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Order &nP corrections to the fine structure splitting of the deepest triplet P state 
(2sP0,1.2) of the He4 atom have been investigated. The investigation is based on the covari- 
ant Bethe-Salpeter equation including external potential to take account of the nuclear 
Coulomb field. All order (Y%ZC~ corrections which arise from Feynman diagrams in- 
volving the exchange of one, two, and three photons, as well as radiative corrections to 
the electron magnetic moment have been found. The results are presented in a form 
suitable for computerized numerical evaluation. 

1. INTRODUCTION 

Analysis of the helium atom has played an important historic role in the veri- 
fication of both basic quantum theory and the more detailed properties of elec- 
trons [l]. In particular, theoretical analysis and measurement of the fine structure 
splittings of the deepest lying triplet P state (23PJ,o.1.2), Fig. 1, provided important 
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FIG. 1. Triplet P fine structure splitting. 

confirmation of the developing theory of electron-electron interaction 121. At 
present the theory of QED is regarded as very well established, but it is still true 
that analysis of the 2sP fine structure can provide a precise test of the theory. In 
fact the splittings have now been measured so accurately [3] that combination 
with a theoretical calculation of comparable accuracy could be used to provide a 
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determination of the coupling constant 01 = e2/hc to one part per million or better. 
The most accurate value of 01 at present [4], ~1.5 ppm, is derived from experiments 
on the Josephson effect, which measures elfi, combined with the precisely known 
values of other fundamental constants. It would be highly desirable to have a 
purely QED determination of at least comparable accuracy, and especially one 
which is only weakly dependent on renormalization theory. Thus, while similar 
accuracy appears to be achievable by measurement of the anomalous magnetic 
moment, in order to interpret that measurement as a sensitive test of renormaliza- 
tion theory a value of 01 much less dependent on renormalization theory is required. 
In this paper we present the necessary theoretical analysis of the helium atom. A 
brief discussion of this work along with the most current theoretical values and 
comparison with experiment has been published elsewhere [5]. 

A short sketch of the simplest theory of the fine structure of the helium atom [l] 
will provide orientation as well as a basis for discussing higher order corrections. 
In lowest approximation the helium atom is described by the two electron Schroe- 
dinger equation (in atomic units) 

( za F12 ; P22 1 E _ z@i 
2m 2m r r, - - y- 1 Ml72) = ~0r10(~1~2), 

(1.1) 
F = F, - F2 , Pl.2 = ~l,21i. 

The r], are eigenfunctions of the total orbital angular momentum squared 
L2 = (& + LZ)2. We now construct a “Pauli-type” wave function q0 from ?10 
and two component spinors for each electron to be an eigenfunction of J2, J, , L2, S2. 
The triplet P states have L = 1, S = 1, J = 0, 1, 2. It is worth pointing out that 
the triplet states are spatially antisymmetric, and, thus, 9),,(F1F2)7-J,, -+ 0, consider- 
ably simplifying the higher order calculation. The spatial parts, to a fair approxima- 
tion, can be thought of as antisymmetrized products of 1S and 2P hydrogenic 
functions. 

To obtain the lowest order corrections to W,, one calculates the expectation 
with y,, of the fine structure operator [l], obtained first almost completely from 
classical considerations, 

HFS = fkoulomb + fhudation 3 (1.2) 

H Coulomb = 

(1.3) 
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H retardatfon = 

01 
+ jy)p 01 * r3 i 

Lxp, -__ 
1 

a 
zrn2 02 * ( +- x Pl 1 

01 
+ 4mz -[-- 

g3= a, . i@(F) + + (61 . I?2 - 3G1 . IG, * ?)I. (1.4) 

The p4 terms represent relativistic increase of mass. The spin parts of HCoulomb 
represent the spin orbit interaction of an electron with the Coulomb fields of the 
nucleus and the other electron. The contact parts of HCoulomb have no classical 
analogy. The “retardation” terms come from the retarded magnetic and spin 
interactions between electrons, i.e., “orbit-orbit,” “spin-other orbit,” “spin- 
spin.” The spin dependent terms of HFs are diagonal in J and in first order yield 
the 23P splittings accurate to a few percent. 

In about 1930, following its successful application to the hydrogen spectrum, 
the Dirac equation was generalized by Breit [2] to the approximate, and non- 
covariant, “Breit equation” 

(Hl + Hz + a/r + BV,?,)) @&,f,) = -%%(~~FiJ, 

fh,, = &,, . As2 + Pls2m - -Wi2 2 
B(F,r,) = (a/2r)(&, . 6, + I?, * &, * i). 

(1.5) 

The wave function is now a sixteen component object; HIS2 are external potential 
Dirac Hamiltonians. The “Breit operator” B(i;,?,) may be obtained simply by 
replacing i$ , fi2 by “I , Z2 in the classical Darwin magnetic Hamiltonian, or one 
can derive it from second quantized radiation theory. Breit showed that by 
reducing this equation to “large components,” as had been done with the Dirac 
equation, one obtains a fine structure operator in agreement with the semiclassical 
treatment, including the contact terms, which give no fine structure, and an extra 
term which must be discarded to obtain agreement with experiment. The wrong 
term was demonstrated later [6] to correspond to a contribution from negative 
energy intermediate states, which in hole theory must be discarded. These facts 
indicate that one must be careful in using the Breit equation and that it cannot be 
completely correct. We have mentioned the Breit equation here mainly for historical 
completeness, and also to indicate the general form of a correct relativistic equa- 
tion. Use of the fully covariant Bethe-Salpeter equation, derived from the Feynman 
form of QED by Bethe and Salpeter [7] and from field theory by Gell-Mann and 
Low [S], which uses Feynman propagators, i.e., consistent with hole theory, is 
regarded at present as the rigorous starting point for the treatment of two body 
atomic bound state problems. As shown by Salpeter [9], Sucher [IO], and others, 
the BetheSalpeter equation can be cast into a form similar to the Breit equation. 
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In general energy level splittings of low electron number atoms are calculated 
as a power series expansion in a times mc 2, the electron rest energy. Thus, the 
Schroedinger energy W, is of order a2mc 2, the fine structure expansion begins in 
order a4mc2, and the Lamb shift expansion begins in order (a6 + a5 log a) mc2. 
In this paper we propose to analyze the 3P splitting through order dmc2 by means 
of the Bethe-Salpeter equation. Bethe-Salpeter bound state techniques have been 
used by a number of authors; for example, by Salpeter [9] to investigate nuclear 
recoil effects in the Lamb shift, by Karplus and Klein [l 11, Fulton and Karplus [ 121, 
Fulton and Martin [ 131 to calculate the fine structure of positronium; by Newcomb 
and Salpeter [14] and Arnowitt [ 151 to calculate nuclear recoil effects in the hyper- 
fine structure splitting in hydrogen; and by Sucher [lo, 161 and Araki [17] to 
calculate all terms in the expansion of an arbitrary energy level of the helium 
atom through orders (a5 + a5 log a) mc 2. To date two calculations of order 
cPmc2 using the Bethe-Salpeter equation have appeared. Sternheim has calculated 
nuclear recoil corrections to the hydrogen hyperfine structure [18] “ratio” 
R = @2J~1s - 1) (VU 3 ~2s are the hypertine structure splittings of the 1s and 
2s states). This calculation is mathematically similar to the present one and the 
terms that they have in common are in agreement. Also calculations of the 
a6 log CWYZC~ coefficient in the expansion of the ground state hype&e structure 
splittings in positronium [19] and muonium [20] have appeared. In addition, a 
calculation of the helium atom 3P splitting to order cPmc2, essentially an extension 
of the above mentioned techniques of Breit, has been carried out by Kim [21]. 
While it is difficult to compare the results of this work with ours, certain parts do 
appear to be in disagreement. We should note here also that our calculation most 
nearly follows that of Sucher, and much of his procedure and notation has been 
employed. 

It has been proposed by Schwartz [22] that the complete evaluation of the sP 
splitting to ~1 ppm should be divisible into four well defined tasks. One first 
must calculate the expectation value with the Schroedinger-Pauli wave functions 
of the well known fine structure operators, of order a4mc2; to include the a5mc2 
term one simply modifies this calculation by multiplying the electron magnetic 
moment by (1 + a/27r), the familiar correction first calculated by Schwinger [23]. 
Schwartz [22] and Schiff et al. [24] have extended the numerical accuracy of this 
calculation to about 1 ppm. The second task would be the evaluation of the 
a%& fine structure operators in second order, again with Schroedinger-Pauli 
wave functions, a contribution of order dmc2. This task has been carried out by 
Hambro [25]. Third, operators of intrinsic order a6mc2 must be derived from a 
more general theory. The final task is the evaluation of these operators, again 
with Schroedinger-Pauli wave functions. This has been carried out by Daley [26]. 
In this paper we shall justify this procedure and derive the necessary a6mc2 fine 
structure operator. We have not, however, derived any results of order c2mc2, 
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and it is conceivable that these could contribute at the 1 ppm level. Finally, there 
are numerically important corrections of order a4(m/M) mc2 due to the motion of 
the nucleus. These have been derived from a three-body treatment analogous to 
the old-fashioned methods mentioned previously and reported elsewhere [27]. 

In outline this paper proceeds as follows. In Section 2 the Bethe-Salpeter equa- 
tion is presented. Introduction of the external potential, gauge invariance, and 
renormalization are briefly discussed, and references on these topics are given. 
In Section 3 the instantaneous Coulomb interaction is separated from all other 
interaction effects, and the perturbation procedure for calculating these in terms 
of an “equal times” wave function is developed. In Section 4 the “equal times 
equation” with pure Coulomb interaction is transformed to a Pauli-Schroedinger 
type equation which reduces to the Schroedinger equation in roughest approxima- 
tion. A procedure is developed for expressing the matrix element of any Dirac 
type matrix operator as the matrix element of a corresponding Pauli type matrix 
operator with the transformed wave function. We find in this section the following 
energy shifts with respect to the 2mc2 rest energy: the Schroedinger energy 
W,, N a2mc2, the Coulomb fine structure operators of the order a4mc2, and addi- 
tional fine structure operators of order dmc 2. In Section 5 the effect of single 
transverse photon exchange is calculated. This gives rise to the a4mc2 “retarda- 
tion” fine structure as well as numerous correction terms of order dmc2. Terms 
coming from the exchange of two transverse photons are treated in Section 6. In 
Section 7 the radiative corrections are discussed. The rigorous treatment of these 
has not been completed. We present instead a phenomenological treatment based 
on the assumption that radiative corrections to electron interaction may be taken 
into account by ascribing to the electron a modified charge form factor and modi- 
fied static magnetic moment. Up to this point results are presented as expectation 
values of operators with momentum space wave functions. Since numerical 
evaluation is carried out in coordinate space all these results are Fourier trans- 
formed in Section 8. 

It is worthwhile to mention at this point certain simplifying features of this 
calculation. One notes [16] that the a5mc2 energy level expression for an arbitrary 
level is quite complicated, but that the bulk of the terms do not contribute to the 
3P splitting. There are two reasons for this: terms not explicitly spin dependent 
contribute ‘equally to the J = 0, 1, 2 levels and, thus, do not contribute to the 
splitting; and many terms are “contact” terms, that is are of the general form 
<yO / S3(?, - r2)l yO) and, thus, give zero with triplet state wave functions because, 
since these are spatially antisymmetric, they vanish linearly with T: = F, - 7,. 
These two factors also simplify the dmc2 splitting calculation. In the first place 
one may drop spin independent operators of this order. Secondly, all operators 
which contribute to the a6mc2 fine structure splitting can be evaluated in non- 
relativistic approximation. This is due to the fact that the fine structure occurs 
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only for triplet states (and, therefore, spatially antisymmetric) of nonvanishing 
orbital angular momentum. (This is in contrast to the situation which exists for 
operators of similar structure which affect the energy levels of the spatially sym- 
metric singlet states.) These nonrelativistic approximations simplify the computa- 
tion by orders of magnitude and are necessary for the simplicity of the coordinate 
space representation of these operators. 

2. EXTERNAL POTENTIAL BETHE-SALPETER EQUATION 

The starting point of the calculation is a renormalized, “mixed gauge,” Bethe- 
Salpeter with external potential included to account for the Coulomb potential 
of the nucleus, which is regarded as fixed .l Defining the Feynman two body 
kernel as 

cw 

i.e., the vacuum expectation value of the time ordered product of the indicated 
fermion field operators, one finds following Bethe and Salpeter [7] and Gell-Mann 
and Low [S] that it satisfies the integral equation 

K(X,X,XlX~) = K;“(x,xl) K;y(xqxz) - i j dxg dx, dx, dx, 

where % is the “irreducible interaction function,” which will be described shortly, 
and 

K;Y(wl) = ell I ~[$c4 ?&x31 I ‘u,>> (2.3) 

with a corresponding definition for Kiy. It will be noted that the discussion of 
Refs. [7] and [8] has been extended in the following manner: (a) all radiative 
corrections to the single particle propagators are included in K;, , Kiy , (b) the 
effect of the external potential has also been included in Kiy, K;1, by virtue of the 
fact that the Hamiltonian determining # includes interaction with the external 
field. Justification for these extensions may be found in the work of Furry [28] 
and Mathews and Salam [29]. 

1 Sections 2 and 3 through Eq. (3.46) consist entirely of material taken from Ref. [lo]. We 
reproduce it here because it is essential to understanding the rest of this paper and not readily 
available elsewhere. We also hope that it may be of value to others to call attention in this way 
to a very elegant and useful method. 
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The wave function corresponding to a two electron state is defined as 

$+3x4) = (‘u, I $(x3) $(x4)1 yo>, (2.4) 

and for ‘PB a bound state is found to satisfy 

#(x3x4) = -i s dx, dx, dx, dx, Kiy( x x 1 K;~(x~x,) ~w~x,x~) +cx,x,), (2.5) 3 5 

the equation we use as a starting point for this work. 
With the neglect of radiative corrections Kiy , Kiy become the usual external 

potential propagators defined with respect to the external potential Dirac equa- 
tion [30], i.e., 

C C.Pn(Z3) G&C,) e-iE-(t3-tl) t3 I== h, 

&v(x3x1) = 

E,,>O 

(2.6) 
- C @,(X3) Sn(X1) eciE-Wtl) t, < t, , 

En<0 

where 

+ am + Gq @nW (2.7) 

is the coordinate space Dirac equation, and for this problem V will be taken to be 
a Coulomb potential 

V(Xl) = -Zez/I X1 I. cw 

K,, satisfies the equation 

PWW - f41&4w3) = #v4(x1 - x3). (2.9) 

Corresponding definitions are always taken to hold for particle 2 operators. 
The complete single electron propagator is given by 

K;v = K,v + fGvz;vK,v + K~vz;v~~v~~vK~v + a-., (2.10) 

where ZIy is the sum of all “proper one electron self energy parts”; the mass 
renormalization, second order and fourth order contributions to Z;, are repre- 
sented by the diagrams of Fig. 2(a,b,c). The double line for an electron propagator 
denotes propagation in the external field. We remark that like K,, , ,Zlv is an 
integral operator whose kernel is a c number matrix function of two space- 
time variables, i.e., a “two point function.” 

595/82/I-7 
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(a) (b) 

(cl 
FIG. 2. Proper one electron self-energy parts. The double line indicates propogation in the 

external field. 

The irreducible interaction operator G is defined as the sum of operators G(j) 
associated with the irreducible Feynman diagram (j) in which the two main 
electron lines are in some way connected (a graph is called reducible if it can be 
split into two simpler graphs by drawing a line which cuts no photon lines and 
each of the main electron lines only once). Examples of diagrams contributing to 
G are illustrated in Fig. 3. The basic interaction operator G,, , corresponding to 
the single photon exchange graph of Fig. 3(a), is given by 

Ghx2w4) = e2y,Iy,2~+KxI - x2121 a4h - x3> a4(x2 - x4) (2.11) 

with the 6, function representing propagation of the photon [31]. 

(a) lb) (d) 

(e) h) (i) 

FIG. 3. Examples of interaction diagrams. 
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Diagrams containing electron or photon self energy parts and vertex corrections 
give rise to divergent expressions and require renormalization. As discussed by 
Mathews and Salam [29], the Bethe-Salpeter equation may be renormalized by 
replacing the electron bare mass and charge by their physical values and replacing 
K’ ,K;Y>Y~~>Y~z, 
DF, 

and the photon propagator D, by K&, K& , I’2 , r$ , and 
respectively, where 

K& = Klv + K,vz;*,K,v + “-9 (2.12) 

ci = Yul + (1; 9 (2.13) 

Dp* = Dp + D&?DF + mm., (2.14) 

and Z& , II*, rl,*, are the renormalized electron self energy, photon self energy 
and vertex correction operators. For the explicit calculation of these to second 
order in e, excluding external potentials, see Karplus and Kroll [32] and Jauch 
and Rohrlich [33]. 

We wish to make some further manipulation and for this it is convenient to 
write Eq. (2.5) in the operator form 

a,b = -iK;vK2/vG$. (2.15) 

Operating with (K;y)-1(K2/y)-1 and noting that Eq. (2.10) implies that 

we find 
(l&)-l= K,-: - z;, , (2.16) 

Klv~K2$,h = -i[G + Klw$$ v + K$& y - El v.&v] 16. (2.17) 

Radiative corrections without photon exchange are thus treated on the same 
footing as interaction diagrams. Reference to Eq. (2.9) shows that the coordinate 
space representation of K$ is 

K;,? = -i/31(i(~/~t,) - HJ, (2.18) 

and thus multiplying Eq. (2.17) by --/3r& we find finally 

(i@/W - 4)W/%) - Hz) # = b%%[G + K;kGv + K;&% v - 4 vZ;vl # 

= ifQT,G’#. (2.19) 

Since the external field is time independent in the frame of reference in which 
we are working, we look for solutions of the form 

~(xlx2) = e-iET~(~l%2t), (2.20) 
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where 

T = ilk + tz), t = t, - t2 (2.21) 

with t the so-called relative time variable. Such a solution corresponds to a state 
of total energy E. Substituting into Eq. (2.19) and introducing the variables 

we find 

T’ = Hfs + td, t’ = t, - t4, (2.22) 

where 

(E/2 + @/at) - H,)(E/2 - i(a/E’t) - H2) + 

==z i/3J12 1 G’(X,F,tZ&t’) a,h(%&t’) dZ, dXd dt’, (2.23) 

G’(X,X,tX&t’) = s G’(x,x,x,x,) eiE(T-7’) dT’ (2.24) 

is independent of T since, if the external potential is time independent, it may be 
shown that G’(x,x,x,x,) depends on T and T’ only through the combination 
T - T’. 

For much of the following it is convenient to work in momentum space. 
Defining the momentum space wave function by 

$@,x,t> = l/(2747/2 
s 

ei(~~;‘“l+~~‘~2-‘t)~(~1P2E) djj, djj, & (2.25) 

we find that #(j&jj2~) satisfies 

Fi/J = c?-+, (2.26) 

where 

9 = FlF2, 

Fl = E/2 + E - HI , 

g2 = E/2 - E - H, , 

HI = “I . PI + film + V, = Ho, + VI, 

HZ = h . F2 + B2m + V2 = Ho2 + V, . 

(2.27) 

(2.28a) 

(2.28b) 

(2.29a) 

(2.29b) 

HI, H2 are the usual momentum space Dirac Hamiltonians. VI, V, , % and 
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S, , S, , the external potential electron propagators, are now integral operators 
defined by 

(2.30b) 

S(p2) = 9;’ = (E/2 - E - H(&))-l = us _ m’w p2 A 2 (2.32’4 

Pl = w2 + E, PI>, 

PZ = W2 - E, A). 

The momentum space form of the Dirac equation, Eq. (2.7) is 

&Am = 6% .Pl + P1m + VI) $uP& 

multiplying by !I gives the familiar alternate form 

Ml - m - Fl) &dPd = 0. 

(2.33a) 

(2.33b) 

(2.34) 

(2.35) 

To carry out renormalization it is necessary to work in covariant gauge; how- 
ever, use of Coulomb gauge in some diagrams is convenient for the development 
of a rapidly convergent perturbation treatment. Sucher [lo, 341 has given a 
general discussion of the possibilities for mixing gauges in the calculation of bound 
state energy levels. We note that the most general diagram, due to fermion con- 
servation, contains two unbroken electron lines entering and leaving, plus an 
arbitrary number of electron closed loops, all of which we shall call “electron 
lines.” The general rule that must be followed is that the members of the set of 
photon lines connecting a given pair of electron lines or a line with itself must be 
expressed in the same gauge but we are free to choose different gauges for different 
sets. Furthermore, the choice of gauges must be kept the same for different orders; 
that is diagrams differing only by the numbers of photons in the various sets must 

2 In equations like (2.32a) the argument p1 in S(p,) is to be regarded as an operator. For a 
fuller notational discussion see Appendix II. 
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still use the same gauge for corresponding sets. For example, if the photon line 
in the diagram of Fig. 4(a) is expressed in Coulomb gauge the photon lines in 
Fig. 4(b,c,d) must also be expressed in Coulomb gauge. For the purpose of this 

(a) (b) (cl (d) 

FIG. 4. Diagrams illustrating gauge requirements. 

calculation it is, thus, permissible to use Coulomb gauge for the photons connecting 
the two electron lines and a covariant gauge for photon lines beginning and 
ending on the same electron, i.e., vertex and self-energy diagrams, which require 
renormalization. 

Thus, for interaction lines we make the substitution for the momentum space 
interaction function 

G(k) = e2(y,ly,&,2) -+ -e2[hS2/E2 + @I~M&~~/~~I, 

k = (w, h kQ2 = t.2 - I?. 
(2.36) 

In these equations i = I,2 denotes components of 15, , cU2 in two orthogonal 
directions both orthogonal to k, and the expressions are summed on i. The first 
term represents the instantaneous Coulomb interaction and the second the retarded 
transverse interaction. 

Finally, we make the separation 

3 = 8, + 59(-) (2.37) 

corresponding to the separation of the total interaction 9 into pure exchange 
diagrams, e.g. Fig. 3(a,b,c,d), and radiative diagrams. The simplest diagrams, 
providing the largest contribution to the energy levels, are those describing the 
exchange of a single Coulomb or transverse photon: 

It turns out that for our fine structure calculation we may approximate B1 by 

y"I'9, + 9T + ~TXO + gTxca + ~TxT (2.40) 
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C T TxC 

TxC* TxT cxc 

FIG. 5. Interaction diagrams contributing in order 01%. 

corresponding to the diagrams of Fig. 5. Rules for constructing the momentum 
space interaction operators are given in Appendix II. We note here that although 
8,,, appears to be of the order of interest, its contribution to the splitting vanishes. 

3. EQUAL TIMES EQUATION AND PERTURBATION THEORY 

We present, following Sucher [IO], the method used in calculating the eigenvalue 
E of the Bethe-Salpeter equation, which we write for reference in the form 

The standard method of solving Eq. (3.1) involves using as a zero order interaction 
the instantaneous part of the single photon exchange diagram, writing 

31 + 9rad’ = Y. + gA , (3.4) 

where 

We also rearrange (3.1) to read 

* = (g - 3&l s&h. (3.6) 

An “equal times” function is now defined by 
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Using the definition of 9, we see that 

S,# = (I/-27ri)Z,@, 

where Z, is the Coulomb interaction operator in momentum space 

(3.8) 

Substituting (3.8) into (3.6) and integrating the resultant equation over E we find 

@ = 1 (de/--2?ri)(9 - 92&1 I,@, (3.10) 

or, using the operator identity, 

(A - I?)-1 = A-1 + A-l&4 - II)-1, (3.11) 

cp = s (de/--24 F-lz@ + 1 (de/--2~~9 F-%‘&F - 9,)-l I,@. (3.12) 

Next we define single particle bound state positive and negative energy projection 
operators by 

=%(a = SD zt fG-9 ~-WI, (3.13) 

where 

m9 = I m9L (3.14) 

the absolute value of H, i.e., 

QFl @n(F) = I En I @&9- (3.15) 

In the limit V-t 0 9% reduce to the familiar free particle projectors 

4Fl = H.1 zt fMF~/~,l~ (3.16a) 

where 
H,(p) = Z . jj + ,!?m. (3.16b) 

For explicit calculation we use the formulation 

d = +(H2)1/2, (3.17) 

where “+” means we take that branch of the square root with the property 

lim d - E, = +(p2 + m2)l12. v+o - (3.18) 
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Using the relations 
&?2 = p 

’ [a, H] = 0, 

it is found that 

H6p, = l ‘mF+ . 

(3.19a) 

(3.19b) 

(3.20) 

These are used to exhibit the poles of the propagators S, , S, 

” = E/2 -j- 
1 1 

E - 6, + i8 -%+ $- E/2 + E + 8, - i8 -%- 

= Sl&lt I- Sl-21- 2 (3.21a) 

‘2 = E/2 - E !- 8, f i8 % ’ E/2 - E : 8, - i8 =%- 

= S2&+ -I- s2&& , (3.21b) 

where S -+ O+. (The Feynman prescription is to add a negative infinitesimal imag- 
inary part to the mass, which is equivalent to adding it to 8.) Use is made of these 
relations to perform explicitly the E integration of the first term of the right side 
of Eq. (3.12). Also the formulas 

s de 1 1 1 
-2rri E - A + i6 E + B - is =A+B’ 

s 
de 1 1 

-2ai E - A + is E + B + i6 = 0 

(3.22a) 

(3.22b) 

are employed. The first of these holds only if the Hermitean operators A, B 
commute, but the second is true generally. We find 

s -& S-1 = z++ 1 
E - &l - 6, - %- 

1 
E + 6, + 8, ’ (3.23) 

which can be rewritten, by virtue of Eq. (3.20), 

s de 
a S-l = D-1(_Ep+ - ZL), 

where 

D = E - HI - H, . 

(3.24) 

(3.25) 
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Using Eq. (3.24) in Eq. (3.12) and multiplying on the left by D we find finally 

E@ = [HI + Hz + (6p++ - -Ye-) ZJ @ 

(3.26) 

This equation, called the equal times equation, is an exact consequence of the 
Bethe-Salpeter equation. The “relative energy” E now occurs in the last term 
only as a parameter, but not as a variable. Since the operator in the last term 
depends explicitly on E, Eq. (3.26) is a homogeneous, linear integral equation but 
nonlinear eigenvalue equation for the determination of E. We remark that the 
above procedure differs from that of Salpeter [9, 121, which has been used in most 
published level shift calculations. 

As a first step in the perturbation treatment the equal times equation is rewritten 
in the form 

(Hc + HA)@ = E@, (3.27) 
where 

and 

Hc = HI + H, + ~++W++ (3.28) 

HA = -%+Zc(l - -E”++) - E-L + 1 -& DS-lS@ - %,)-I z, . (3.29) 

The first two terms of HA represent pair effects induced by Coulomb exchange. 
The P++Z&Y++ term of Ho is the no pair part of the Coulomb interaction and must 
be included in the zero order problem since it gives rise to the Z, term in the non- 
relativistic Schroedinger equation. When we speak of “pair” processes we refer 
to the creation of pairs with Dirac-Coulomb wave functions, corresponding to the 
use of bound state single particle propagators. 

Certain mathematical advantages are gained by the above decomposition of 
(6p++ - 5%) Z, . Setting aside HA for the time being we write 

(E - HI - H, - ~++Z,oE++)@ = 0 (3.30) 

and call this the Coulomb ladder equation (CLE). The fact that 

[-Ep++ , HJ = [-Y+- , Ho] = [Pm+, Hc] = W-e, Hcl = 0 (3.31) 

means that we can choose solutions to CLE that are eigenfunctions of the projec- 
tors 2&. In general any sixteen component equation can be written as four 
coupled equations for the projections 

a** = 2x**@. (3.32) 



HELIUM ATOM FINE STRUCTURE 105 

Due to the commutation relations (3.31) these are in fact decoupled and, further- 
more, the @+- , O-+, @-- equations do not contain I, : 

=%+(E - Hl - H, - -%+W++) @++ = 0, (3.33a) 

9+-(E - HI - H,) @+- = 0, (3.33b) 

Z+(E - HI - H,) a-+ = 0, (3.33c) 

S--(E - HI - H,) Q-v = 0. (3.33d) 

We are particularly interested in the solutions of (3.33a) (to be referred to as 0,) 
since the eigenvalues, EC , of low momentum states will be -2m. The solutions of 
(3.33b)-(3.33d) can be taken to be products of Dirac hydrogenic eigenfunctions 
since there is no electron-electron coupling in these equations. Thus the spectrum 
of CLE involving negative energy projections is very simple. Solutions to the 
positive energy equation (3.33a) can be regarded as Hartree type superpositions of 
products of positive energy Dirac hydrogenic eigenfunctions. Summarizing, our 
unperturbed wave function is determined by the equation 

Wc - Ho> @e (3.34) 

subject to the subsidiary conditions 

Z+,@c = @c > (3.35a) 

<@c I a’,> -==c 03. (3.35b) 

To calculate the effect of H,, use is made of the exact Brillouin-Wigner perturba- 
tion formula 

dE = E - EC = (@c I H,[l - r(E, @,) H&l I Qp,>. (3.36) 

This formula applies even if HA contains E. The Green’s function T(E, ~3,) is given 
by 

(3.37) 

where the unprimed sum over n includes all solutions of CLE. The simplicity of 
the negative energy spectrum of CLE can be used to simplify QE, Qc). Writing 
F in operator form 

r(E, @cl = (E - W-V - I @P,>@P, II (3.38) 
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it is seen that an equivalent form implied by Eqs. (3.33) and the completeness 
relation 

1 = -E”+t + ‘.V+- + z, + de_- 
is 

w, @,I = (E - Hc>-‘wt+ - I @,>@io II + D-V - -q,). 

A consequence of this is the relation 

(1 - S++) r(E, 0,) = (1 - 9++) D-l. 

The level shift is expanded as 

dE zzz &yl’ + &y2’ + “‘, 

where 

AE’l’ = (Gi, ] Hd ] @,,)I 

AEt2’ = <Qc I H,rH, ( Qi,), 

AEf3) = (Qc 1 H,~H,~H~ 1 ciq, 

etc. Using the fact that Y+,@, = QG we find that 

AE’l’ = I (de/-274 (Gi, ) DcF-lJ=F-lIc ) @,), 

where the definition 

J = $?Jl - F-19YA]-’ = 9, + B,9-1Sd + *.. 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43a) 

(3.43b) 

(3.43c) 

(3.44) 

(3.45) 

has been introduced. Note that s (k/-2+) S-lJF-l is an integral operator in 
3-momentum space, all energy integrations being performed within the operator 
itself. Using again S’++QC = @, and also Eq. (3.41) we find 

LIE(~) = (@, j Ic[-D]-l ,re_-I, 1 @,) 

+ <@Jpc j (1 - LX++) J (A/--2Tri) S-l.W-1 I CD,> 

+ (Qc \ Ic65++ j (de/-27ri) ~-lJS-‘lc[-D]-l c!C& 1 @c> 

+ (@, 1 D I (de/-24 .F-lJF-lIc,rD s (de’/-274 F-lJF-l& j Qi,> 

E A,Y2’ + AE;2) + A EL21 + A EA2). lz (3.46) 
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It has been found that neither &V3), dEo2’, nor AEP) contribute in order &rn to 
the 3P splitting. dEA2) is a high energy double pair effect, and the first two are 
essentially three photon terms which do not contribute to the order of interest. 

Consider 

AE’l’ = 
J 
’ (de/--2mi) (Qc 1 DcF-lJP-lIc 1 @,). 

We have 

or 
9-l = (22, + S,) D-l = D-l(S, + S,), 

and, thus, 

AE’l’ = s (de/--2rri) (@c I (S,, + S,,) J(S, + S,) D-lZ, / Sp,). 

We decompose D-l as 

D-1 = L AE 1 AE 
D D,D = D, - 0,2 

with 
D, = EC - Hl - H, . (3.50b) 

It will become apparent as the calculation progresses that we can now let 
E -+ EC everywhere it occurs, i.e. in propagators, D factors, and in gA itself, and 
from now on this will be understood. In many cases the approximation E = 2m 
is in fact adequate, and when this is not the case the approximation E = 2m + W, 
will suffice. The one exception is the explicit factor D-l appearing in Eq. (3.49) 
for which Eq. (3.50a) must be used; however, here it is sufficient to let J-t gT , 
the single transverse photon diagram. The term of AE(l) containing the l/DC 
part of (3.50a) can be combined, by making use of CLE in the form 

(3.47) 

(3.48a) 

(3.48b) 

(3.49) 

(3.5Oa) 

CD, - %+I,) @c = 0 (3.51) 

with AEj2’, Eq. (3.46), yielding the simple form for the sum 

s (de/--2~i) @, ( Ifl-1J9-11c 1 Qp,>. (3.52) 

A word about J is now in order. To calculate J it must be expanded according 
to Eq. (3.45). Terms of higher order than first in cY!?~ may be interpreted as arising 
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from reducible diagrams; for example, the term 8,,,P-19T corresponds to 
Fig. 6. The largest contributor to 8A is gT . In certain parts of LIE, we can let 
9, -+ ‘29=, and, thus, it is useful to separate 9, into two pieces 

9/j=3T+A3. (3.53) 

FIG. 6. Reducible diagram. 

We can now display the terms that contribute to the 3P splitting in order dm: 

- AE / (A/-bri) @c I (S,, + &+) 3~6 + Ul/&‘) A I @P,>. (3.54) 

Also it has been found that AB can be approximated as 

A3 -+ cYTXc + c?Y,.~~o + ‘STXr + Wad). (3.55) 

The diagrams 9’= , B,,, , Q,,,n are treated in Section 5; gTXT , ‘9T9-19T = ST.T 
and the last two terms of Eq. (3.54) are treated in Section 6, and ‘9crad) is discussed 
in Section 7. 

4. COULOMB LADDER EQUATION 

The object of this section is the calculation of the eigenvalue EC and eigenfunction 
O. of the Coulomb ladder equation 

(EC - HI - Hz - 9++Io9++) dsc = (EC - HJ a0 = 0. (4.la) 

We will be looking in particular for solutions that satisfy 

,Ep+Qo = Qe. (4.lb) 
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It will be shown that in lowest order Eq. (4.1) is approximated by the nonrelativ- 
istic Schroedinger equation 

wo--o)~o=o~ (4.2a) 

Ho = p12/2m + P22/2m + V, + V2 + I, , (4.2b) 

which, of course, contains no fine structure. We shall be interested only the spatially 
antisymmetric solutions of Eq. (4.2a). The binding energy E, - 2m contains, in 
addition to W,, , a portion of the fine structure. This includes some of the familiar 
contributions of order a4m as well as some of the dm terms that we seek. 

The function CD, is a sixteen component object and the operators we work with 
are direct products of 4 x 4 matrices. On the other hand Eq. (4.2a,b) convention- 
ally refers to a single component wave function. The formal treatment of Eq. (4.1) 
is facilitated by regarding v,, as a 16 component object as well. The first four 
components correspond to the conventional Pauli spinor representation and are 
determined by requiring that y0 be an eigenstate of J2, J, , and S2 as well as L2. 
The remaining 12 components are taken to be zero. Hence, cpO satisfies 

((1 + P,V)K1 + P2W) To = To 

or 

90 = d’, 

where we are introducing the notation convention 

(4.3a) 

(4.3b) 

@** = ((1 f AW) ((1 f f32m @, (4.4) 

the convention being now understood that superscripts refer to a spinor component 
projection, and subscripts refer to positive-negative energy projections (Eq. 3.32). 
It is worth pointing out that any 16 x 16 component matrix operator A can be 
decomposed into 16 components as follows: 

with 

(4.5a) 

A**** = ((1 f r&)/2) ((1 f /32)/2) A ((1 41 f&)/2) ((1 zt /&)/2). (4.5b) 

It is clear that if @ satisfies 

then 
<@ 1 A I@) = <@ 1 A++++ I@). (4.6) 
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All of our results will ultimately be expressed in terms of expectation values 
and matrix elements based upon solutions of Eq. (4.2). Reduction to these forms 
will be accomplished by means of a suitable generalization of the Foldy- 
Wouthysen [35] transformation. Historically, the Breit large-small component 
reduction [2] was the first method to be applied to this sort of problem. It 
becomes quite cumbersome, however, for the high order of accuracy required 
here. A method developed by Sucher [lo, 361 for the treatment of the Lamb shift 
is also suitable for this problem, and we have verified, as a check, that it gives 
the same result as the F-W method. The F-W method has in our view some minor 
technical advantages and seems better suited to systematic exposition. 

We illustrate our generalization of the F-W transformation first with a fictitious 
CLE in which there are no external potentials, 

(E - Ho1 - Ho, - n++z,A++)@ = 0. (4.7) 

The product of exact, unitary, free particle F-W transformations for each particle 

(4.8a) 

where 

e -% = u,-l = u,t = 
W,(E, ‘+ m)Y2 

CE * j$ + (E, + m)] (4.8b) 

is applied. U, has been constructed to transform Ho to an “even” Dirac operator. 
Equation (4.7) then becomes 

{E - i%~%~ - A%, - ~~,,~,,~,+~,+~,;‘u,-,ll[~,,~,,~~~~l’u,-,’l 

The projectors transform simply as 

Ud*U,-’ = (1 rt py2, (4.10) 

implying that the Coulomb operator does not connect “large” and “small” com- 
ponents. Thus, CLE breaks up into four uncoupled four component equations 
corresponding to the energy projections II++, A+- , II-+ , (1-- : 

(E - ED, - E,, - [U,,,U,,,ZJJ,;'U,-,++++)(P+~ = 0, (4.11a) 

(E - E,, + E,J v+- = 0, (4.11b) 

(E + E,, - E& 6 = 0, (4.1 lc) 

@ + ED1 + E,J v- = 0. (4.1 Id) 
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This set is the transformed version of Eq. (3.33a)-(3.33d). The transformed 
Coulomb operator is given exactly by 

E,, -I- m lj2 E,, -I- m 'I2 I 1 ( 1 ( E,, + m 112 E,, + m = ( 24, 24 ’ 2% ) ( 112 
2% 1 

. - 
' [(2EDl(2al f;lrn))'/a 2E,, ( 

E 98 +m II2 
1 ( 

I E,, -I- m 
' 2E,, ) 

lJ2 4 . Pl 

(~J%,(E,, + m)Y2 1 
. - .- 

+ [' s 21 + (2E,l(2Jl Frn))li2 (2E,,(2$, Fm))li2 

.- . - 

' " (2EDl(>p,, f;' m))1/2 (2E,,(2D, T m))ll2 zs ' * 
(4.12) 

(Here we have written only the (++ ++) component of the matrix, its other 
components are, of course, zero.) The ++ equation reduces to the Schroedinger 
equation for p1 , p2 small. 

The F-W transformation may also be used to reexpress the matrix element of 
an arbitrary operator between two positive energy states in the 16 component 
representation in reduced form as the matrix element of a corresponding Pauli 
type operator in the F-W representation. We have for a positive energy wave 
function 

@ = A++@ = CD,, = lJ,;‘u;21qJ, (4.13) 

where 
T ++ = % (4.14) 

which implies 

<@l I kf I @2> = CT-3 I udJ02~GG I 9J2> 

and, using Eq. (4.6), 

(4.15) 

<c-p1 I M I @2> = <Fh I wo,~02MG1ula++++ I 9)2). (4.16) 

This method will be employed in later sections for reduction of operator expecta- 
tion values. 

We wish to extend this whole procedure to take account of external potentials. 
Foldy and Wouthysen developed a nonrelativistic procedure which yields a trans- 
formed Hamiltonian and projectors as expansions in p and V and products of 
these. Of course, higher order terms become increasingly singular. For triplet F,, 
this procedure does, however, yield a convergent result which agrees with what 

sg5/841-8 
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we shall find. One would prefer an expansion in nondivergent operators, that is 
roughly speaking an expansion of H in powers of “V/E,” about the zero order 
term BE, . This enables one to examine corrections to the nonrelativistic result, 
and provides a method for treating the singlet v,, case and proceeding to higher 
order for the triplet case. Such a generalization of the F-W procedure has been 
obtained and is derived in Appendix III. The main result of this analysis is a 
modification of U,, 

V’ E $- m II2 
w1(F’ = (2Ev(iD ‘+” m))1/2 % ( ‘2E, 1 

_ E, + m 
( 1 

l/2 V’ c-p 
2-C 5 (2E,(E, + m))lJ2 ’ 

(4.18) 

where the kernel of the integral operator V’ is given by 

Applying U(p) to the external potential Hamiltonian one finds 

H’ = U(p) HU+(& 

= BE, + (w)‘ja v(~)1’2 + (2ED(; y m))1/2 ‘@E,(; 2 m))1/2 

+ BW,E,W, + $WI~E, + b%W,2] + O2 + q,, (4.20) 

where 0, and cg are “odd” and “even” Dirac operators, respectively. It is 
observed that performing an additional transformation U, of order V2 to remove 
0, will not change the even part of H’ to order V2, and so the first four terms of 
Eq. (4.20) give H’ accurate to order V2, that is the remaining even and odd parts 
are of order V3. This means also that large small coupling terms in Eq. (4.1 la)- 
(4.11d) are of order V3. These are neglected. 

It is demonstrated in Appendix III that to the order we are working in V it is 
legitimate to put 

-Kim = tu It PI- (4.21) 

Thus putting together Eqs. (4.12), (4.17), (4.18), (4.20), (4.21) we find for the 
generalization of Eq. (4.1 la) 

E,cp++ = ([HI’]++ + [H,l]++ + Jc) q~++ = H,,Q++. (4.22) 
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Hred is the “reduced” Hamiltonian), with 

[Hi]++ = E, + ( ‘7, m )I” VI ( E;;lm )1’2 

. - . - 

+ (2EDl(:pl : m))1/2 ” (2E,& f;’ m))1/2 

+ W&W, + HW12, J%,), 

and 

(4.23) 

where 

j&l) = c I (2EDlc2, t m))‘P g (w) ” c2EDlc;; $ m))W + h.c.] 

E,, + m It2 9’Pl - 
[( 23% 1 

VI’ ~7~ - & z 
2m2E,, ’ (2E,,@,, + m)Y2 + h.c.] 

[ 
4 * Pl - 

(2E,,(E,, + m)Y2 

+ [ ( ET:1 m )l” g 2E,,c;;; + m> 1, ( ‘;;, m )l” + h.c.] (4.24b) 

(h.c. denotes Hermitian conjugate and [I * 21 denotes a corresponding operator 
with particle indices interchanged). Terms of order VI + V, . Z, are negligible and 
have been dropped. 

We wish to calculate the J = 0, 1, 2 splittings in E, to order dm and to find an 
approximation to QC sufficiently accurate to evaluate the dm contributions of the 
diagrams discussed in Section 3. The technique used is nonrelativistic expansion 
of Hrea in a series of operators obtained by expanding all I$, factors as 
Ep = m +j2/2m -I- .*. . Regarding p to contribute a factor ovn and V and Z, 
factors $m, their so-called “nominal order,” we then have an expansion in powers 
of 01 (for each of the terms powers of a! can be scaled out of the operator). 
Carrying out this procedure, we obtain 

H red = 2m + Hi + AHid + AH!’ + --- . (4.25) 
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Equation (4.22) is to be regarded as solved (to whatever numerical accuracy is 
necessary) in zeroth order with 2m + ZZ, taken as the zeroth order Hamiltonian. 
The effects of AH:‘) and AH:‘) are to be taken into account by applying perturba- 
tion theory to Eq. (4.22). 

dZZA4’ is defined as the correction to ZZred of nominal order a4m and is given by 

(4.26) 

It contributes precisely the ‘Coulomb fine structure,” Eq. (1.3), in first order 
perturbation theory and an dm correction in second order. This latter is a part 
of a set of a8m corrections which will be lumped together under the name “second 
order fine structure.” 

dZZi6) is defined as the correction to ZZred of nominal order dm. It contributes 
an dm correction in first order and can be neglected in higher order. Therefore 
only the spin dependent part 

can contribute to the splitting (the V. Z, and V - I/ terms turn out spin indepen- 
dent). 

We have, thus, arrived at a simple theoretical expression for calculating the 
splittings. Defining 

AW, = We - w, (4.28a) 

with 
WC = E, - 2m (4.28b) 

we have 

AW, = <n, I AH!) I ni> + <P, I AH!) I n> 

(4.29) 
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The wave function, corrected to first order is given by 

v++ cz To + v(l) (4.30) 

with 

One must inquire as to whether this nonrelativistic expansion is valid. The 
general rule that applies is that if an operator’s nonrelativistic approximation has 
a convergent expectation value then this value is accurate to the nominal order 
of the operator, and the correction terms are of higher order. However, if the non- 
relativistic approximation diverges, the true order is lower than the nominal order. 
We know that dH2) is convergent for both triplet and singlet v. . One finds how- 
ever that d@” is divergent for singlets, and this is connected with the well known 
fact that singlets have an a5m term in their energy level expansion. These dm 
terms arise from high momentum portions of the momentum space integrals and 
turn out to be of the general form of a numerical factor of order unity times 
a2 x (y. I 83(~1 - k2)j vo), i.e., they are “contact interactions” and, thus, vanish 
for triplets. This is in turn connected with the fact that dIQ6) has a convergent 
expectation value with triplet ~~ , there being sufficient extra powers of momenta 
in wave function denominators to make the integrals converge. Also in Section 8 
arguments will be given showing that the coordinate space representation of 
(y. 1 dHA6’ / vo) converges. We shall find that the identical situation occurs for 
all operators evaluated in this paper. Similar arguments can be made for second 
order perturbation sums as well. 

Finally, we display (v. / dHA4’ I yo> and (vO I LIH~” I yo> as integrals over 
momentum space wave functions. Spin dependent and spin independent parts are 
separated by means of the “Dirac relation” 

a . ACT * B = A * B + ia - (A x B). (4.32) 

We have 

1 OL -- _ 
( 1s 4m2 2.rr2 g <%(PlF2) I E21 YO(Fl - EF2 + Q> 

-&(~)@ (FO(PlP2) I El2 I FO(Fl - &Is,)) 
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(4.33) 

Including the [I zz 21 exchange terms by doubling the direct terms we find 

(4.34) 

Defining 

d WC’“‘(l) = C’ <% I AH?) I $JJnXPTz I e) I qJ*> 
wo - wT3 (4.35) 

n 
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we may write the total cPm contribution from the Coulomb ladder equation as 

A wy = i A W,‘“‘(i). 
i=l 

(4.36) 

5. SINGLE TRANSVERSE PHOTON EXCHANGE 

In this section we investigate the effect of the exchange of a single transverse 
photon; i.e., of the operator ‘9r . This operator is responsible for the well known 
Breit interaction, plus numerous correction terms. Also it is natural at this point 
to deal with the diagrams in which the transverse photon is crossed by an arbitrary 
number of uncrossed Coulomb interactions, Fig. 7. Thus, for this section the 
interaction operator considered is 

FIG. 7. Zrossed Coulomb diagrams. 

In a certain approximation these diagrams can be summed analytically. This is 
necessary for the calculation of a5m effects coming from very low momentum of 
the transverse photon. It will turn out that for the 3P splitting calculation terms 
only through n = 2 contribute. It is however convenient to work with the summed 
expression. 

Before proceeding we wish to discuss the structure of the general interaction 
term. The first order energy shift expression is, Eq. (3.52), 

dE(,, = / (de/--27ri) (@, 1 I&F-lJF-lIc 1 cDc). (5.2) 

The exterior 9-l operators may be decomposed as, Eqs. (3.2) and (3.21), 

9-l = 2.++s,+s,+ + _Ep+~sl+s,~ + ~+S,-s,, + ~~s,-s,~ ) (5.3) 
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giving the corresponding decomposition of LIE(,) 

dE(,, = c ~&)a,~ 
.BYB=fffi 

(5.4) 

In calculating, all internal propagators of J are broken in positive and negative 
energy projections also. Use of Eq. (3.48b) allows one to write the no pair term 
in a form with the flanking IO’s eliminated 

41)++++ = s W--24 PC I CG+ + &+> J&+ + &+) I @A (5.5) 

In the remaining terms at least one of the lo’s is not removable, corresponding to 
reducible diagrams in which a Coulomb photon is exchanged (in conjunction with 
the production of a pair) before and/or after the interaction (see Fig. 8). The 
“blob” corresponds to the general interaction operator J. 

FIG. 8. Decomposition of general diagram. 

(d) 
FIG. 9. Coulomb transverse diagrams with one intermediate or one external pair. 
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The simplest single photon exchange effects to calculate are the diagrams in 
which a pair is present. It has been found that only eight diagrams, those with a 
single Coulomb photon and single pair, contribute in order dm. The four involving 
a negative energy intermediate state on the path of particle one are shown in 
Fig. 9; (a) and (b) are irreducible, coming from the operator ?YTXe with no external 
IG’s, and (c) and (d) are the reducible diagrams generated by +?T with one external 
I C’ 

Examples of the energy shift formulas, corresponding to Figs. 9(c) and 9(a), are 

dlT dlE’ <cPc(plp2) I 
-2rri -2ri w2 - IE2 + id El2 

=a& - 6 .E"2+@2 + u 

’ E, + b(F, - r;‘) - a(@, + E') 
&-(i-4 - k'4 + 5-2+(F2 + E'4) 

and 

x o!,~a,ys~+(~, - E - IE’ E - w) + S,+(P, + E + E’E - w)) 
x 1 @,(@l - E - E’ p2 + IE + E’)) (5.6) 

x (S1+@1, 4 + S,+(P24 %-(A - QSl-Ml - FE - 4 

x 4cK2”92+(j& + k) S,+(& + kE - oJ)(S,+(& - E - IE'E - w - w') 

+ S,+(F, + E + FE - w - 4) I @c(& - E - E' j&3 + It + I?')), 

(5.7) 

with k and k’ the momenta transferred by the transverse and Coulomb interactions. 
The E integration dives zero immediately for the S,S,+ , S,+S,+ terms of AI&,, 
using Eq. (3.22b). Resolving the transverse photon propagator into simple poles 
with 

1 1 
[ 

1 1 
co2-E2+iA=2k w-k+iA - w+k-id 1 ’ k = I E I (5.8) 

the S,+(jF, + PC) S,+(j& - E - E’E - 0) term can be integrated exactly with the 
result 

’ a1i E, - &(jJ - k - I?) - &( p2 + E’) - k 

x azi I QioG - k - E’ p2 + E + k’)). (5.9) 
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The nonrelativistic approximation is obtained by letting E, -+ 2m, d + m, V+ 0 
and using the wave function approximation 

x [a2 * (p2 + k’) cr2i + a‘$?, * (& + E + E’)] 

x I (pO(Fl - E - It’ j2 + li + E’)), (5.11) 

of nominal order dm. Again it is found that the integral is divergent for singlets 
but convergent for triplets. The remaining term of dE,, , S,S,+ , cannot be 
integrated exactly due to noncommutativity of operators, so we make the approxi- 
mation of dropping external potentials, finding for the denominator product 
replacing that in Eq. (5.9) 

1 1 
Ec + '%-k' - EDa+k' * l-&t' f &,,-j& + k ' 

which approaches 1/4m2 for small momenta. This term is thus of nominal order 
dm and is neglected. For basically the same reason the diagrams with one 
Coulomb photon and two pairs are negligible. 

The sum of all the single pair Coulomb-transverse diagrams can be written 
compactly in sixteen component notation as 

x [4A2+@2 + r;) + d,+CP, + 0 a2”l I @,(P, - E - li’ p2 + E + IE’)), 

(5.12) 

x bz’n,-(P, + r;) + A,-(P2 + E’) azil I @,(I4 - E - It’ p2 + E + Ii’)), 

(5.13) 

where dEr+, refers to the diagrams of Fig. 9 and dE&c, to the corresponding set 
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with the negative energy state on the path of particle two. These are equal, and 
so we present the Pauli form of LIZ;:, and double; 

AEfI_C,) + dE[,C_) 

x [2(0, * p,a,” + a,%, * &) + 2u,io, - E + (IT2 - E’u,i + a,%, * I?)] 

x I yo(P1 - E - E’ P2 + ii + w. (5.14) 

Using Eq. (4.32) to eliminate surplus spin matrices and the formula 

p&d.&A4B.R 

to eliminate transverse operators yields 

A@:+, + A@:-, 

x [Si{jF, * (61 x E’) - p2 * &CT1 x k’) * Ii} - 4i(Gl x E’) * A%’ * R 

+ 4(& x k’) * (CT2 x ii) I yJ& - k - E’ p2 + E + P)). (5.15) 

The no pair diagrams of Fig. 10 also contribute to the splitting. The simplest 

(a) (b) 

FIG. 10. No pair Coulomb transverse diagrams. 

diagram to calculate is the single photon exchange term AI&++, , Fig. 10(a), 
given by 

A&+++, 

x %i%Y~l+(PI - h - 0) + S,+(P, + I& - w)] I @,(p, - E p2 + E)). 
(5.16) 
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Using the methods described for the TC diagrams we find exactly 

A-%+++) = & ( )I - cf(p2) - k cyzi 

+ a2i EC - d?( PI) - c?(j.& + k) - k 01’ i I @,(A - E li, + 6) 

= <@c I B I @A (5.17) 

with B the “Breit operator.” The order of the ql, 012 takes account of the fact 
that [OI~, &] # 0 and we could just as well have d -+ H due to the manner in which 
the operators are ordered with respect to the wave functions. 

Even though it is claimed that it is necessary to include only the diagrams of 
Fig. 10, it is convenient to make use of the result of Sucher [lo] for the sum of 
diagrams with an arbitrary number of uncrossed Coulomb photons exchanged 
and no pairs in intermediate states 

A-E?++++) 

1 

+ %" E,- Q&l - QP, + @ - "Lp++(M2+ ~)LY++(,-32 + I;> - k lyli 

x I @C(Fl - E F2 + m (5.18) 

Reexpansion of this result in I, yields exactly each diagram going into the sum. 
The relation 

Qi, = u,-lu,-lp (5.19) 

may be used to rewrite this in the exact reduced form 

1 

x Es - &xi@1 - Ej72) - k 
[U2@2) ~2"W(P2 + 1;>1++ 

+ W2(F2) ~2W(F2 + @I++ 
1 

E, - &a(& jj2 + k) - k 

x Wl(i%~ %“U,-‘(Fl - @I++\ I y++m - IT P2 + Q), (5.20) 
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wrth Hred given by Eq. (4.22). Defining the order V term of the transformed (Ye 
matrix as 

with a corresponding expression for 

(terms higher order in V are negligible) the energy shift may be written 

1 
+ Rzi E, - H(p, , pz + k) - k hi I v++(Pl - k li, + El>, 

where 
(522a) 

R,i = 4 . Pluli(ED1--k + m) + (E,, + m) uli& . (j& - 12) + A i 
W,,(E,, + m)Y W$-k(Ep,-k + m))1/2 13 

&i = 4 . P2~,i(Ep,+~ + m> + (E,, + m> 4G . (F2 + k) 

G'E,,G%, + m)Y2 (~J%,+~(E,,+~ + m)Y 
+ Azi. (522b) 

Terms of the form V,V, may also be dropped. The roughest approximation to 
this is the order a4m Breit energy, obtained by dropping the Ai’s, letting 
Ep’s -+ m, neglecting EC - Hred compared to k and using v,, for y++: 

F <%(PlP2) I [4(Pl . P2 - Pl * R P2 . 4 

- 2ip, * (62 x k) + 2ip, . (5, x k) -t (5, x k) * (a, x ii)] 

x I qdP1 - k Pz + Q> 
= <To 1 Hretardation 1 Wd = (9’0 1 &d / %> a a4m, (5.23) 
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which defines the momentum space form of the well known “reduced Breit opera- 
tor,” which is precisely Hretardation , Eq. (1.4). The refinement of all four of the 
above mentioned approximations yields 01~ corrections to AEjj’; however, each 
correction can be made independently. First, we notice that the fine structure 
terms contained in (EC - Hred) are of order a4m, i.e., of order 01~ compared to 
k N am, and thus to order dm in the shift we can replace (EC - Hred) by 
w, - f&J 

To proceed, the propagator is decomposed as 

1 1 Wo - Ho Wo - f4J2 --- 
W,,-H,,-k= k k2 - k2[k - Wo - %)I 

= PI + P, + P, . (5.24) 

PI yields AE$‘, and the order V and order p2 corrections to the reduced 01~ 
matrices as well as the 01~ correction to vO given by Eq. (4.31) must be included. 
These are not necessary for P2 and P3 . The jj2 and V corrections to PI are found 
to be (calculating for one particle and doubling) 

The corrections to qO yield an expression corresponding to the second order 
perturbation theory cross term between the Coulomb fine structure of Section 4, 
and the retardation fine structure 

AEB(Avj = c’ <q,o ( AH? I vn><~~n I Bred I P)& + (% I Bred I ?JS%I I AfLY I &’ 
n wo - WV3 

(5.27) 

P3 gives an integral of nominal order a5m. The spin dependent and spin 
independent parts may be separated with the use of 

G1 * &Jli + a,%, . (PI - E) = 2p,” + i(G:, x E)i, 

G2 * p2u2i + u,“a, * (& + E) = 2p; - i(e2 x k)>“. 
(5.28) 
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It is seen that the spin independent plipzi terms of both Pz and P3 diverge as k -+ 0, 
however their sum does not. Since the spin dependent terms contain at least one 
extra power of k the separation into P, and P, is useful. One finds, by using the 
equation for vO, that the Pz “direct” and “exchange” (see Eq. (5.22a)) spin 
dependent terms combine to give zero. Ps is of nominal order 01%. (The Zc2 term 
in ( W,, - Z&J2 comes originally from the diagrams with two Coulomb photons - 
these are the only three photon terms that must be included in the calculation.) 
For spin dependent terms W, - ZZ,, may be neglected compared to k in the denom- 
inator without incurring an infrared divergence (this eliminates higher order 
crossed Coulomb diagrams), yielding the “pure” dm “recoil” energy shift 

AER = - (&)&j- $ho(~1~2) / 

zz AER,,, + AER,e, + AER,,,,, . (5.29) 

It has been found convenient to use the equation for v,, to manipulate AEH into 
a form in which the potential operators in ZZ, appear only linearly, with the result 

+p2(-2&-2 2m (Fl - Q2 (P2 + El)" 

2m 
+ 2 _<A - 6" P22 

2m 2m 

+2Ply (P2+Q2 
2m 2m 1) I %(Pl - k P2 + m (5.30) 

where 

F = vl + Vz + Z, , (5.31) 
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and an equivalent form for AER 6 
the result is 

‘2’ The potential terms drop out of AER,a,E, and 

X 
( 

-2 2 F22 2 
2m 2m 

(P12i v (P2 + Q>” + 2 jg (P2 + I;>” 

2m 2m 2m 

- 
+ 2 01 Q" )I F22 %G - 2m E F2 + ED. (5.32) 

To summarize the results of this section we write the total single transverse 
photon exchange contribution to the fine structure splitting as 

Aw, = OF@) + A@), (5.33) 

where A W$f) is the familiar a4m term and A W$Y is the desired dm correction. 
Repeating Eq. (5.23) we have 

+ 2ip2 - (Cl X E) - 2ij& - (~7~ X k) + (5, X li) * (~7~ X k) 

x I %@l - E F2 + w 

= i A W?‘(i) (5.34) 
i=l 

(the spin independent term has been retained for completeness). The numerous 
contributions to 

A Wp’ = i A W?‘(i) (5.35) 
61 

are given as follows: 

(1) A W?‘(l) is defined as the second order perturbation theory cross term 
between AHt4) and Bred and is given by Eq. (5.27) 

A W?‘(l) = AE,(Av). (5.36) 
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(2) d W$?)(2) comes from the j’P corrections to reduced o? matrices and is 
given by Eq. (5.25), and with transverse operators removed is 

+ 2ip, . (el X WI2 + 3(& - IV) 

+wP,*(k x Pll-Pz . &IF, x p) * h}(2&2 - 2(j, - k)2) 

+ (61 x PJ - (52 x Q(2j42 - xp, - Q2) 

+ (6 x Q * (G2 x ml2 + 3(& - Q2) I ~“(PI - E ?2 + m. 
(5.37) 

(3) d W?)(3) is generated by external potential corrections to the reduced 
~8 matrices and is given by Eq. (5.26), and with the external potential expressed 
in integral form and transverse operators removed is 

(4) A ~$?(4) comes from the Coulomb-pair exchange diagrams and is found 
in Eq. (5.15) 

A@(4) = AE~:, + AE~C (+ ) . (5.39) 

(5) A ~$!)(5) is given by the spin-spin term of the recoil correction, 
Eq. (5.32), 

Aw$5) G AE,,,,, . (5.40) 

(6) AW$)(6) denotes the no potential part of the spin orbit piece of the 
recoil correction, Eq. (5.30). Doubling to include O2 . 

(5.41) 

595/841-9 



128 DOUGLAS AND KROLL 

(7) A I@)(7) is defined as the external potential part of the recoil correction, 
Eq. (5.30) and written out in integral form is, likewise doubling, 

* ~2(--2P, . E + k2> I da1 - E F2 + E + E2)>. (5.42) 

(8) dWg’(8) denotes the Z, term in the recoil correction, Eq. (5.30), and 
written in integral form is, again doubling, 

* W-281 - E + E’ * E + IF) 1 yhJ(p1 - k - E’ p2 + li + k’)). 

(5.43) 

Further rearrangement and Fourier transformation of these results is carried out 
in Section 8. 

6. DOUBLE TRANSVERSE PHOTON EFFECTS 

In this section we calculate the effect of the double transverse photon exchange 
diagrams, i.e., J + Q,,, + B,,9-9, , plus the last two terms of Eq. (3.54). Thus, 
we define 

AETT = S $. (@, 1 I,[cF-~ST~TF-~ + St-lS&JdlS~~-l] 1, I @J 

z AEzT + AE? + AETT. (6.1) 

The terms of AE,TT involving one or more external pairs, and, thus, one or two 
extra factors of Z, are negligible, the terms without external Z, being already of 
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order o?m insofar as they contribute to the 3P splitting. Thus we find, referring to 
Eqs. (5.2), and (5.5) 

s AETXT + AE**‘. (6.2) 

Inserting the expressions for the operators g* , grXT we find the explicit formulas 

AETx’ = (a& j- de dw dw’ dk dk’ 
-2vri -2rri -2ri 03 - k2 + id ~‘2 - Et2 + id’ 

x (@c(I-&P2) I Pl+(m + S2+(F241 

x cQS,( p1 - PE - w’) alcx~s2(~, + IEE - 0) cx2j 

x [&+(j& - E - E’E - w  - w’) + S,+(& + E + E’E - w  - w’)] 

x 1 @Jj& - k - E’ p.2 + E + Iv)) 

= AET:$ + A&C-f + A,$?+; + A@?-; (6.3) 

and 

x <@C(liIBZ) I L%+<P14 + S,+(P241 

x Qs,(p, - kc - w) cxIja2”s2(p2 + EE - co) o12j 

x [Ls,+(& - IE - IE’E - CfJ - 0’) + &+(h2 + E + E’E - w  - a’)] 

x I @A& - k - P a2 + E + E’)> 

= AE~$ + AE[;7, + AEc:j + A,?$?, , (6.4) 

where the (f&I) subscripts refer to the positive, negative energy decomposition 
of the interior propagators; the superscripts i refer to orthogonal directions per- 
pendicular to IE and j to IE’. 

The simplest of these T x T, T . T terms are the (+ -), (- +) projections, and 
their evaluation is similar to that of the TC terms of Section 5. All external poten- 
tials may be neglected. This allows denominators to be combined straightforwardly 
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using Eqs. (3.22a,b). We can also let E, -+ m in the resultant energy denominators, 
finding that as in the TC terms they reduce to the simple result 

l/P . l/P. (6.5) 

Alsocthe wave function approximation Eq. (5.10) is adequate. The result of these 
approximations is a convergent dm integral (again convergent only for triplet 
states). These calculations can be summarized in a form analogous to Eq. (5.13), 
doubling (+-) to include the equal effect of (- +), 

Transforming this to F-W form using Eq. (5.10) gives the intermediate result 

x KPl - Q2 Ul%Jlj + 01 . p,al’al - (jTl - I;> u,j 

+ u1”61 * (j& - E) ujq . (j?, - It - P) 

+ a, . ~+T,‘u,ja, - (jJl - li - E’)] 

x I &PI - E - E’ F2 + E + r;‘>>. (6.7) 

Further manipulation yields the final result 

AET,T_, + AE:f,) 

+ 4i(% x r;> - ff’ri - A’] 1 t&j1 - li - E’ p2 + E + I?)). w3) 

The term LlEF+y presents an extra complication but will be found negligible. 
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Proceeding according to the discussion following Eq. (6.4) we find the nonrelativ- 
istic approximation analogous to Eq. (6.7) 

This expression is convergent for large values of the momenta. One finds by 
counting powers of momenta the nominal order of this term is dm. However, 
the number of inverse powers of k or k’ in the factor (l/k3k’2 + l/k2k3) causes 
an infrared divergence for either k or k --f 0. The neglect of E, - m factors in 
denominators has led to these divergences, and these act as a natural cutoff for 
the integrals. We are led to the conclusion that AETf is actually of order 
a7 log am + a7m, but still negligible. 

The nonrelativistic order of the sum APT = AE??” + AE?LT is a5m 
but it is spin independent, the spin matrix combination being simply 
[u,%J,~ + ~,b,~][a~%,~ + u&J~~]. Also it is found that this combination is infrared 
convergent. Spin dependent corrections must come from a wave function approxi- 
mation more accurate than Eq. (5.10). As found in Section 5 these are of relative 
order 01~ and, thus, to order dm AETT may be neglected. 

The remaining terms dig”, AEFT, and AE;iT are found to combine into a simple 
result. Performing the E and o integrations in the positive energy piece of AETT 
(pair terms involve an extra 1, and are negligible) we find 

1 
+ 012’ E, - qjj,) - b(p, + I;) - k ali 1 

1 
’ Ec - &P, - r;> - b(P2 + E) 

I @C(Hl - E P2 + m,  

clearly of order dm. 
In AEbv 9++‘s are inserted to the left of the IC’s and the negative energy part 

of r is dropped (see Eq. (3.41)), corrections to both of these approximations being 
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negligible three photon operators. We are then left with a sum over the positive 
energy solutions to CLE 

I 
(@, I j (de/-24 D~-1S,9=-15Z’++Ic I @,J 

AE,TT= C x <@, I s W/--274 D~-l~~-l-%Jo I @c> . I (6 1 1> 

E,>O -Ec - Em 

Using the equation for Q0 , and (D, - 9++IJ Cp, = 0, and also making the 
separation 

D, = D, - (EC - E,,) (6.12) 

we find on performing the relative energy integrations, and defining 

Jm = 4 E _ &@ l 
0 1 - I;) - b(p2) - k Olzi 

+ apt 
1 

Ec - ~(2 - &(jj2 + I;) - k ‘%” 
(6.13a) 

AE,“= c 
(Oc 1 (427r3 J- (&2k) d(k) I @,,)(@,a I (42~~) J- (dli’/2k’) 46 I @,> 

E,,>O Ec - 6, 

- c' (@' I ($) 1 $ E 
E,,>O 0 - ,$'(p 

1 
_ ;) _ ,-f(jj 

2 
+ I;) ' On' 

G AE~) + ~~~~ * * (6.13b) 

The notation for the first term is chosen to denote the fact that it is precisely the 
“full Breit operator” B, Eq. (5.17), in second order. AE,TT is dealt with as follows: 
in the left side matrix element we make the shift PI -+ PI + li, jY2 + p2 - E and 
then use completeness of the positive energy spectrum in the form 

p1 and p2 are then shifted back yielding 
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I 
1 

’ a13 E, - b@, - li - E’) - &‘(jj2 + E) - k’ 01” 
1 

+ a29 E, - S(j& - k) - b( j2 + k + k’) - k’ a19 .I 

x / CD& - ii - E’, Pz + ii + 0) + Pi, I B I @J ($) 1% 

x <@C(PlPZ) I Jm) 
1 

E, - g(Pl- k) - g(f% + E) 
I QbcG-4 - kF2 + 6). 

Since for DC we know already that 
(6.15) 

it is evident that the second term of AETT cancels AgT. 
Finally, we examine the remaining piece of AETT, AET;‘. From Eq. (6.4) we 

have 

AE~;, = O1 2 dE dw dw’ 
( )S 

dz dk’ 
57 -2ni -2ai -2ni co2 - i? + id ~‘2 - lZ2 + id’ 

x (@P,(Fl,P,) I L%+(F14 + S2+(P241 %iG+(FI - h - w) 

x %+(A - Q %jo12i&+(P2 + L - w) .EL;+(P, + Q a2j 

x [S,+(j& - E - E’E - w - w’) + S,+(j& + f? + E’E - w - w’)] 

x I @p,(F, - E - ii’, fk? + E + E’)>, (6.16) 

which we write out explicitly as 

AE~;,= it!+’ -it-dwdw’ ( 11‘ 
dt? dk’ 

-2rri -26 -2vri co2 - E2 + iA ~‘2 - iZ2 f iA’ 

X 

X 

X 

+ 

X 

+ 

X 

‘@c(Frp2) I [ EC/‘2 + E -! ,$(pa + is $- 
1 

EC/2 - E - b(jT,) + i8 1 
olli(Yzt -%+(A - El “LR2+(P2 + I;) 

Ec - &Pl - @ - &P, + r;> 

[ 
1 

EC/2 + E - w  - g(p, - 15) + i8 
1 1 EC/2 - E + o - d(p, + I;> + i6 o11’a23 

[ 1 

&I2 + t-al--6J’ - cF(p, - E - I;‘) + i8 
1 

EC/2 - E + w  + w’ - &(p2 + li + li’) + i6 1 
I @,(P, - k - k’, ~2 + k + k’)). (6.17) 
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The relation Eq. (3.48b) has been used to rewrite the interior propagator expres- 
sion. The E, w, and CO’ integrations are facilitated by setting d = m in the exterior 
[S,, + S,,] factors. Performing these integrations we obtain 

’ II& (m + &(pll- I;> - k’ + m - S(&‘+ k) - k’) 

1 
( 

1 
-k m+B(&--Q--kt- 

1 
m - b(F2 + I;> ) 

+ 
1 1 

m - b(ji, + k) - k’ m - b(p, + k) - k 

1 1 
$- m - 8(p1 - k) - k’ m - d’(pI - k) - k 1 
x OljDlzi 1 Qc(pl - Ii - E’, & + E + I?)). (6.18) 

Evaluating this nonrelativistically (giving an drn contribution to triplet states) 
one makes the approximation 

1 1 1 1 
m-&-k -+-x3 m-&-kk’-t-F 

and likewise in the first term of dI$r, E q. (6.15). These are then seen to cancel. 
We have arrived at the pleasing result that for triplet states to order dm 

where 

AEEl;) + AE,TT + AE,TT = AEF’, (6.19) 

(6.20) 

This can be expressed in terms of the Pauli-type wave function Qbc = UilU&+f 
by introduction of the usual F-W transformation, i.e., 

A,$?) = c (cp++ 1 [UIU,BU,-lU;l]++++ 1 q~:+)(cp:+ I [UJJ,BU,-lU,-l]++++ I q~++> 

E,>O Ec - En 

(6.21) 

The nonrelativistic approximation to AE~,~) is obtained by replacing &+‘s by 
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T~‘s, neglecting E - d(1) - g(2) compared to k in the denominator of B, letting 
EC - E, -+ W, - W, , and using 

u,-‘u,-l g (1 + G, . j&/2m)(l + (Ye . p,/2m). 

One then arrives at 

(6.22) 

the reduced Breit operator in second order. Power counting arguments as well as 
the successful calculation of this sum in coordinate space by Hambro [25] indicate 
that this sum is convergent and thus also that corrections to the approximations 
listed above are of higher order than dm. 

We have thus arrived at the simple result for the sum of all two transverse 
photon contributions to the triplet P splitting 

A wg = d W$(l) + A w?;(2) (6.23) 

with A W$(l) defined as the second order perturbation sum of Eq. (6.22) (see 
Eq. (5.23) for the definition of Bred), and d W:;(2) denoting the pair terms of 
Eq. WO, 

d W?;(2) = A ET,-, + .dEp+, . (6.24) 

We note for completeness that the contribution of 9’oXc (double Coulomb photon 
exchange, Fig. 5) can be analyzed by methods identical in principle but much 
simpler in practice to those applied to BTXT . While the spin dependent terms of 
the (+ Jr, + +) (i.e., no external pair) part are nominally of order dmc2 they take 
the form 

- (E x k’> I yoh - k - k’, Fz + ft + W, (6.25) 

and hence (on account of E, E’ antisymmetry) vanish. 

7. RADIATIVE CORRECTIONS 

The rigorous treatment of 9Vad) has not been completed. We shall present 
instead a phenomenological treatment based on the assumption that radiative 
corrections to electron interaction may be taken into account by ascribing to the 
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electron a modified charge form factor and modified static magnetic moment. 
The expressions we shall write down will in total yield order o15m and order dm 
corrections to the a4m spin dependent fine structure. These corrections may be 
symply interpreted as arising from replacement of the electron magnetic 
moment pO = e/2m by ~~(1 + A), where according to Refs. [23, 32, 371 
A = 42~7 - .328(cz/~)~ is the order CL plus 01~ radiative correction factor. 

In accordance with the above prescription the pointlike vertex operators are 
replaced by the modified operators [31, Section 61 

where 

- 

(7.la) 

(7.lb) 

- i) (7.2a) 

(7.2b) 

FIG. 11. Vertex correction diagrams, 
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Here q is the four momentum transfer to the electron in question and may be 
provided by either the other electron or the external potential. The LI& terms 
represent the charge form factor of the electron to order ol; h is a photon mass 
introduced to avoid an infrared divergence and indicates the need for binding cor- 
rections. The llgi terms represent the magnetic moment correction to order 01 
plus 01~. Second and fourth order Feynman diagram contributions to (lc + clM 
are illustrated in Fig. 11. Since it will be found that the charge term does not 
contribute to cPm and o?m fine structure an order 01 correction is not included. 

To investigate the effect of radiative corrections to photon exchange we shall 
substitute yO,i -+ A& + clg6 in the one and two photon exchange diagrams; see 
Fig. 12. Radiative correction to interaction with the external potential is taken 
into account by replacing the mass operators Z;, , ZzV of Eq. (2.19) by 
4, +A:, A&, +Ag. Th e expressions arrived at are then equivalent to the 
vertex correction to a single scattering in the external potential. 

The interaction operators corresponding to Figs. 12(a)-12(j), call them 9,, , 
9 VR , S-R ,gC~s, ~VG , ~TRB, ~CW , SRXC , gTXCR , %,,, , are derived simply 
by employing the rules of Appendix II and substituting the vertex correction 

FIG. 12. Vertex modified exchange diagrams. 
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operator for the appropriate matrix. Then the energy shifts generated by these 
operators are calculated in the usual manner by means of Eqs. (5.2) and (5.4). It 
is found that in all diagrams A;,, yields energy splittings the largest of which 
(from gcR , ~VR , gTR) are of nominal order a7m and thus negligible (the true 
order of such terms is CX’ log (y. as indicated by the factor log X in the vertex 
operator; see for example Bethe, Bat-ranger, and Feynman [38]). In calculating 
with A& it is found that the only operators that contribute in the order of interest 
are OCR , ~VR , %R , %TCC, and %P . Furthermore we need retain only those 
terms in which no external pairs are present, and in ‘STRXC only positive energy 
intermediate states contribute to the order of interest. 

The relations 

Bl,& YLZil = 29k4i + 2433.2 * E (7.3b) 

are used to rewrite the magnetic vertex operator. Performing the relative energy 
integrations and including factors of two to account for diagrams with the radiative 
correction on the path of particle 2 we find 

+ azi 
1 

E - rZ(jQ - S(& + I;) - k %*” 
. 41 

’ ‘li 
E - &tFl - r;) - QF,) 

E _ ,$(jjl - r;> _ &(jj2) - k a2t 

+ 4 E - 4IQ - S(P, + r;> 
E - S@J - B(jj2 + I;) - k Y’s 

I @dPl - k a + r;>>, 

(7.4c) 
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AETR2 = - 
(a-&)” s 

E - &P,) - &P2 + @ 
’ E - b(&) - b(j5, + IE> - k 

C-&i + qiy, . 17) 

+ Q(kni + alijjl * Q 
E - &‘(& - k) - b(p,) 

E - b(j& - I;) - b(&) - k 

x (km + a272 . q I @c(P, - k ii2 + m, (7.4d) 

%+(P2 + 6 -%+( &1) 
a,iE-~(j&)-b(~2+~)-kkcE-&‘(~l)-~(~2+li)-k 

%+(F, - Q -%+(P,) 

’ E - b@, - I;> - b( ii,) - k Ic E - b( PI - k) - a(&) - k 

(7.4e) 

For the purpose of extracting the a5m and a!m contributions we may drop the 
second square bracket of AI& , the second and third terms of AETRs ; further, in 
fhm we may drop the krli terms and also neglect E - a(l) - &‘(2) compared 
to k in the denominators (i.e., neglect “recoil”). AETR contributes in order asrn 
and we need to retain a recoil term obtained by writing 

1 1 N--- E - 8(l) - g(2) 
E - b(l) - c?(2) - k = k k2 * 

Using the equation for Qc we may eliminate E - b(l) - 8(2) in favor of Z, and 
find for the total of the recoil term of A,!& plus AETRXC 
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Making the usual F-W transformation and nonrelativistic approximations it is 
found that this expression is spin independent to order &rz, analogous to the spin 
independence of PI , Eq. (5.24). 

TABLE I 

Coordinate Space Form of or’m Operators 

Contribution 

A W:‘(l) 

i A W:‘(i) 
i-a 

A W:‘(S) 

A W,“‘(6) 

A W!‘(7) 

A W:‘(8) 

The remaining expressions reduce simply to multiples of the oL4m fine structure. 
That is, we find expressed in terms of the oc'm fine structure operators listed in 
Eqs. (4.33) and (5.34) and Table I 

AE,, = A - (24 W,‘“(5) + 2A W:‘(6)), 

AEYR = A - (24 Wo”(7) + 24 We”‘(S)), 

AETR = A - (A@)(2) + A@‘(3)), 

AE,,S = A2 - AW$4). 

Finally, we separate the results into order dm, a6m, defining 

A@’ = i AH&i), 
i-l 

(7.6a) 

(7.6b) 

(7.6~) 

(7.6d) 

(7.7) 
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with 

and 

A wk’(1) = (++A wz’(5) + A wi?(6)), 

A w:‘(2) = (c+)(A W$)(7) + A W$$3)), 

A Wf’(3) = (01/2T)(A W?)(2) + A W?‘(3)), 

A wp(4) = (c+r) A W?)(4) 9 

(7.8a) 

(7.8b) 

(7.8~) 

(7.8d) 

with 

A wt’ = i A Wt’(i), 
i=l 

(7.9) 

A wt’(l) = 2 * [-.328(c~/?r)~](A W$5) + A F@‘(6)), 

A wjza’(2) = 2 * [-.328(a/~)~](A W$‘(7) + A Wk’(8)), 

A W!‘(3) = [-.328(a/?r)y(A W?‘(2) + A W?(3)), 

A wjle’(4) = (2 . [-.328(a/~r)~] + (a/27$) A Wp’(4). 

(7.10a) 

(7. lob) 

(7.1Oc) 

(7.10d) 

In this phenomenological treatment we have rederived the well known anoma- 
lous moment fine structure contributions of order a5m [lo, 16, 17, 391 plus similar 
terms of order dm which may be described as arising from the next higher term 
in the expansion of the anomalous moment. We have also shown that dm correc- 
tions which cannot be simply interpreted as arising from a modification of the 
electron moment do not occur in the phenomenological treatment. Such a term 
does occur in AETR , but it is cancelled by a similar term in AE,,,, . 

It is clear that a systematic exact reduction of CPrad), Eqs. (2.19) and (2.37), is 
preferable to the above treatment. Such an analysis appears to be necessary in 
order to definitively determine whether or not there are order 01 corrections to the 
a5rn terms coming from the binding of the electron in the atom. In the case of the 
analogous problem of P state hydrogen hyperline structure [40] order 01 binding 
corrections have been shown to be absent. It would, therefore, not be surprising 
if they were absent for helium as well. On the other hand, in the calculation of 
Ref. [40] binding is provided by a fixed external potential and the complications 
provided by relative energy behavior are not present. A rigorous analysis in 
progress indicates that the above treatment in fact yields the correct result. It is 
based on use of the Yennie-Fried [41] form of the photon propagators for the 
photon lines beginning and ending on the same electron line. Systematic renormal- 
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ization and reduction of terms to forms which can be estimated proves to be 
possible but lengthy. Selected “dangerous” terms have been investigated and 
shown to yield results consistent with the phenomenological analysis. However, 
the detailed demonstration that all terms which might conceivably contribute to 
order cAnc2 fine structure in fact do not do so has not been completed. 

8. RESULTS IN COORDINATE SPACE 

The purpose of this section is to reexpress our result in a form convenient for 
a computerized numerical evaluation procedure. Because numerical evaluation of 
helium wave functions has been found to be most conveniently carried out in 
coordinate space it is useful to express all of our results in terms of coordinate 
space operators. 

In the field-theoretic calculations natural units have been employed, with the 
unit of charge chosen so that e2 = a s l/137. Momenta can be resealed in terms 
of the Bohr momentum Pe = olrn and the Schroedinger equation becomes 

with 

(8.1) 

(8.2) 

the energy measured in atomic units (au.). 
Our convention for Fourier transformation is that 

which implies 

(the symbol v. will be used to denote both the coordinate space and momentum 
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space wave function). In addition use will be made of the following transform 
formulas: 

(8.4a) 

(8.4b) 

All but Eq. (8.4f) may be found in [l, p. 1801 in a form slightly different from that 
presented here; Eq. (8.8f) may be obtained by methods described there or by 
directly performing the li integral. 

Using the above relations the Schroedinger equation may be transformed to 
coordinate space with the result 

- - - 
r = r-1 - r, ) r= Jr], (8.5) 

the wave equation in atomic units; that is distances are measured in terms of the 
Bohr radius a, = ji2/me2 (numerical calculations are usually carried out in these 
units). Expectation values will be similarly transformed and energy shifts expressed 
as a4(a.u.) x numerical factor x integral over dimensionless wave function, 
where 1 a.u. = a2mc2 = 2 Rydberg. 

The total energy shift formula accurate to order a6mc2 and valid only for 
calculating the 3P splitting may be summarized as 

with 

A w  = A W’4’ + A W’S’ + A W(6), (8.6a) 

AWt6’ = A@’ + AW I? . (8.6b) 
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A W(4) is the well known sun fine structure 

A wt4’ = A wt4’ + A wk’, c (8.7) 

given by Eqs. (4.33), (5.34); A W(5) = A Wf’ is given by Eq. (7.7) and included in 
the result of Schwartz [22]; A W$’ is defined as the sum of all second order per- 
turbation sums and is found by adding Eqs. (4.35), (5.36), and (6.22) 

i.e., the total a4m fine structure taken to second order. A WI’) is the sum of expec- 
tation values of all the operators of intrinsic order clsm, and which can be found 
in Eqs. (4.34), (5.37)-(5.43), (6.24), and (7.9); i.e., 

A Wp’ = i A W,‘“‘(i) + i A W?‘(i) + A W!;(2) + i A W$(i). (8.9) 
t=2 i=2 i=l 

There is, naturally a wide latitude of forms available for our final expressions. 
The following guidelines have influenced our choice. Nonvanishing contact terms 
are eliminated in favor of gradients operating on one or both wave functions. 
This choice simplifies the systematics of the numerical work. In addition an effort 
is made to keep the convergence properties of the expressions as self-evident as 
possible. 

It is appropriate at this point to discuss the behavior of vo(F1 , F,) as F -+ 0. 
Eq. (8.5) can be expressed in center of mass variables 

it = e, + ?,I, F = F, - F, ) (8.10) 

which imply 

0, = TN.% + n ~2=B@i?--0). (8.11) 

To examine the limit F + 0 we drop all terms in Eq. (8.5) that are no more singular 
than q,, as F + 0, finding 

~2?JO@R (8.12) 

The antisymmetry of q0 requires 

rp,(f, K) = --%(a?). (8.13) 
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Eqs. (8.12) and (8.13) imply for the small F behavior of v,, 

ho gg G(R) . P(l + z&r) + 0(r3), (8.14) 

with G regular for R # 0. It follows that 

T~FR - r, (8.15a) 
-- 

bo > bo 3 bo - G(R)> (8.15b) 

vcpo, f?12cpo, 022’po, -ff, * 02fpo - G(R) * f + x0, . G, (8.15c) 

where the coefficient X depends on which of the operators is being considered. 
Also we find for arbitrary components 

ipi,i”2j% - 2 (Gjr, + G,rj) - $ G - i; (% - -f$f-) - (~&, - P&J + O(r). 
(8.16) 

The answers will be arranged so that only a 0, , 0, , P12, P22, V,<V2j ever appears 
next to a wave function, and using the above estimates convergence can be easily 
verified. 

We begin the Fourier transformation with the a*m terms finding the result 
listed in Table I. It is noticed that many terms in the dm result, LI Wig), are of the 
same form and will combine. We feel however that it is useful to present the 
transformed form of each term in Eq. (8.9) separately and then combine like 
terms and group together those of similar structure. The Fourier transformation 
is straightforward, and we shall simply present the result. A few conventions have 
been adopted: (a) Many terms occur in complex conjugate pairs and we shall save 
writing by using one form, taking the real part and doubling, (b) In operators 
with a 022 we shall arrange to use a form with VI2 (the transformation is effected 
by letting ?, z ?, everywhere in an expression) and also use a form with the 
VI2 operating on the left, (c) In single spin operators we shall always let ~7~ -+ crl 
which is valid since the spin part of q, is symmetric, (d) Terms whose spin depen- 
dence is u1 . (TV shall be dropped because they contribute equally to all three levels 
of the triplet. The results are listed in Table II. 

To simplify the answer terms of like structure are combined and a new labeling 
is introduced. Also the expectation values are real and we may drop “Re” on the 
answers. Terms involving the external potential combine to El , E2 , Es . Terms 
coming from two photon exchange and the I, term in the recoil energy combine 
to E, , Es . Spin orbit terms that originally contained one explicit power of 01 
combine to E, , E, , Es, E, . The remaining spin-spin terms combine to El,, 
E 11 9 Era, E13, El4. The radiative diagrams are given by El5 , El, , El, , E,, . 
These results are listed in Table III. 



146 DOUGLAS AND KROLL 

TABLE II 

Coordinate Space Form of 01% Operators 

Contribution Formula 

A W:‘(2) 

A W,‘“‘(3) 

A W:‘(4) 

A W:‘(5) 

A W:‘(2) 

A W:‘(3) 

A W;‘(4) 

A W;‘(5) 

A W:‘(6) 

A W:‘(7) 

A W;‘(S) 

(6) 
A WT&) 
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TABLE III 

Summary of dm Operators 

Contribution Formula 

In conclusion we have found the simple result for the total a6mc2 contribution 
to the triplet P fine structure splitting: 

A WCs) = f Es + A W,‘,’ = A WI(s) + A W;;‘, (8.17) 
i=l 

where A W$‘) , Eq. (8.8), is obtained by calculating the usual a4mc2 fine structure 
operator in second order with Schroedinger-Pauli wave functions [25]. 
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The contributions to the splittings of d FYI”) have been calculated numerically 
[26] employing techniques similar to those of Ref. [22] with the result 

Av,, = -3.331 MHz, 

Av,, = + 1.542 MHz. 
(8.18) 

A compilation of all effects of order Orsm as well as nuclear motion corrections may 
be found in Ref. [5]. The totals agree with experiment to within estimated numerical 
errors. It is clear that the ol’%r terms calculated here are required. 

APPENDIX I: UNITS AND NOTATION 

Natural units #r = c = 1 are used. m is the electronic mass, e the positive quan- 
tum of charge in nonrationalized units; e2 = 01 g l/137. V = -ze2/I ? 1 is the 
Coulomb potential energy. A is a three vector with components Ai(i = 1, 2, 3) 
and length 1 A 1 = (&4i)1/2. B is a four vector with components B&u = 0, 1,2, 3). 
The summation convention for four vectors is A,B, = A&, - A,B, - A,B, = 
A,& - A * B. The convention for Dirac matrices is yi = /?(Y~, y0 = /?, with 

0 *i (Yi = [ 1 ut 0’ P = [’ -11; 
the ui are the usual 2 x 2 Pauli matrices. Also we define 

A = A,y, = A,y,, - jil * ji. 

APPENDIX II. RULES FOR CONSTRUCTION OF THE INTERACTION OPERATOR 3, 

Following Sucher [ 10, Section I], we present the rules for the construction of the 
interaction operator 

(AII.1) 

The most general interaction diagram, due to fermion conservation, contains two 
unbroken electron lines entering and leaving, connected by a combination of 
Coulomb, and transverse photon lines. One finds that the Feynman rules [7, 311 
forming G together with the variable change Eqs. (2.21) and (2.24) and the trans- 
formation Eq. (2.25) lead to the following rules for the direct construction of Si5) 
in momentum space: In the diagram j label the photon lines corresponding to 
instantaneous or transverse interactions with the four vectors k, k, kl,... (we use a 
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dashed line for Coulomb interaction and a wavy line for transverse), assigning 
each line a definite sense; for example, let all momenta k” be carried from particle 2 
to particle 1. Label the final sections of the lines of electrons 1 and 2 with the four 
vectors pi = (E/2 + E, j&), pz = (E/2 - E, j&). To label the remaining electron 
lines conserve four momentum at each vertex. With the diagram thus labeled write 
ali or %i for a transverse interaction vertex on the path of 1 or 2; and a factor 
&(p,) for a line segment with momentum p1 , and similarly label the segments of 
the particle 2 line. These factors are written in the order in which they occur in the 
diagram, with the final factors to the far left. For example, the diagram of Fig. (13) 
yields the expression 

AT(j) = ~l,~S,(p, - k’) S,(p, - k’ - k”) aliol&(p, + k) S,(p, + k + k”) c$. 

PI 
d 

P,- k 
,1 

p, d-k” 

Q[ 

p,-k-k’k” 

p2 
(16 

yk 

pJk tk” 

Q: 
p$ktk’tk” 

FIG. 13. Example of contribution to interaction operator. 

The calculation of Sy)#(jS, &) is completed by supplying a factor 

for each Coulomb line, 

1 g&) = e2 l - 
2?r2 kpU2 + id -2ni 

(AII.2) 

(AII.3) 

for each transverse line, displacing the wave function arguments by the sum of 
the transferred four momenta, and integrating over these. Thus, we have for our 
example 

dE dP dE” 
--2ri -2ri -2m’ d - k2 f id cJ2 - P2 + id P’s 

x M”’ x #(pI - E - E’ - IT”, j& + E + P + Ii”, E - w  - 0’ - 0”). 
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Covariantly gauged photons may be handled by means of the substitution indicated 
in Eq. (2.36). 

A word about our notation is perhaps in order. The meaning of the general 
single particle operator expression O(P) is that the function obtained by operating 
with O(P) is 

O(P)f = Of(P) = j- O(PP’)f(P’) dP’ (AII.4) 

with O(PP’) the kernel corresponding to the integral operator 0, clearly a c 
number matrix function of two variables. The meaning of the displaced operator 
O(P + k) is then 

O(P + k) f = 1 O(P + k, P’)f(P’) dP’. 

This notation is useful for the following reason. A typical contribution to 

contains a factor (suppressing particle 2 variables) roughly of the form 

x e-i[klzl+k~z,+...+k,~~+k~~al 
Ib(xs -> (A11.5) 

generated by the Feynman diagram rules for construction of G. The exponentials 
come from photons exchanged in the diagram (see Fig. 14). Fourier transforma- 
tion leads to an expression of the form 

WP, *.a) = I dp, dp, -.. dpn 4s MPI - k, 3 ~5) UP, - k, , P,) 

--* MP, - km 3 PS) #(PI - k,), (AII.6) 

FIG. 14. Illustration of notation convention. 
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where S,(p, , p’) is the kernel of the operator S,(p,). It is clear from the above 
discussion that we may simply write Eq. (AII.6) in the operator form 

(W)(Pl . ..) = MPl - kl) UP1 - kl - k5) (AII.7) 

... S,(p, - k, - k, - ... - k,) #(p, - k, - ... - k, - k3 ,...), 

i.e., formally assigning to each electron line segment a given momentum even 
though the external potential transfers momenta to the electron between inter- 
actions. This allows one to write down momentum space diagrams in the external 
potential case in a manner completely analogous to the usual free propagation 
case as specified above. One must, of course, always keep in mind the fact that 
p1 is an operator which fails to commute with S, , V, , and H1 . 

APPENDIX III: GENERALIZATION OF F-W TRANSFORMATION TO 
THE EXTERNAL POTENTIAL DIRAC EQUATION 

Transforming H = o( . p + pm + V with U, we find 

WW? = t%, + ~1 f ol, (AIII. 1) 

where l 1 and 0, are even and odd operators of order Y; specifically, 

E = E1, + m II2 v E, + m lb 
1 ( 2-G ) ( 2& ) + (2E,(Et ‘jf rn))lp ’ (2ED(i9 ‘+” m))1/2 

(AIII.2) 

O1 = (2E,(ELi rn))l12 [G * $V, + m) - 6% + m) VZ * $1 
(2E,(E.‘+ rn))li2 ’ 

(AIII.3) 

An additional transformation that removes 0, and leaves a remaining odd part 
of order V2 is desired. Note that if an operator IV, is anti-Hermitean then 

u, = (1 + w12y2 + w, (AIII.4) 

is unitary. Letting W, be an operator of order V we find 

WPL + ~1 + 011 K’ = t% - [&G, W,] + 0, + ~1 + 0, + e2 + -.+, 
(AIII.5) 

where 0, and l 2 are odd and even operators of order V2. If W, is chosen to satisfy 

W, 3 W,l = 0,) (AIII.6) 
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then Or is removed. To satisfy Eq. (4.21) WI must be odd and thus anticommutes 
with p, yielding the condition 

W&z, -I- E,, W, = PO,. (AIII.7) 

Since the general momentum space operator is of the form 

d(p) = j- dpp’).f(p’) dp’, (AIII.8) 

the kernel of WI is given by 

w;(@‘) = @I(& + &a,)) OlGV’). (AIII.9) 

This procedure may be repeated indefinitely, transforming H as 

with 

H’ = U,,U,,-, -a- UIUoHU;lU,-l -.a U;:lU,-’ (AIII.10) 

u, = (1 + W,Z)ll2 + w, (AIII. 11) 

and 

WdFP’) = @/(El, + 6,)) 0,(S), (AIII. 12) 

where 0, is the odd operator of order Vn generated by the previous n transfor- 
mations. 

Referring to Eqs. (AIII.2) and (AIII.3) we find 

wdiili’) = - [- (2E,(;- ‘:” m))l,2 ( Ep;&m )I” 

‘, (2ED4& 5 m))li2 
E, + m lJ2 WV? 

2E, 1 1 E1, + ED, Y (A111’i3) 

or in operator form 

V’ E f m II2 
w1 = (2E,,(Er ‘t” m))l12 % ( ‘2E, 1 ( 

_ E, + m 
2% 1 

II2 V’ E-1 
%i (2E,(E, + rn))l/e 

with 
(AIII. 14) 

V’(@‘) = E ‘@‘) = 9, PI E 8 2;E 1). (g) , jj 2 jj’ ,2 * (AIII.15) 
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Performing the transformation through U, we find 

H’ = BE, + ( Ep2;pm)1’2 v ( E;E+,m)“2 

+ (2E,($ ‘+” n~))l/~ ’ (2E,(E; ;-” m))l12 

+ ,4W,E,W, + 8W,2E, + !&W,21 + 02 + l s + m-m. (AIII.16) 

Additional transformations to remove 0, etc. will not further change the even 
part of H’ through order V2. 

To complete the generalization of Eqs. (4.11) it must be demonstrated that 
U=.Y+ U-l - 1, and [ U, U, I, UC’ U; ] ’ (++++) must be calculated. For the first task we 
use the definition Eq. (3.13), and calculate in the transformed representation. The 
transformed H can be written 

H’=BH,+&, (AIII. 17) 

where He is an even operator given by 

H, = E,, + U(V) + O(V2) + *a. + O(P) + *-, (AIII. 18a) 

Ho = O( P+l) + * * - (AIII.18b) 

(to our accuracy n = 2). d is calculated using 

6 = +(H2)‘i2 = (H,2 + @He , Ho] + Ho2)l12. (AIII. 19) 

Since the eigenvalue of B is positive by definition, and in the limit V+ 0 d + E, 
we write 

I = He + B, (AIII.20) 

where B is determined by setting 

cf2 = He2 + (B, He} + B2 = He2 + b[H, , H,,] + Ho2. (AIII.21) 

From this it is seen that B is odd and of order H,, . This b-l can be written 

8-l = H,-l + H;‘QH;‘, (AIII.22) 

where Q is odd and of order H,, and the higher order even terms are of order 
H,,2. Using Eq. (3.13) we have 

5% = &(I f @He + H&H,-’ + HL’QHL’ + -**I (AIII.23) 
= Q(1 i /3) f (H,,fC1 + BQH;‘) + WG2. 
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Thus, to the order in which we are working in the transformed representation, it 
is legitimate to put 

-% = 8U f PI. (AIII.24) 
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