, Molecular spectra and molecular structure, Vol. 4. Constants of diatomic molecules (Van Nostrand, Princeton, 1979).