Άρθρα συναφή με Φασματοσκοπία
[sort by date]
Αντιυδρογόνο
I2
H2O, OH
αρνητικός δείκτης διαθλάσεως
Αστρονομικές παρατηρήσεις
N2
e, p, α, R∞
BaI
Υπολογιστικές μέθοδοι
CO2
|| Βαρυτικά κύματα
- A spectral unit
Giacomo Prando
Nature Phys. 16, 888 (2020)
[DOI: 10.1038/s41567-020-0997-3] [PDF]
- Einstein coefficients, cross sections, f values, dipole moments, and all that
Robert C. Hilborn
Am. J. Phys. 50, 982-986 (1982)
[DOI: 10.1119/1.12937] [PDF]
- Erratum "Einstein coefficients, cross sections, f values, dipole moments, and all that" [Am. J. Phys. 50, 982 (1982)]
Robert C. Hilborn
Am. J. Phys. 51, 471 (1983)
[DOI: 10.1119/1.13515] [PDF]
- The Dispersion of Standard Air
Bengt Edlén
J. Opt. Soc. Am. 43, 339-344 (1953)
[DOI: 10.1364/JOSA.43.000339] [PDF]
- The refractive index of air
Bengt Edlén
Metrol. 2, 71-80 (1966)
[DOI: 10.1088/0026-1394/2/2/002] [PDF]
- An Updated Edlén Equation for the Refractive Index of Air
K. P. Birch and M. J. Downs
Metrol. 30, 155-162 (1993)
[DOI: 10.1088/0026-1394/30/3/004] [PDF]
- Correction to the Updated Edlén Equation for the Refractive Index of Air
K. P. Birch and M. J. Downs
Metrol. 31, 315-316 (1994)
[DOI: 10.1088/0026-1394/31/4/006] [PDF]
- Refractive index of air: new equations for the visible and near infrared
Philip E. Ciddor
Appl. Opt. 35, 1566-1573 (1996)
[DOI: 10.1364/AO.35.001566] [PDF]
- Badger's rule revisited
Jerzy Cioslowski, Guanghua Liu, Ricardo A. Mosquera Castro
Chem. Phys. Lett. 331, 497-501 (2000)
[DOI: 10.1016/S0009-2614(00)01209-4] [PDF]
- Is the Lamb shift chemically significant?
Kenneth G. Dyall, Charles W. Bauschlicher Jr., David W. Schwenke, Pekka Pyykkoe
Chem. Phys. Lett. 348, 497 (2001)
[DOI: 10.1016/S0009-2614(01)01162-9] [PDF]
- The periodic table and the physics that drives it
Peter Schwerdtfeger, Odile R. Smits and Pekka Pyykko
Nat. Rev. Chem. 4, 195 (2020)
[DOI: 10.1038/s41570-020-0195-y] [PDF]
- Solar-induced fluorescence (SIF) of C2 radical
J. M. Badie, G. Flamant, T. Guillard, D. Laplaze
Chem. Phys. Lett. 358, 199 (2002)
[DOI: 10.1016/S0009-2614(02)00445-1] [PDF]
- Doubly-resonant sum-frequency generation spectroscopy for surface studies
M. B. Raschke, M. Hayashi, S. H. Lin, Y. R. Shen
Chem. Phys. Lett. 359, 367 (2002)
[DOI: 10.1016/S0009-2614(02)00560-2] [PDF]
- Energy transfer between two kinds of J-aggregates studied by near-field absorption-fluorescence spectroscopy
Naoki Fukutake, Shigehiro Takasaka, Takayoshi Kobayashi
Chem. Phys. Lett. 361, 42 (2002)
[DOI: 10.1016/S0009-2614(02)00882-5] [PDF]
- Linestrength of the visible oxygen atmospheric transition
G. Di Stefano
Chem. Phys. 302, 243 (2004)
[DOI: 10.1016/j.chemphys.2004.04.010] [PDF]
- A previously unrecognized source of the O2 Atmospheric band emission in Earth's nightglow
K. S. Kalogerakis
Sci.Adv. 5, eaau9255 (2019)
[DOI: 10.1126/sciadv.aau9255] [PDF]
- MARVEL Analysis of the Measured High-Resolution Rovibronic Spectra and Definitive Ideal-Gas Thermochemistry of the 16O2 Molecule
Tibor Furtenbacher, Matyas Horvath, David Koller, Panna Solyom, Anna Balogh, Istvan Balogh, and Attila G. Csaszar
J. Phys. Chem. Ref. Data 48, 023101 (2019)
[DOI: 10.1063/1.5083135 ] [PDF]
- Vibration-rotation emission spectra of gaseous ZnH2 and ZnD2
Alireza Shayesteh, Dominique R. T. Appadoo, Iouli E. Gordon, and Peter F. Bernath
J. Am. Chem. Soc. 126, 14356 (2004)
[DOI: 10.1021/ja046050b] [PDF]
- An accurate description of the ground and excited states of CH
Apostolos Kalemos, Aristides Mavridis, and Aristophanes Metropoulos
J. Chem. Phys. 111, 9536 (1999)
[DOI: 10.1063/1.480285] [PDF]
- Infrared Studies of the Symmetry Changes of the 28SiH4 Molecule in Low-Temperature Matrixes. Fundamental, Combination, and Overtone Transitions
Ruslan E. Asfin, Tatjana D. Kolomiitsova, Dmitrii N. Shchepkin, and Konstantin G. Tokhadze
J. Phys. Chem. A 121, (2017)
[DOI: 10.1021/acs.jpca.7b02798] [PDF]
- Is there any fundamental difference between ionic, covalent, and others types of bond? A canonical perspective on the question
Jay R. Walton, Luis A. Rivera-Rivera, Robert R. Lucchese and John W. Bevan
Phys. Chem. Chem. Phys. 19, 15864-15869 (2017)
[DOI: 10.1039/c7cp02407j] [PDF]
- Talking to Pauling's ghost
Michelle Francl
Nature Chem. 10, 688-689 (2018)
[DOI: 10.1038/s41557-018-0099-3] [PDF]
- Resonance Raman spectroscopy in the dissociative A band of nitrosyl chloride (ClNO)
Jeffrey L. Mackey, Bruce R. Johnson, Carter Kittrell, Linh D. Le, James L. Kinsey
J. Chem. Phys. 114, 6631 (2001)
[DOI: 10.1063/1.1355656] [PDF]
- Control of laser desorption using tunable single pulses and pulse pairs
Wayne P. Hess, Alan G. Joly, Daniel P. Gerrity, Kenneth M. Beck, Peter V. Sushko, Alexander L. Shluger
J. Chem. Phys. 116, 8144 (2002)
[DOI: 10.1063/1.1467345] [PDF]
- Selective dissociation of the stronger bond in HCN using an optical centrifuge
R. Hasbani, B. Ostojic, P. R. Bunker, M. Yu. Ivanov
J. Chem. Phys. 116, 10636 (2002)
[DOI: 10.1063/1.1478696] [PDF]
- Near-field Raman imaging of organic molecules by an apertureless metallic probe scanning optical microscope
Norikiko Hayazawa, Yasushi Inouye, Zouheir Sekkat, Satoshi Kawata
J.Chem. Phys. 117, 1296 (2002)
[DOI: 10.1063/1.1485731] [PDF]
- Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons
G. E. Uhlenbeck und S. Goudsmit
Naturwissenschaften 13, 953-954 (1925)
[DOI: 10.1007/BF01558878] [PDF]
- Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik
W. Heisenberg
Zeits. Phys. 43, 172-198 (1927)
[DOI: 10.1007/BF01397280] [PDF]
- Quantum mechanics at 100: an unfinished revolution
Editorial
Nature 637, 251-252 (2025)
[DOI: 10.1038/d41586-025-00014-5] [PDF]
- The revolutionary dawn of quantum mechanics
Kristina Camilleri
Nature 637, 269-271 (2025)
[DOI: 10.1038/d41586-024-04217-0] [PDF]
- Diatomic Molecules According to the Wave Mechanics I: Electronic Levels of the Hydrogen Molecular Ion
Philip M. Morse and E. C. G. Stueckelberg
Phys. Rev. 33, 932 (1929)
[DOI: 10.1103/PhysRev.33.932] [PDF]
- Diatomic molecules according to the wave mechanics. II. Vibrational levels
Philip M. Morse
Phys. Rev. 34, 57 (1929)
[DOI: 10.1103/PhysRev.34.57] [PDF]
- The Energy Levels of a Rotating Vibrator
J. L. Dunham
Phys. Rev. 41, 721 (1932)
[DOI: 10.1103/PhysRev.41.721] [PDF]
- High-resolution Fourier transform infrared emission spectra of barium monofluoride
B. Guo, K. Q. Zhang, P. F. Bernath
J. Molec. Spectrosc. 170, 59 (1995)
[DOI: 10.1006/jmsp.1995.1056] [PDF]
- Microwave Spectrum, Geometry, and Hyperfine Constants of PdCO
Nicholas R. Walker, Joseph K-H. Hui, and Michael C. L. Gerry
J. Phys. Chem. A 106, 5803 (2002)
[DOI: 10.1021/jp0200831] [PDF]
- Spectroscopic study on deuterated benzenes. I. Microwave spectra and molecular structure in the ground state
Sachi Kunishige; Toshiharu Katori, Masaaki Baba, Masakazu Nakajima, Yasuki Endo
J. Chem. Phys. 143, 244302 (2015)
[DOI: 10.1063/1.4937949] [PDF]
- Survey of Hyperfine Structure Measurements in Alkali Atoms
Maria Allegrini, Ennio Arimondo, Luis A. Orozco
J. Phys. Chem. Ref. Data 51, 043102 (2022)
[DOI: 10.1063/5.0098061] [PDF]
- Quadrupolar transitions evidenced by resonant Auger spectroscopy
J. Danger, P. Le Fevre, H. Magnan, D. Chandesris, S. Bourgeois, J. Jupille, T. Eickhoff, W. Drube
Phys. Rev. Lett. 88, 243001 (2002)
[DOI: 10.1103/PhysRevLett.88.243001] [PDF]
- Coincident fragment detection in strong field photoionization and dissociation of H2
H. Rottke, C. Trump, M. Wittmann, G. Korn, W. Sandner, R. Moshammer, A. Dorn, C. D. Schroeter, D. Fischer, J. R. Crespo Lopez-Urritia, P. Neumayer, J. Deipenwisch, C. Hoer, B. Feuerstein, J. Ullrich
Phys. Rev. Lett. 89, 013001 (2002)
[DOI: 10.1103/PhysRevLett.89.013001] [PDF]
- Measurement of the electron electric dipole moment using UbF molecules
J. J. Hudson, B. E. Sauer, M. R. Tarbutt, E. A. Hinds
Phys. Rev. Lett. 89, 023003 (2002)
[DOI: 10.1103/PhysRevLett.89.023003] [PDF]
- White-light nanosource with directional emission
Catherine Favre, Veronique Boutou, Steven C. Hill, Wiebke Zimmer, Marcel Krenz, Hendrik Lambrecht, Jin Yu, Richard K. Chang, Ludger Woeste, Jean-Pierre Wolf
Phys. Rev. Lett. 89, 035002 (2002)
[DOI: 10.1103/PhysRevLett.89.035002] [PDF]
- Isomer- resolved ion spectroscopy
Roland Fromherz, Gerd Gantefoer, Alexandre A. Shvartsburg
Phys. Rev. Lett. 89, 083001 (2002)
[DOI: 10.1103/PhysRevLett.89.083001] [PDF]
- Lifetime measurement of 3P2 metastable state of strontium atoms
Masami Yasuda, Hidetoshi Katori
Phys. Rev. Lett. 92, 153004 (2004)
[DOI: 10.1103/PhysRevLett.92.153004] [PDF]
- Theoretical study of the accuracy limits of optical resonance frequency measurements
L. Labzowsky, G. Schedrin, D. Solovyev, G. Plunien
Phys. Rev. Lett. 98, 203003 (2007)
[DOI: 10.1103/PhysRevLett.98.203003] [PDF]
- Precision measurement of the fundamental vibrational frequencies of tritium-bearing hydrogen molecules: T2, DT, HT
K.-F. Lai, V. Hermann, T. M. Trivikram, M. Diouf, M. Schlösser, W. Ubachs, E. J. Salumbides
Phys. Chem. Chem. Phys. 22, 8973-8987 (2020)
[DOI: 10.1039/D0CP00596G] [PDF]
- Precision spectroscopy of molecular hydrogen
Qian-Hao Liu, Yan Tan, Cun-Feng Cheng, Shui-Ming Hu
Phys. Chem. Chem. Phys. 25, 27914-27925 (2023)
[DOI: 10.1039/D3CP03042C] [PDF]
- Accurate absolute frequency measurement of the S(2) transition in the fundamental band of H2 near 2.03 µm
D. Mondelain, L. Boux de Casson, H. Fleurbaey, S. Kassi, A. Campargue
Phys. Chem. Chem. Phys. 25, 22662-22668 (2023)
[DOI: 10.1039/D3CP03187J] [PDF]
- Room temperature detection of the (H2)2 dimer
H. Fleurbaey, S. Kassi, A. Campargue
Phys. Chem. Chem. Phys. 26, 21974-21981 (2024)
[DOI: 10.1039/D4CP02605E] [PDF]
- Dissociation Energies of Molecular Hydrogen and the Hydrogen Molecular Ion
Y. P. Zhang, C. H. Cheng, J.T. Kim, J. Stanojevic, and E. E. Eyler
Phys. Rev. Lett. 92, 203003 (2004)
[DOI: 10.1103/PhysRevLett.92.203003] [PDF]
- Observation of a Line in the Galactic Radio Spectrum: Radiation from Galactic Hydrogen at 1,420 Mc./sec
H. I. Ewen & E. M. Purcell
Nature 168, 356 (1951)
[DOI: 10.1038/168356a0] [PDF]
- Atomic Hydrogen Maser
H. M. Goldenberg, D. Kleppner, and N. F. Ramsey
Phys. Rev. Lett. 5, 361-362 (1960)
[DOI: 10.1103/PhysRevLett.5.361] [PDF]
- Observation of the 1S-2S transition in trapped antihydrogen
M. Ahmadi, B. X. R. Alves, C. J. Baker, W. Bertsche, E. Butler, A. Capra, C. Carruth, C. L. Cesar, M. Charlton, S. Cohen, R. Collister, S. Eriksson, A. Evans, N. Evetts, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, A. Gutierrez, J. S. Hangst, W. N. Hardy, M. E. Hayden, C. A. Isaac, A. Ishida, M. A. Johnson, S. A. Jones, S. Jonsell, L. Kurchaninov, N. Madsen, M. Mathers, D. Maxwell, J. T. K. McKenna, S. Menary, J. M. Michan, T. Momose, J. J. Munich, P. Nolan, K. Olchanski, A. Olin, P. Pusa, C. O. Rasmussen, F. Robicheaux, R. L. Sacramento, M. Sameed, E. Sarid, D. M. Silveira, S. Stracka, G. Stutter, C. So, T. D. Tharp, J. E. Thompson, R. I. Thompson, D. P. van der Werf & J. S. Wurtele
Nature 541, 506-512 (2017)
[DOI: 10.1038/nature21040] [PDF]
- Observation of the hyperfine spectrum of antihydrogen
M. Ahmadi, B. X. R. Alves, C. J. Baker, W. Bertsche, E. Butler, A. Capra, C. Carruth, C. L. Cesar, M. Charlton, S. Cohen, R. Collister, S. Eriksson, A. Evans, N. Evetts, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, A. Gutierrez, J. S. Hangst, W. N. Hardy, M. E. Hayden, C. A. Isaac, A. Ishida, M. A. Johnson, S. A. Jones, S. Jonsell, L. Kurchaninov, N. Madsen, M. Mathers, D. Maxwell, J. T. K. McKenna, S. Menary, J. M. Michan, T. Momose, J. J. Munich, P. Nolan, K. Olchanski, A. Olin, P. Pusa, C. O. Rasmussen, F. Robicheaux, R. L. Sacramento, M. Sameed, E. Sarid, D. M. Silveira, S. Stracka, G. Stutter, C. So, T. D. Tharp, J. E. Thompson, R. I. Thompson, D. P. van der Werf, J. S. Wurtele
Nature 548, 66-70 (2017)
[DOI: 10.1038/nature23446] [PDF]
- Characterization of the 1S-2S transition in antihydrogen
M. Ahmadi, B. X. R. Alves, C. J. Baker, W. Bertsche, A. Capra, C. Carruth, C. L. Cesar, M. Charlton, S. Cohen, R. Collister, S. Eriksson, A. Evans, N. Evetts, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, J. S. Hangst, W. N. Hardy, M. E. Hayden, C. A. Isaac, M. A. Johnson,, J. M. Jones, S. A. Jones,, S. Jonsell, A. Khramov, P. Knapp, L. Kurchaninov, N. Madsen, D. Maxwell, J. T. K. McKenna, S. Menary, T. Momose, J. J. Munich, K. Olchanski, A. Olin,, P. Pusa, C. O. Rasmussen, F. Robicheaux, R. L. Sacramento, M. Sameed,, E. Sarid, D. M. Silveira, G. Stutter, C. So, T. D. Tharp, R. I. Thompson, D. P. van der Werf & J. S. Wurtele
Nature 557, 71-75 (2018)
[DOI: 10.1038/s41586-018-0017-2] [PDF]
- Observation of the 1S-2P Lyman-α transition in antihydrogen
M. Ahmadi; B. X. R. Alves; C. J. Baker; W. Bertsche; A. Capra; C. Carruth; C. L. Cesar; M. Charlton; S. Cohen; R. Collister; S. Eriksson; A. Evans; N. Evetts; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; J. S. Hangst; W. N. Hardy; M. E. Hayden; E. D. Hunter; C. A. Isaac; M. A. Johnson; J. M. Jones; S. A. Jones; S. Jonsell; A. Khramov; P. Knapp; L. Kurchaninov; N. Madsen; D. Maxwell; J. T. K. McKenna; S. Menary; J. M. Michan; T. Momose; J. J. Munich; K. Olchanski; A. Olin; P. Pusa; C. O. Rasmussen; F. Robicheaux; R. L. Sacramento; M. Sameed; E. Sarid; D. M. Silveira; D. M. Starko; G. Stutter; C. So; T. D. Tharp; R. I. Thompson; D. P. Werf; J. S. Wurtele
Nature 561, 211-215 (2018)
[DOI: 10.1038/s41586-018-0435-1] [PDF]
- Improved Measurement of the Hydrogen 1S-2S Transition Frequency
Christian G. Parthey, Arthur Matveev, Janis Alnis, Birgitta Bernhardt, Axel Beyer, Ronald Holzwarth, Aliaksei Maistrou, Randolf Pohl, Katharina Predehl, Thomas Udem, Tobias Wilken, Nikolai Kolachevsky, Michel Abgrall, Daniele Rovera, Christophe Salomon, Philippe Laurent, and Theodor W. Hänsch
Phys. Rev. Lett. 107, 203001 (2011)
[DOI: 10.1103/PhysRevLett.107.203001] [PDF]
- Improved measurement of the shape of the electron
J. J. Hudson, D. M. Kara, I. J. Smallman, B. E. Sauer, M. R. Tarbutt & E. A. Hinds
Nature 473, 493-496 (2011)
[DOI: 10.1038/nature10104] [PDF]
- Measuring the α-particle charge radius with muonic helium-4 ions
Julian J. Krauth, Karsten Schuhmann, Marwan Abdou Ahmed, Fernando D. Amaro, Pedro Amaro, Francois Biraben, Tzu-Ling Chen, Daniel S. Covita, Andreas J. Dax, Marc Diepold, Luis M. P. Fernandes, Beatrice Franke, Sandrine Galtier, Andrea L. Gouvea, Johannes Gotzfried, Thomas Graf, Theodor W. Hansch, Jens Hartmann, Malte Hildebrandt, Paul Indelicato, Lucile Julien, Klaus Kirch, Andreas Knecht, Yi-Wei Liu, Jorge Machado, Cristina M. B. Monteiro, Francoise Mulhauser, Boris Naar, Tobias Nebel, Francois Nez, Joaquim M. F. dos Santos, Jose Paulo Santos, Csilla I. Szabo, David Taqqu, Joao F. C. A. Veloso, Jan Vogelsang, Andreas Voss, Birgit Weichelt, Randolf Pohl, Aldo Antognini & Franz Kottmann
Nature 589, 527-531 (2021)
[DOI: 10.1038/s41586-021-03183-1] [PDF]
- Atom-at-a-time laser resonance ionization spectroscopy of nobelium
Mustapha Laatiaoui, Werner Lauth, Hartmut Backe, Michael Block, Dieter Ackermann, Bradley Cheal, Premaditya Chhetri, Christoph Emanuel Düllmann, Piet van Duppen, Julia Even, Rafael Ferrer, Francesca Giacoppo, Stefan Götz, Fritz Peter Hessberger, Mark Huyse, Oliver Kaleja, Jadambaa Khuyagbaatar, Peter Kunz, Felix Lautenschläger, Andrew Kishor Mistry, Sebastian Raeder, Enrique Minaya Ramirez, Thomas Walther, Calvin Wraith & Alexander Yakushev
Nature 538, 495 (2016)
[DOI: 10.1038/nature19345] [PDF]
- Observation of coherent optical information storage in an atomic medium using halted light pulses
Chien Liu, Zachary Dutton, Cyrus H. Behroozi & Lene Vestergaard Hau
Nature 409, 490 (2001)
[DOI: 10.1038/35054017] [PDF]
- Optical Isotope Shifts and Hyperfine Structure in λ = 553.5 nm of Barium
P. E. G. Baird, R. J. Brambley, K. Burnett, D. N. Stacey, D. M. Warrington, G. K. Woodgate
Proc. R. Soc. Lond. A 365, 567-582 (1979)
[DOI: 10.1098/rspa.1979.0035] [PDF]
- Transition probabilities for infrared and visible lines in neutral barium
S. Niggli and M. C. E. Huber
Phys. Rev. A 39, 3294 (1989)
[DOI: 10.1103/PhysRevA.39.3924] [PDF]
- Realization of a continuous-wave, two-photon optical laser
Daniel J. Gauthier, Qilin Wu, S. E. Morin, and T. W. Mossberg
Phys. Rev. Lett. 68, 464 (1992)
[DOI: 10.1103/PhysRevLett.68.464] [PDF]
- Doppler-free two-photon laser spectroscopy of barium I: Hyperfine splitting and isotope shift of high lying levels
W. Jitschin, G. Meisel
Z. Physik A 295, 374 (1980)
[DOI: 10.1007/BF01414296] [PDF]
- Ultraviolet Resonance Spectrum of the Iodine Molecule
R. D. Verma
J. Chem. Phys. 32, 738-749 (1960)
[DOI: 10.1063/1.1730793] [PDF]
- Spectroscopic Constants and Vibrational Assignment for the B 3Π0+u State of Iodine
J. I. Steinfeld, R. N. Zare, L. Jones, M. Lesk, and W. Klemperer
J. Chem. Phys. 42, 25-33 (1965)
[DOI: 10.1063/1.1695685] [PDF]
- Iodine Revisited
Robert S. Mulliken
J. Chem. Phys. 55, 288-309 (1971)
[DOI: 10.1063/1.1675521] [PDF]
- B3Π0+u - X2Σ+g system of 127I2: rotational analysis and long-range potential in the B3Π0+u state
Richard F. Barrow and Kim K. Yee
J. Chem. Soc., Faraday Trans. 2 69, 684-700 (1973)
[DOI: 10.1039/F29736900684] [PDF]
- Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy
S. Gerstenkorn et P. Luc
Rev. Phys. Appl. (Paris) 14, 791-794 (1979)
[DOI: 10.1051/rphysap:01979001408079100] [PDF]
- Atlas du spectre d'absorption de la molecule d'iode 14800 - 20000 cm-1
S. Gerstenkorn, P. Luc
[Source: www.lac.u-psud.fr] [PDF]
- Atlas du spectre d'absorption de la molecule d'iode 14800 - 20000 cm-1 - Complement
S. Gerstenkorn, P. Luc
[Source: www.lac.u-psud.fr] [PDF]
- Assignements of several groups of iodine (I2) lines in the B-X system
S. Gerstenkorn and P. Luc
J. Molec. Spectrosc. 77, 310-321 (1979)
[DOI: 10.1016/0022-2852(79)90111-5] [PDF]
- Resolution of an ancient spectroscopic puzzle: The D -> X spectrum of I2
Joel Tellinghuisen
Chem. Phys. Lett. 99, 373-376 (1983)
[DOI: 10.1016/0009-2614(83)80157-2] [PDF]
- Reexamination of the I2 spectrum near the B(3Π0+u) state dissociation limit
John W. Tromp, Robert J. Le Roy, Simon Gerstenkorn, Paul Luc
J. Molec. Spectrosc. 100, 82-94 (1983)
[DOI: 10.1016/0022-2852(83)90027-9] [PDF]
- Description of the absorption spectrum of iodine recorded by means of Fourier Transform Spectroscopy: the (B-X) system
S. Gerstenkom, P. Luc
J. Phys. 46, 867-881 (1985)
[DOI: 10.1051/jphys:01985004606086700] [PDF]
- The three-photon absorption spectrum of the iodine molecule
G. W. King, T. D. McLean
Chem. Phys. Lett. 121, 57-60 (1985)
[DOI: 10.1016/0009-2614(85)87154-2] [PDF]
- Observation and analysis of the D' ← A' transition of I2 in a free-jet expansion
Joel Tellinghuisen, S. Fei, X. Zheng, Michael C. Heaven
Chem. Phys. Lett. 176, 373-378 (1991)
[DOI: 10.1016/0009-2614(91)90046-C] [PDF]
- Molecular constants describing the B(3Π0+u) - X(2Σ+g) transitions of 127,129I2 and 129,129I2
S. Gerstenkorn and P. Luc
Can. J. Phys. 69, 1299-1303 (1991)
[DOI: 10.1139/p91-194] [PDF]
- Comprehensive analysis of the A-X spectrum of I2: An application of near-dissociation theory
D. R. T. Appadoo, R. J. Le Roy, P. F. Bernath, S. Gerstenkorn, P. Luc, J. Verges, J. Sinzelle, J. Chevillard, and Y. D'Aignaux
J. Chem. Phys. 104, 903-913 (1995)
[DOI: 10.1063/1.470814] [PDF]
- Improved spectroscopic constants for I2 D Σu+
Melvin L. Nowlin, Michael C. Heaven
Chem. Phys. Lett. 231, 1-5 (1995)
[DOI: 10.1016/0009-2614(95)00448-D] [PDF]
- A Dense Grid of Reference Iodine Lines for Optical Frequency Calibration in the Range 595-655 nm
S. C. Xu, R. van Dierendonck, W. Hogervorst, W. Ubachs
J. Molec. Spectrosc. 201, 256-266 (2000)
[DOI: 10.1006/jmsp.2000.8085] [PDF]
- On the efficient representation of comprehensive, precise spectroscopic data sets: The A state of I2
Joel Tellinghuisen
J. Chem. Phys. 118, 3532-3537 (2003)
[DOI: 10.1063/1.1539849] [PDF]
- Observation of a new high-energy, shallow-bound Rydberg state in I2 by optical triple resonance
A. Marica Sjodin, Trevor Ridley, Kenneth P. Lawley, Robert J. Donovan
Chem. Phys. Lett. 314, 110-115 (2005)
[DOI: 10.1016/j.cplett.2005.06.095] [PDF]
- Observation of a substantially-bound excited-core Rydberg state in I2 by optical triple resonance
A. Marica Sjodin, Trevor Ridley, Kenneth P. Lawley, Robert J. Donovan
Chem. Phys. Lett. 416, 64-69 (2005)
[DOI: 10.1016/j.cplett.2005.09.029] [PDF]
- Characterization of a shallow-bound 0+g valence state of I2 using emission from the D 0u+ (3P2) and F' 0u+ (1D2) ion-pair states populated by amplified spontaneous emission
Trevor Ridley, Kenneth P. Lawley, Robert J. Donovan, Vadim A. Alekseev
Phys. Chem. Chem. Phys. 9, 5885-5890 (2007)
[DOI: 10.1039/b710924e] [PDF]
- Ultrafast vibrational dynamics observed in higher electronic excited states of iodine using pump-UV DFWM spectroscopy
A. Scaria, V. Namboodiri, J. Konradi and A. Materny
Phys. Chem. Chem. Phys. 10, 983-989 (2008)
[DOI: 10.1039/B715814A] [PDF]
- Ultrafast Vibrational Spectroscopy of Cyanophenols
Kyung-Koo Lee, Kwang-Hee Park, Jun-Ho Choi, Jeong-Hyon Ha, Seung-Joon Jeon, and Minhaeng Cho
J. Phys. Chem. A 114, 2757-2767 (2010)
[DOI: 10.1021/jp908696k] [PDF]
- UV emission of I2 from the ion-pair state following amplified spontaneous emission
Yukio Nakano, Hisashi Fujiwara, Masaru Fukushima, and Takashi Ishiwata
J. Chem. Phys. 128, 164320 (2008)
[DOI: 10.1063/1.2898881] [PDF]
- Least-squares analysis of overlapped boundfree absorption spectra and predissociation data in diatomics: The C(1Πu) state of I2
Joel Tellinghuisen
J. Chem. Phys. 135, 054301 (2011)
[DOI: 10.1063/1.3616039] [PDF]
- Efficient long-range collisional energy transfer between the E0g+(3P2) and D0u+ (3P2) ion-pair states of I2, induced by H2O, observed using high-resolution Fourier transform emission spectroscopy
Trevor Ridley, Kenneth P. Lawley, Robert J. Donovan, and Amanda J. Ross
J. Chem. Phys. 135, 114302 (2011)
[DOI: 10.1063/1.3638267] [PDF]
- Mid-Infrared Amplified Spontaneous Emission from the f' 0g+ (1D2) Ion-Pair State and Spectroscopic Characterization of the Shallow 0g+ (ab) Valence State of I2
Shoma Hoshino, Takashi Ishiwata, Yukio Nakano, Masaru Fukushima, Hisashi Fujiwara, Mitsunori Araki, and Koichi Tsukiyama
J. Phys. Chem. A 123, 7590-7596 (2019)
[DOI: 10.1021/acs.jpca.9b06451] [PDF]
- Real-time dynamics of vibronic wavepackets within Rydberg and ion-pair states of molecular iodine
Jean-Michel Mestdagh, Lou Barreau, Lionel Poisson
Phys. Chem. Chem. Phys. 26, 11516=11530 (2024)
[DOI: 10.1039/D4CP00118D] [PDF]
- The Helium-Neon Laser-Induced Fluorescence Spectrum of Molecular Iodine: An Undergraduate Laboratory Experiment
John S. Muenter
J. Chem. Educ. 73, 576-580 (1996)
[DOI: 10.1021/ed073p576] [PDF]
- The Nitrogen-Laser Excited Luminescence of Pyrene: A Student Laboratory Study of Excimer Dynamics
John S. Muenter and John L. Deutsch
J. Chem. Educ. 73, 580-585 (1996)
[DOI: 10.1021/ed073p580] [PDF]
- Resonance Raman spectroscopic study on iodine in various organic solvents: Spectroscopic constants and halfband widths of the I2 vibration
W. Kiefer, H. J. Bernstein
J. Raman Spectrosc. 1, 417-431 (1973)
[DOI: 10.1002/jrs.1250010502] [PDF]
- Band Spectra and Hyperfine Structure of HgH, HgD, and HgT
David M. Eakin and Sumner P. Davis
J. Molec. Spectrosc. 35, 27-42 (1970)
[DOI: 10.1016/0022-2852(70)90161-X] [PDF]
- Band-Spectrum Analysis of Mercury Hydride
Terence L. Porter
J. Opt. Soc. Am. 52, 1201-1205 (1962)
[DOI: 10.1364/JOSA.52.001201] [PDF]
- Inverse Perturbation Analysis: Improving the Accuracy of Potential Energy Curves
Warren M. Kosman and Juergen Hinze
J. Molec. Spectrosc. 56, 93-103 (1975)
[DOI: 10.1016/0022-2852(75)90206-4] [PDF]
- The Mechanism of Formation of Mercury Hydride and Mercury Deuteride. Optical Excitation of Cadmium Deuteride
Leonard O. Olsen
J. Chem. Phys. 6, 307-310 (1938)
[DOI: 10.1063/1.1750256] [PDF]
- Laser-based spectroscopy of FeD: Excitations to the g 6Φ electronic state
R. A. R. Harvey, D. W. Tokaryk, and A. G. Adam
J. Chem. Phys. 158, 024305 (2023)
[DOI: 10.1063/5.0129919] [PDF]
- Rovibrational Characterization of High-Lying Electronic States of Cu2 by Double-Resonant Nonlinear Spectroscopy
M. Beck, B. Visser, P. Bornhauser, G. Knopp, J. A. van Bokhoven, and P. P. Radi
J. Phys. Chem. A 110, 8448-8452 (2017)
[DOI: 10.1021/acs.jpca.7b09838] [PDF]
- High-Resolution Laser Spectroscopic Survey of the H3Σ-u - X3Σ-g Electronic Transition of Si2
Boxing Zhu, Jingwang Gu, Chunting Yu, Zengjun Xiao, Yang Chen, and Dong-Feng Zhao
J. Phys. Chem. A 124 (2020)
[DOI: 10.1021/acs.jpca.0c00370] [PDF]
- Water Dimer Rotationally Resolved Millimeter-Wave Spectrum Observation at Room Temperature
M.Yu. Tretyakov, E. A. Serov, M. A. Koshelev, V.V. Parshin, and A. F. Krupnov
Phys. Rev. Lett. 110, 093001 (2013)
[DOI: 10.1103/PhysRevLett.110.093001] [PDF]
- IUPAC critical evaluation of the rotational-vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H216O
Jonathan Tennyson, Peter F. Bernath, Linda R. Brown, Alain Campargue, Attila G. Csaszar, Ludovic Daumont, Robert R. Gamache, Joseph T. Hodges, Olga V. Naumenko, Oleg L. Polyansky, Laurence S. Rothman, Ann Carine Vandaele, Nikolai F. Zobov, Afaf R. Al Derzi, Csaba Fabri, Alexander Z. Fazliev, Tibor Furtenbacher, Iouli E. Gordon, Lorenzo Lodi, Irina I. Mizus
J. Quantit. Spectrosc. Radiat. Transf. 117, 29-58 (2013)
[DOI: 10.1016/j.jqsrt.2012.10.002] [PDF]
- W2020: A Database of Validated Rovibrational Experimental Transitions and Empirical Energy Levels of H216O
Tibor Furtenbacher, Roland Tobias, Jonathan Tennyson, Oleg L. Polyansky, Attila G. Csaszar
J. Phys. Chem. Ref. Data 49, 033101 (2020)
[DOI: 10.1063/5.0008253] [PDF]
- The spectroscopy of water vapour: Experiment, theory and applications
Peter F. Bernath
Phys. Chem. Chem. Phys. 4, 1501-1509 (2002)
[DOI: 10.1039/b200372d] [PDF]
- Nuclear Spin Symmetry Conservation in 1H216O Investigated by Direct Absorption FTIR Spectroscopy of Water Vapor Cooled Down in Supersonic Expansion
Robert Georges, Xavier Michaut, Audrey Moudens, Manuel Goubet, Olivier Pirali, Pascale Soulard, Pierre Asselin, Thérèse Huet, Pascale Roy, Martin Fournier, and Andrey Vigasin
J. Phys. Chem. A 112 (2017)
[DOI: 10.1021/acs.jpca.7b06858] [PDF]
- Magnetic dipole transitions in the OH A2Σ+ ← X2Π system
Moritz Kirste, Xingan Wang, Gerard Meijer, Koos B. Gubbels, Ad van der Avoird, Gerrit C. Groenenboom, and Sebastiaan Y. T. van de Meerakker
J. Chem. Phys. 137, 101102 (2012)
[DOI: 10.1063/1.4751475] [PDF]
- The experimental equilibrium structure of acetylene
Filippo Tamassia, Elisabetta Cané, Luciano Fusina and Gianfranco Di Lonardo
Phys. Chem. Chem. Phys. 18, 1937-1944 (2016)
[DOI: 10.1039/c5cp05997f] [PDF]
- Impact of Sub-Doppler Measurements on Centrifugal-Distortion Terms: Rotational Spectrum of Methyl Fluoride Revisited
Gabriele Cazzoli and Cristina Puzzarini
J. Phys. Chem. A 119, 1765-1773 (2015)
[DOI: 10.1021/jp508459q] [PDF]
- Ultrafast vibrational spectroscopy in condensed phases
Minhaeng Cho
Phys. Chem. Comm. 5, 40-58 (2002)
[DOI: 10.1039/b110898k] [PDF]
- Probing matter with nonlinear spectroscopy. Ultrafast nonlinear spectroscopy can unravel the dynamics of highly excited electronic states
Stephen R. Leone and Daniel M. Neumark
Science 379, 536-7=537 (2023)
[DOI: 10.1126/science.add4509] [PDF]
- Spectroscopy of reactive potential energy surfaces
Daniel M. Neumark
Phys. Chem. Comm. 5, 76-81 (2002)
[DOI: 10.1039/b202218d] [PDF]
- Odyssey and oddity: Photo- and collision processes you would not expect
R. Stephen Berry
Phys. Chem. Chem. Phys. 5, 286-290 (2005)
[DOI: 10.1039/b413092h] [PDF]
- Reaction dynamics of CN radicals with tetrahydrofuran in liquid solutions
R. A. Rose, S. J. Greaves, F. Abou-Chahine, D. R. Glowacki, T. A. A. Oliver, M. N. R. Ashfold, I. P. Clark, G. M. Greetham, M. Towrie and A. J. Orr-Ewing
Phys. Chem. Chem. Phys. 14, 10424-10437 (2012)
[DOI: 10.1039/c2cp40158d] [PDF]
- Product State Resolved Dynamics of Elementary Reactions
Mark Brouard, Patrick O'Keeffe, and Claire Vallance
J. Phys. Chem. A 106, 3629-3641 (2002)
[DOI: 10.1021/jp015530b] [PDF]
- Laser Control of Chemical Reactions
Richard N. Zare
Science 279, 1875-1879 (1998)
[DOI: 10.1126/science.279.5358.1875] [PDF]
- A Brief Discussion of Chemical Kinetics versus Chemical Dynamics
Patanjali Kambhampati
J. Phys. Chem. Lett. 14, 2996-2999 (2023)
[DOI: 10.1021/acs.jpclett.3c00369] [PDF]
- The role of precursor states in the stereo-dynamics of elementary processes
Stefano Falcinelli, David Cappelletti, Franco Vecchiocattivi, Fernando Pirani
Phys. Chem. Chem. Phys. 25, 16176-16200 (2023)
[DOI: 10.1039/D3CP00239J] [PDF]
- Ab initio calculations of low-lying electronic states of vinyl chloride
Jia-Lin Chang and Yit-Tsong Chen
J. Chem. Phys. 116, 7518-7525 (2002)
[DOI: 10.1063/1.1466828] [PDF]
- On the fate of high-resolution electron energy loss spectroscopy (HREELS), a versatile probe to detect surface excitations: will the Phoenix rise again?
Antonio Politano
Phys. Chem. Chem. Phys. 23, 26061-26069 (2021)
[DOI: 10.1039/d1cp03804d] [PDF]
- Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy
Nirit Dudovich, Dan Oron & Yaron Silberberg
Nature 418, 512-514 (2002)
[DOI: 10.1038/nature00933] [PDF]
- Pure-rotational H2 thermometry by ultrabroadband coherent anti-stokes Raman spectroscopy
Trevor L. Courtney, Alexis Bohlin, Brian D. Patterson, and Christopher J. Kliewer
J. Chem. Phys. 146, 224202 (2017)
[DOI: 10.1063/1.4984083] [PDF]
- Coherent emission of light by thermal sources
Jean-Jacques Greffet, ReAmi Carminati, Karl Joulain, Jean-Philippe Mulet, Stéphane Mainguy & Yong Chen
Nature 416, 61-64 (2002)
[DOI: 10.1038/416061a] [PDF]
- Lasing on a cloudy afternoon
Stephan Borrmann and Joachim Curtius
Nature 418, 826-827 (2002)
[DOI: 10.1038/418826a] [PDF]
- Negative refraction: A lens less ordinary
Liesbeth Venema
Nature 420, 119-120 (2002)
[DOI: 10.1038/420119a] [PDF]
- Optics: Positively negative
John Pendry
Nature 423, 22-23 (2003)
[DOI: 10.1038/423022a] [PDF]
- Review: Metamaterials and Negative Refractive Index
D. R. Smith, J. B. Pendry, M. C. K. Wiltshire
Science 305, 788-789 (2004)
[DOI: 10.1126/science.1096796] [PDF]
- Applied Physics: The Maser at 50
Ronald L.Walsworth
Science 306, 236-237 (2004)
[DOI: 10.1126/science.1101354] [PDF]
- Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra
Jonathan Mooney Patanjali Kambhampati
J. Phys. Chem. Lett. 4, 3316-3318 (2014)
[DOI: 10.1021/jz401508t] [PDF]
- Microwave Spectral Tables. I. Diatomic Molecules
Frank J. Lovas and Eberhard Tiemann
J. Phys. Chem. Ref. Data 3, 609-769 (1974)
[DOI: 10.1063/1.3253146] [PDF]
- Absorption cross sections for some atmospherically important molecules at the H atom Lyman-α wavelength (121.567 nm)
R. K. Vatsa, H. R. Volpp
Chem. Phys. Lett. 340, 289-295 (2001)
[DOI: 10.1016/S0009-2614(01)00373-6] [PDF]
- Interstellar molecule reactions
William D. Watson
Rev. Modern Phys. 48, 513-552 (1976)
[DOI: 10.1103/RevModPhys.48.513] [PDF]
- The molecular universe
A. G. G. M. Tielens
Rev. Modern Phys. 85, 1021-1081 (2013)
[DOI: 10.1103/RevModPhys.85.1021] [PDF]
- Rotational spectrum simulations of asymmetric tops in an astrochemical context
Julia C. Santos, Alexandre B. Rocha & Ricardo R. Oliveira
J. Molec. Model. 254, 278 (2020)
[DOI: 10.1007/s00894-020-04523-0] [PDF]
- Rotation-vibration interactions in the spectra of polycyclic aromatic hydrocarbons: Quinoline as a test-case species
O. Pirali, Z. Kisiel, M. Goubet, S. Gruet, M. A. Martin-Drumel, A. Cuisset, F. Hindle, and G. Mouret
J. Chem. Phys. 142, 104310 (2015)
[DOI: 10.1063/1.4913750] [PDF]
- Astrochemistry: Detecting the building blocks of aromatics. Detection of benzonitrile in an interstellar cloud helps to constrain interstellar chemistry
Christine Joblin and Jose Cernicharo
Science 359, 156-157 (2018)
[DOI: 10.1126/science.aar4541] [PDF]
- Astrochemistry: Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium
Brett A. McGuire, Andrew M. Burkhardt, Sergei Kalenskii, Christopher N. Shingledecker, Anthony J. Remijan, Eric Herbst, Michael C. McCarthy
Science 359, 202-205 (2018)
[DOI: 10.1126/science.aao4890] [PDF]
- 2018 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules
Brett A. McGuire
Astrophys. J. Suppl. Ser. 239, 17 (2018)
[DOI: 10.3847/1538-4365/aae5d2] [PDF]
- Reactions of substituted benzene anions with N and O atoms: Chemistry in Titan's upper atmosphere and the interstellar medium
Zhe-Chen Wang and Veronica M. Bierbaum
J. Chem. Phys. 144, 214304 (2016)
[DOI: 10.1063/1.4952454] [PDF]
- The high resolution absorption spectrum of methane in the 10800-14000 cm-1 region: literature review, new results and perspectives
A. Campargue, E. V. Karlovets, S. S. Vasilchenko and M. Turbet, Phys. Chem. Chem. Phys. 25, 32778-32799 (2023)
[DOI: 10.1039/d3cp02385k] [PDF]
- Formation Mechanisms of Naphthalene and Indene: From the Interstellar Medium to Combustion Flames
Alexander M. Mebel, Alexander Landera, and Ralf I. Kaiser
J. Phys. Chem. A 121, 901-926 (2017)
[DOI: 10.1021/acs.jpca.6b09735] [PDF]
- Weakly Bound Clusters in Astrochemistry? Millimeter and Submillimeter Spectroscopy of trans-HO3 and Comparison to Astronomical Observations
Luyao Zou, Brian M. Hays, and Susanna L. Widicus Weaver
J. Phys. Chem. A 120, 657-667 (2016)
[DOI: 10.1021/acs.jpca.5b09624] [PDF]
- Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O)
Brett A. McGuire, P. Brandon Carroll, Ryan A. Loomis, Ian A. Finneran, Philip R. Jewell, Anthony J. Remijan, Geoffrey A. Blake
Science 352, 1449-1452 (2016)
[DOI: 10.1126/science.aae0328] [PDF]
- Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs
Cornelia Meinert, Iuliia Myrgorodska, Pierre de Marcellus, Thomas Buhse, Laurent Nahon, Soren V. Hoffmann, Louis Le Sergeant d'Hendecourt, Uwe J.Meierhenrich
Science 352, 208-212 (2016)
[DOI: 10.1126/science.aad8137] [PDF]
- Astrophysical detection of the helium hydride ion HeH+
Rolf Gusten, Helmut Wiesemeyer, David Neufeld, Karl M. Menten, Urs U. Graf, Karl Jacobs, Bernd Klein, Oliver Ricken, Christophe Risacher & Jurgen Stutzki
Nature 568, 357-359 (2019)
[DOI: 10.1038/s41586-019-1090-x] [PDF]
- A chemist's guide to the Solar System
Bruce C. Gibb
Nature Chem. 7, 91-92 (2015)
[DOI: 10.1038/nchem.2170] [PDF]
- The organic Solar System
Bruce C. Gibb
Nature Chem. 7, 364-365 (2015)
[DOI: 10.1038/nchem.2241] [PDF]
- The comet-like composition of a protoplanetary disk as revealed by complex cyanides
Karin I. Öberg, Viviana V. Guzman, Kenji Furuya, Chunhua Qi, Yuri Aikawa, Sean M. Andrews, Ryan Loomis, & David J. Wilner
Nature 520, 198-201 (2015)
[DOI: 10.1038/nature14276] [PDF]
- Planetary science: Prebiotic chemistry on the rocks
Geoffrey A. Blake, & Edwin A. Bergin
Nature 520, 161-162 (2015)
[DOI: 10.1038/520161a] [PDF]
- Electronic structure of solid C60: Experiment and theory
J. H. Weaver, Jose Luis Martins, T. Komeda, Y. Chen, T. R. Ohno, G. H. Kroll, N. Troullier, R. E. Haufler, and R. E. Smalley
Phys. Rev. Lett. 66, 1741-1744 (1991)
[DOI: 10.1103/PhysRevLett.66.1741] [PDF]
- Fullerene quantum gyroscope
M. Krause, M. Hulman, H. Kuzmany, O. Dubay, G. Kresse, K. Vietze, G. Seifert, C. Wang, H. Shinohara
Phys. Rev. Lett. 93, 137403 (2004)
[DOI: 10.1103/PhysRevLett.93.137403] [PDF]
- Rovibrational quantum state resolution of the C60 fullerene
P. Bryan Changala, Marissa L. Weichman, Kevin F. Lee, Martin E. Fermann, Jun Ye
Science 363, 49-54 (2019)
[DOI: 10.1126/science.aav2616] [PDF]
- Laboratory confirmation of C60+ as the carrier of two diffuse interstellar bands
E. K. Campbell, M.Holz, D. Gerlich & J. P. Maier
Nature 523, 322-323 (2015)
[DOI: 10.1038/nature14566] [PDF]
- Fullerene solves an interstellar puzzle
Pascale Ehrenfreund & Bernard Foing
Nature 523, 296-297 (2015)
[DOI: 10.1038/523296a] [PDF]
- The discovery of cosmic fullerenes
Paul Woods
Nat. Astron. 4, 299-305 (2020)
[DOI: 10.1038/s41550-020-1076-5] [PDF]
- Spectroscopic properties of interstellar molecules: Theory and experiment
Peter Botschwina
Phys. Chem. Chem. Phys. 5, 3337-3348 (2003)
[DOI: 10.1039/b303753n] [PDF]
- Astronomy: Telling the tale of the first stars
Timothy C. Beers
Nature 422, 825-826 (2003)
[DOI: 10.1038/422825a] [PDF]
- Probing the Universe with H3+
Janet Pelley
ACS Cent. Sci. 5, 741-744 (2019)
[DOI: 10.1021/acscentsci.9b00441] [PDF]
- The rotational and rotation-vibrational Raman spectra of 14N2, 14N15N and 15N2
Jorgen Bengtsen
J. Raman Spectrosc. 2, 133-145 (1974)
[DOI: 10.1002/jrs.1250020204] [PDF]
- Vibrational spectra of N2: An advanced undergraduate laboratory in atomic and molecular spectroscopy
S. B. Bayram and M. V. Freamat
Am. J. Phys. 80, 664-669 (2012)
[DOI: 10.1119/1.4722793] [PDF]
- The spectrum of molecular nitrogen
Alf Lofthus and Paul H. Krupenie
J. Phys. Chem. Ref. Data 6, 113-307 (1977)
[DOI: 10.1063/1.555546] [PDF]
- X2Σg+(v" = 0) → B2Σu(v' = 0) excitation cross-sections of N2+ molecular ion by electron impact and the vibrational energy levels of the three target states N2+ (X2Σg+, A2Πu and B2Σu)
O. Nagy
Chem. Phys. 286, 109-114 (2003)
[DOI: 10.1016/S0301-0104(02)00911-4] [PDF]
- Interstellar chemistry: Molecular nitrogen in space
Theodore P. Snow
Nature 429, 615-616 (2004)
[DOI: 10.1038/429615a] [PDF]
- The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations
David C. Knauth, B-G Andersson, Stephan R. McCandliss & H. Warren Moos
Nature 429, 636-638 (2004)
[DOI: 10.1038/nature02614] [PDF]
- Isotope Ratios of H, C, and O in CO2 and H2O of the Martian Atmosphere
Chris R. Webster, Paul R. Mahaffy, Gregory J. Flesch, Paul B. Niles, John H. Jones, Laurie A. Leshin, Sushil K. Atreya, Jennifer C. Stern, Lance E. Christensen, Tobias Owen, Heather Franz, Robert O. Pepin, Andrew Steele, the MSL Science Team
Science 341, 260 (2013)
[DOI: 10.1126/science.1237961] [PDF] [Supplementary material]
- Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover
Paul R. Mahaffy, Christopher R. Webster, Sushil K. Atreya, Heather Franz, Michael Wong, Pamela G. Conrad, Dan Harpold, John J. Jones, Laurie A. Leshin, Heidi Manning, Tobias Owen, Robert O. Pepin, Steven Squyres, Melissa Trainer, MSL Science Team
Science 341, 263 (2013)
[DOI: 10.1126/science.1237966] [PDF] [Supplementary material]
- Solar physics: Hidden magnetism
Jan Olof Stenflo
Nature 430, 304-305 (2004)
[DOI: 10.1038/430304a] [PDF]
- A substantial amount of hidden magnetic energy in the quiet Sun
J. Trujillo Bueno, N. Shchukina & A. Asensio Ramos
Nature 430, 326-329 (2004)
[DOI: 10.1038/nature02669] [PDF]
- Astronomy: Imaging the Sun's Eruptions in Three Dimensions
John C. Raymond
Science 305, 49-50 (2004)
[DOI: 10.1126/science.1100371] [PDF]
- Three-Dimensional Polarimetric Imaging of Coronal Mass Ejections
Thomas G. Moran and Joseph M. Davila
Science 305, 66-70 (2004)
[DOI: 10.1126/science.1098937] [PDF]
- Selective absorption processes as the origin of puzzling spectral line polarization from the Sun
J. Trujillo Bueno, E. Landi Degl'Innocenti, M. Collados, L. Merenda & R. Manso Sainz
Nature 415, 403 (2002)
[DOI: 10.1038/415403a] [PDF]
- Astronomy: Astronomical Masers
Mark Claussen
Science 306, 235-236 (2004)
[DOI: 10.1126/science.1101353] [PDF]
- Astrochemistry: From the Chemical Laboratory to the Stars
Susanna L. Widicus Weaver & Eric Herbst
J. Phys. Chem. A and ACS Earth and Space Chemistry (2020)
[ACS Virtual Issue]
- Open questions on carbon-based molecules in space
Christopher S. Hansen, Els Peeters, Jan Cami, Timothy W. Schmidt
Commun. Chem. 5, 94 (2022)
[DOI: 10.1038/s42004-022-00714-3] [PDF]
- The g Factor of the Electron
H. R. Crane
Sci. Am. 218 (1) 72-85 (1968)
[DOI: 10.1038/scientificamerican0168-72] [PDF]
- The proton radius revisited
Wim Vassen
Science 358 39-40 (2017)
[DOI: 10.1126/science.aao3969] [PDF]
- Measurement of the fine-structure constant as a test of the Standard Model
Richard H. Parker, Chenghui Yu, Weicheng Zhong, Brian Estey, Holger Müller
Science 360, 191-195 (2018)
[DOI: 10.1126/science.aap7706] [PDF]
- The Rydberg constant and proton size from atomic hydrogen
Axel Beyer, Lothar Maisenbacher, Arthur Matveev, Randolf Pohl, Ksenia Khabarova, Alexey Grinin, Tobias Lamour, Dylan C. Yost, Theodor W. Hansch, Nikolai Kolachevsky, Thomas Udem
Science 358 79-85 (2017)
[DOI: 10.1126/science.aah6677] [PDF]
- Precision-Spectroscopic Determination of the Binding Energy of a Two-Body Quantum System: The Hydrogen Atom and the Proton-Size Puzzle
Simon Scheidegger, Frederic Merkt
Phys. Rev. Lett. 132, 113001 (2024)
[DOI: 10.1103/PhysRevLett.132.113001] [PDF]
- Proton-electron mass ratio from laser spectroscopy of HD+ at the part-per-trillion level
Sayan Patra, M. Germann, J.-Ph. Karr, M. Haidar, L. Hilico, V. I. Korobov, F. M. J. Cozijn, K. S. E. Eikema, W. Ubachs, J. C. J. Koelemeij
Science 369, 1238-1241 (2020)
[DOI: 10.1126/science.aba0453] [PDF]
- In search of the nuclear clock
Marianna Safronova
Nature Phys. 14, 198 (2018)
[DOI: 10.1038/nphys4349] [PDF]
- Single-Ion Atomic Clock with 3 x 10-18 Systematic Uncertainty
N. Huntemann, C. Sanner, B. Lipphardt, Chr. Tamm, and E. Peik
Phys. Rev. Lett. 116, 063001 (2016)
[DOI: 10.1103/PhysRevLett.116.063001] [PDF]
- One tick closer to a nuclear clock
Jason T. Burke
Nature 573, 202-203 (2019)
[DOI: 10.1038/d41586-019-02664-8] [PDF]
- X-ray pumping of the 229Th nuclear clock isomer
Takahiko Masuda, Akihiro Yoshimi, Akira Fujieda, Hiroyuki Fujimoto, Hiromitsu Haba, Hideaki Hara, Takahiro Hiraki, Hiroyuki Kaino, Yoshitaka Kasamatsu, Shinji Kitao, Kenji Konashi, Yuki Miyamoto, Koichi Okai, Sho Okubo, Noboru Sasao, Makoto Seto, Thorsten Schumm, Yudai Shigekawa, Kenta Suzuki, Simon Stellmer, Kenji Tamasaku, Satoshi Uetake, Makoto Watanabe, Tsukasa Watanabe, Yuki Yasuda, Atsushi Yamaguchi, Yoshitaka Yoda, Takuya Yokokita, Motohiko Yoshimura & Koji Yoshimura
Nature 573, 238-243 (2019)
[DOI: 10.1038/s41586-019-1542-3] [PDF]
- Energy of the 229Th nuclear clock transition
Benedict Seiferle, Lars von der Wense, Pavlo V. Bilous, Ines Amersdorffer, Christoph Lemell, Florian Libisch, Simon Stellmer, Thorsten Schumm, Christoph E. Dόllmann, Adriana Pαlffy & Peter G. Thirolf
Nature 573, 243-246 (2019)
[DOI: 10.1038/s41586-019-1533-4] [PDF]
- Laser spectroscopy of triply charged 229Th isomer for a nuclear clock
Atsushi Yamaguchi, Yudai Shigekawa, Hiromitsu Haba, Hidetoshi Kikunaga, Kenji Shirasaki, Michiharu Wada, Hidetoshi Katori
Nature 628, 62-66 (2024)
[DOI: 10.1038/s41586-007296-1] [PDF]
- Frequency ratio of the 229mTh isomeric transition and the 87Sr atomic clock
Chuankun Zhang, Tian Ooi, Jacob S. Higgins, Jack F. Doyle, Lars Wense, Kjeld Beeks, Adrian Leitner, Georgy A. Kazakov, Peng Li, Peter G. Thirolf, Thorsten Schumm, Jun Ye
Nature 633, 63-70 (2024)
[DOI: 10.1038/s41586-024-07839-6] [PDF]
- 229ThF4 thin films for solid-state nuclear clocks
Chuankun Zhang, Lars Wense, Jack F. Doyle, Jacob S. Higgins, Tian Ooi, Hans U. Friebel, Jun Ye, R. Elwell, J. E. S. Terhune, H. W. T. Morgan, A. N. Alexandrova, H. B. Tran Tan, Andrei Derevianko, Eric R. Hudson
Nature 636, 603-608 (2024)
[DOI: 10.1038/s41586-024-08256-5] [PDF]
- Wavenumber Calibration Tables From Heterodyne Frequency Measurements
Arthur G. Maki and Joseph S. Wells
NIST Special Publication 821 (1991)
[PDF]
- The NaLi electronic ground state studied by laser induced fluorescence and Fourier transform spectroscopy
C. E. Fellows, J. Verges and C. Amiot
Molec. Phys. 63, 1115-1122 (1988)
[DOI: 10.1080/00268978800100811] [PDF]
- The NaLi 1 1Σ+(X) electronic ground-state dissociation limit
C. E. Fellows
J. Chem. Phys. 94, 5855-5864 (1991)
[DOI: 10.1063/1.460469] [PDF]
- Periodicity and Peculiarity in 120 First- and Second-Row Diatomic Molecules
Alexander I. Boldyrev, Nick Gonzales, Jack SimonsJ. Phys. Chem. 98, 9931-9944 (1994)
[DOI: http://doi.org//10.1021/j100091a001_9931_9944] [PDF]
- Dissociation Energies of Diatomic Molecules
Fan Qun-Chao and Sun Wei-GuoChin. Phys. Lett. 25, 2012-2015 (2008)
[DOI: http://iopscience.iop.org/article/10.1088/0256-307X/25/6/024/meta] [PDF]
- Dissociation energies and potential energy functions for the ground X 1Σ+ and "avoided-crossing" A 1Σ+ states of NaH
Sadru-Dean Walji, Katherine M. Sentjens, and Robert J. Le Roy
J. Chem. Phys. 142, 044305 (2015)
[DOI: 10.1063/1.4906086][PDF]
- Observation of double-well potential of NaH C 1Σ+ state: Deriving the dissociation energy of its ground state
Chia-Ching Chu, Hsien-Yu Huang, Thou-Jen Whang, and Chin-Chun Tsai
J. Chem. Phys. 148, 114301 (2018)
[DOI: 10.1063/1.5020827][PDF]
- Erich Hückel's theory, his thesis in 3 papers
BaI
- All Electron First Principles Calculations of the Ground and Some Low-Lying Excited States of BaI
E. Miliordos, A. Papakondylis, A. A. Tsekouras, and A. Mavridis
J. Phys. Chem. A 111, 10002-10009 (2007)
[DOI: 10.1021/jp0745788] [PDF]
- Sur le constitution des spectres lumineux
L. De Boisbaudran.
Compt. Rend. 70, 974-977 (1870)
[Πηγή: Gallica.BNF.fr] [PDF]
- Die Bandenspektra nahe verwandter Verbindungen
Charles Morgan Olmsted
Z. Wiss. Photographie 4, 255-333 (1906)
[Πηγή: archive.org] [PDF]
- The Alkaline Earth Halide Spectra and their Origin
O. H. Walters, S. Barratt
Proc. R. Soc. London A 118, 120-137 (1928)
[DOI: 10.1098/rspa.1928.0040 ] [PDF]
- Recherches sur les décharges de haute fréquence et leur application a la spectroscopie moléculaire
Pierre Mesnage
Ann. Phys. 12, 5-87 (1939)
[DOI: 10.1051/anphys/193911120005]
- Emission spectrum of BaI
M. M. Patel & N. R. Shah
Ind. J. Pure Appl. Phys. 8, 681-682 (1970)
- Radiative lifetimes of the alkaline earth monohalides
Paul J. Dagdigian, Howard W. Cruse, and Richard N. Zare
J. Chem. Phys. 60, 2330 (1974)
[DOI: 10.1063/1.1681366] [PDF]
- Production efficiencies of electronically excited states of barium monohalides
R. S. Bradford Jr., C. R. Jones, L. A. Southall, and H. P. Broida
J. Chem. Phys. 62, 2060 (1975)
[DOI: 10.1063/1.430795] [PDF]
- Determination of D0o(BaI) from the chemiluminescent reaction Ba + I2
C. R. Dickson, J. B. Kinney, R. N. Zare
Chem. Phys. 15, 243-248 (1976)
[DOI: 10.1016/0301-0104(76)80157-7] [PDF]
- C2Π - X2Σ System of BaI Molecule
S. G. Shah & M. M. Patel
Indian J. Pure Appl. Phys. 15, 728-729 (1977)
- The visible emission spectrum of diatomic barium iodide
M. L. P. Rao, D. V. K. Rao, P. T. Rao, P. S. Murty
Fizika 9, 25-29 (1977)
- Determinations of bond energies by time-of-flight single-collision chemiluminescence
Ron C. Estler, Richard N. Zare
Chem. Phys. 28, 253-263 (1978)
[DOI: 0301-0104(78)80001-9] [PDF]
- Dissociation energies of CaI, SrI, and BaI from high temperature mass spectrometry
P. D. Kleinschmidt, and D. L. Hildenbrand
J. Chem. Phys. 68, 2819 (1978)
[DOI: 10.1063/1.436076] [PDF]
Rotational and vibrational analysis of the CaF B2Σ+- X2Σ+ system
Michael Dulick, Peter F. Bernath, and Robert W. Field
Can. J. Phys. 58, 703-712 (1980)
[DOI: 10.1139/p80-096] [PDF]
- Rotational analysis of congested spectra: Application of population labeling to the BaI C-X system
Mark A. Johnson, Christopher R. Webster, and Richard N. Zare
J. Chem. Phys. 75, 5575 (1981)
[DOI: 10.1063/1.441962] [PDF]
- Rotational analysis of the BaI C2Π - X2Σ+ (0,0) band
Mark A. Johnson, Chifuru Noda, John S. McKillop, Richard N. Zare
Can. J. Phys. 62, 1467-1477 (1984)
[DOI: 10.1139/p84-193] [PDF]
- Microwave rotational spectra of alkaline earth monohalides: CaI and BaI
T. Törring, K. Döbl
Chem. Phys. Lett. 115, 328-332 (1985)
[DOI: 10.1016/0009-2614(85)80037-3] [PDF]
- Rotational assignment using phase relationships in optical-optical double resonance: The BaI C2Π-X2Σ+ system
M. A. Johnson, and Richard N. Zare
J. Chem. Phys. 82, 4449 (1985)
[DOI: 10.1063/1.448748] [PDF]
- Information on the impact parameter dependence of the Ba+HI→BaI(v=8)+H reaction
Chifuru Noda, John S. McKillop, Mark A. Johnson, Janet R. Waldeck and Richard N. Zare
J. Chem. Phys. 85, 856-864 (1986)
[DOI: 10.1063/1.451293] [PDF]
- Hyperfine structure of the BaI X2Σ+ and C2Π states
W. E. Ernst, J. Kandler, C. Noda, J. S. McKillop, and R. N. Zare
J. Chem. Phys. 85, 3735 (1986)
[DOI: 10.1063/1.450946] [PDF]
- Analysis of BaI C2Π-X2Σ+(0,0) Band for High Rotational Levels
D. Zhao, P. H. Vaccaro, A. A. Tsekouras, C. A. Leach, and R. N. Zare
J. Mol. Spectrosc. 148, 226-242 (1991)
[DOI: 10.1016/0022-2852(91)90049-G] [PDF]
- Rotational analysis of the BaI C2Π-X2Σ+ (8,8) band
Christine A. Leach, Janet R. Waldeck, Chifuru Noda, John S. McKillop, Richard N. Zare
J. Mol. Spectrosc. 146, 465-492 (1991)
[DOI: 10.1016/0022-2852(91)90019-7] [PDF]
- Rotational analysis of the BaI C2Π-X2Σ+ band system for the Δv=0 progression (v=0-12)
C. A. Leach, A. A. Tsekouras, and R. N. Zare
J. Mol. Spectrosc. 153, 59-72 (1992)
[DOI: 10.1016/0022-2852(92)90457-Y] [PDF]
- The ground-state dipole moment of Bal from high-precision stark spectroscopy
W. E. Ernst, J. Kändler, T. Törring
Chem. Phys. Lett. 123, 243-245 (1986)
[DOI: 10.1016/0009-2614(86)80065-3] [PDF]
- Vibrational analysis of the A2Π-X2Σ+ and A'2Δ-X2Σ+ transitions of BaOH and BaOD
W.T.M.L Fernando, M Douay, P.F Bernath
J. Mol. Spectrosc. 144, 344-351 (1990)
[DOI: 10.1016/0022-2852(90)90220-K] [PDF]
- Laser spectroscopy of crossed molecular beams: The dissociation energy of BaI from energy-balance measurements
P. H. Vaccaro, D. Zhao, A. A. Tsekouras, C. A. Leach, W. E. Ernst, and R. N. Zare
J. Chem. Phys. 93, 8544-8556 (1990)
[DOI: 10.1063/1.459292] [PDF]
- Dissociation energies of BaI and CaI from equilibrium studies
D. L. Hildenbrand, and K. H. Lau
J. Chem. Phys. 96, 3830 (1992)
[DOI: 10.1063/1.461888] [PDF]
- Energy and angular momentum control of the specific opacity functions in the Ba+HI→BaI+H reaction
Konstantinos S. Kalogerakis, and Richard N. Zare
J. Chem. Phys. 104, 7947-7964 (1996)
[DOI: 10.1063/1.471511] [PDF]
- The BaI X2Σ+ and B2Σ+ Electronic States Through B2Σ+-X2Σ+ and C2Π-X2Σ+ Band Systems Analysis
R. F. Gutterres, J. Vergès, C. Amiot
J. Mol. Spectrosc. 196, 29-44 (1999)
[DOI: 10.1006/jmsp.1999.7849] [PDF]
- High-Resolution Study of the BaI A2Π Electronic State
R. F. Gutterres, J. Vergès, C. Amiot
J. Mol. Spectrosc. 200, 253-260 (2000)
[DOI: 10.1006/jmsp.1999.8053] [PDF]
- First Observation of the BaI A' 2Δ Electronic State: The Ω = 3/2 Component
R. F. Gutterres, J. Vergès, C. Amiot
J. Mol. Spectrosc. 201, 326-327 (2000)
[DOI: 10.1006/jmsp.2000.8107] [PDF]
- Fourier Transform Spectroscopy of the BaI Molecule: Simultaneous Analysis of Seven Electronic States Including the D2Σ+ and the G2Σ+ States
R. F. Gutterres, C. E. Fellows, J. Vergès, C. Amiot
J. Mol. Spectrosc. 206, 62-72 (2001)
[DOI: 10.1006/jmsp.2000.8289] [PDF]
- Energies and electric dipole moments of the low lying electronic states of the alkaline earth monohalides from an electrostatic polarization model
T. Törring, W. E. Ernst, and J. Kändler
J. Chem. Phys. 90, 4927 (1989)
[DOI: 10.1063/1.456589] [PDF]
- Dipole moments and potential energies of the alkaline earth monohalides from an ionic model
T. Törring, W. E. Ernst, and S. Kindt
J. Chem. Phys. 81, 4614 (1984)
[DOI: 10.1063/1.447394] [PDF]
- The electronic structure of the calcium monohalides. A ligand field approach
Steven F. Rice, Hans Martin, and Robert W. Field
J. Chem. Phys. 82, 5023 (1985)
[DOI: 10.1063/1.448676] [PDF]
- The Rydberg spectrum of CaF and BaF: Calculation by R-matrix and generalized quantum defect theory
M. Arif, Ch. Jungen, and A. L. Roche
J. Chem. Phys. 106, 4102 (1997)
[DOI: 10.1063/1.473124] [PDF]
- Excited States of the BaI Molecule
S. Raouafi, Ch. Jungen
Phys. Essays 13, 272-279 (2000)
[Πηγή: Physics Essays]
- Resolving the F2 bond energy discrepancy using coincidence ion pair production (cipp) spectroscopy
Kristjan Matthiasson, Agust Kvaran, Gustavo A. Garcia, Peter Weidner and Balint Sztaray
Phys. Chem. Chem. Phys. 23, 8292-8299 (2021)
[DOI: 10.1039/D1CP00140J][PDF]
- A data-driven approach to determine dipole moments of diatomic molecules
Xiangyue Liu, Gerard Meijer and Jesus Perez-Rios
Phys. Chem. Chem. Phys. 22, 24191-24200 (2020)
[DOI: 10.1039/d0cp03810e] [PDF]
- A comparison of the geometrical sequence formula and the well-tempered formulas for generating GTO basis orbital exponents
S. Huzinaga, B. Miguel
Chem. Phys. Lett. 175, 289-291 (1990)
[DOI: 10.1016/0009-2614(90)80112-Q] [PDF]
- Well-tempered Gaussian basis sets for the calculation of matrix Hartree-Fock wavefunctions
Sigeru Huzinaga, Mariusz Klobukowski
Chem. Phys. Lett. 212, 260-264 (1993)
[DOI: 10.1016/0009-2614(93)89323-A] [PDF]
- A fifth-order perturbation comparison of electron correlation theories
Krishnan Raghavachari, Gary W. Trucks, John A. Pople, Martin Head-Gordon
Chem. Phys. Lett. 157, 479-483 (1989)
[DOI: 10.1016/S0009-2614(89)87395-6] [PDF]
- Non-iterative fifth-order triple and quadruple excitation energy corrections in correlated methods
Rodney J. Bartlett, J. D. Watts, S. A. Kucharski, J. Noga
Chem. Phys. Lett. 165, 513-522 (1990)
[DOI: 10.1016/0009-2614(90)87031-L] [PDF]
Erratum
R. J. Bartlett, J. D. Watts, S. A. Kucharski, J. Noga
Chem. Phys. Lett. 167, 609 (1990)
[DOI: 10.1016/0009-2614(90)85479-V] [PDF]
- Coupled cluster theory for high spin, open shell reference wave functions
Peter J. Knowles, Claudia Hampel, and Hans-Joachim Werner
J. Chem. Phys. 99, 5219 (1993)
[DOI: 10.1063/1.465990] [PDF]
Erratum: "Coupled cluster theory for high spin, open shell reference wave functions" [J. Chem. Phys. 99, 5219 (1993)]
Peter J. Knowles, Claudia Hampel, and Hans-Joachim Werner
J. Chem. Phys. 112, 3106 (2000)
[DOI: 10.1063/1.480886] [PDF]
- An efficient internally contracted multiconfiguration-reference configuration interaction method
Hans-Joachim Werner, and Peter J. Knowles
J. Chem. Phys. 89, 5803 (1988)
[DOI: 10.1063/1.455556] [PDF]
- An efficient method for the evaluation of coupling coefficients in configuration interaction calculations
Peter J. Knowles, Hans-Joachim Werner
Chem. Phys. Lett. 145, 514-522 (1988)
[DOI: 10.1016/0009-2614(88)87412-8] [PDF]
- The self-consistent electron pairs method for multiconfiguration reference state functions
Hans-Joachim Werner, and Ernst-Albrecht Reinsch
J. Chem. Phys. 76, 3144 (1982)
[DOI: 10.1063/1.443357] [PDF]
Werner, H.-J. Adv. Chem. Phys. 1987, LXIX, 1.
- MOLPRO, version 2002.6, is a package of ab initio programs designed by H.-J. Werner, P. J. Knowles, R. D. Amos, et al.; see http://www.molpro.net
- Quantum electrodynamical corrections to the fine structure of helium
Marvin Douglas, Norman M. Kroll
Ann. Phys. 82, 89-155 (1974)
[DOI: 10.1016/0003-4916(74)90333-9] [PDF]
- Precision frequency measurements of 3,4He 2 3P → 3 3D transitions at 588 nm
Pei-Ling Luo, Jin-Long Peng, Jinmeng Hu, Yan Feng, Li-Bang Wang, and Jow-Tsong Shy
Phys. Rev. A 94, 062507 (2016)
[DOI: 10.1103/PhysRevA.94.062507] [PDF]
- Revision of the Douglas-Kroll transformation
Georg Jansen and Bernd A. Hess
Phys. Rev. A 39, 6016-6017 (1989)
[DOI: 10.1103/PhysRevA.39.6016] [PDF]
- Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations
Bernd A. Hess
Phys. Rev. A 32, 756-763 (1985)
[DOI: 10.1103/PhysRevA.32.756] [PDF]
- Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators
Bernd A. Hess
Phys. Rev. A 33, 3742-3748 (1986)
[DOI: 10.1103/PhysRevA.33.3742] [PDF]
Revision of the Douglas-Kroll transformation
Georg Jansen and Bernd A. Hess
Phys. Rev. A 39, 6016-6017 (1989)
[DOI: 10.1103/PhysRevA.39.6016] [PDF]
- The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
S.F. Boys & F. Bernardi
Mol. Phys. 19, 553-566 (1970)
[DOI: 10.1080/00268977000101561] [PDF]
- Accurate calculation of the attractive interaction of two ground state helium atoms
B. Liu, and A. D. McLean
J. Chem. Phys. 59, 4557 (1973)
[DOI: 10.1063/1.1680654] [PDF]
- Non-empirical molecular orbital calculations on the protonation of carbon monoxide
H. B. Jansen, P. Ros
Chem. Phys. Lett. 4, 140-143 (1969)
[DOI: 10.1016/0009-2614(69)80118-1] [PDF]
- Moore, C. A. Atomic Energy Levels; NRSDS-NBS, Circ. No. 35; U.S. GPO: Washington, DC, 1971.
- Determination of the electron affinity of iodine
D. Hanstorp, M. Gustafsson
J. Phys. B: At. Mol. Opt. Phys. 25, 1773- (1992)
[DOI: 10.1088/0953-4075/25/8/012] [PDF]
- Thermochemical Properties (Do0 and IP) of the Lanthanide Monohalides
Leonid A. Kaledin, Michael C. Heaven, and Robert W. Field
J. Molec. Spectrosc. 193, 285-292 (1999)
[DOI: 10.1006/jmsp.1998.7750] [PDF]
- Bond dissociation energies of FeSi, RuSi, OsSi, CoSi, RhSi, IrSi, NiSi, and PtSi
Andrew Sevy, Erick Tieu, and Michael D. Morse
J. Chem. Phys. 149, 174307 (2018)
[DOI: 10.1063/1.5050934] [PDF]
- Structural and Thermodynamic Properties of the Argon Dimer. A Computational Chemistry Exercise in Quantum and Statistical Mechanics
Arthur M. Halpern
J. Chem. Educ. 87, 174-179 (2010)
[DOI: 10.1021/ed800049s] [PDF]
- Spectroscopic Measurements of Methane Solid-Gas Equilibrium Clapeyron Curve between 40 and 77 K
Patrice Cacciani, Peter Cermak, Cedric Pardanaud, Gabriela Valentova, Jean Cosleou, Celine Martin, Stephane Coussan , Jennifer A. Noble, Younes Addab, Corinne Boursier, Pascal Jeseck, Mathieu Bertin, Jean-Hugues Fillion, and Xavier Michaut
J. Phys. Chem. A 123, 3518-3534 (2019)
[DOI: 10.1021/acs.jpca.9b01278] [PDF] [Μετάφραση]
- The Infrared Absorption Spectrum of Carbon Dioxide
P. E. Martin and E. F. Barker
Phys. Rev. 41, 291 (1932)
[DOI: 10.1103/PhysRev.41.291] [PDF]
- The Infrared Spectrum of Carbon Dioxide. Part I
Arthur Adel and David M. Dennison
Phys. Rev. 43, 716 (1933)
[DOI: 10.1103/PhysRev.43.716] [PDF]
- Harmonic and Combination Bands in CO2
E. F. Barker and Ta-You Wu
Phys. Rev. 45, 1 (1934)
[DOI: 10.1103/PhysRev.45.1] [PDF]
- The Infra-Red Spectra of Polyatomic Molecules. Part I
David M. Dennison
Rev. Modern Phys. 3, 280 (1931)
[DOI: 10.1103/RevModPhys.3.280] [PDF]
- The Infra-Red Spectra of Polyatomic Molecules. Part II
David M. Dennison
Rev. Modern Phys. 12, 175 (1940)
[DOI: 10.1103/RevModPhys.12.175] [PDF]
- The 2.8-micron bands of CO2
Howard R. Gordon, T.K. McCubbin Jr.
J. Mol. Spectrosc. 19, 137-154 (1966)
[DOI: 10.1016/S0022-2852(66)90237-2] [PDF]
- General anharmonic force constants of carbon dioxide
Isao Suzuki
J. Mol. Spectrosc. 25, 479-500 (1968)
[DOI: 10.1016/S0022-2852(68)80018-9] [PDF]
- Simulation of the Raman spectra of CO2: Bridging the gap between algebraic models and experimental spectra
R. Lemus, M. Sanchez-Castellanos, F. Perez-Bernal, J. M. Fernandez, and M. Carvajal
J. Chem. Phys. 141, 054306 (2014)
[DOI: 10.1063/1.4889995] [PDF]
- Cavity-enhanced saturated absorption spectroscopy of the (30012) - (00001) band of 12C16O2
Y. Tan, Y.-R. Xu, T.-P. Hua, A.-W. Liu, J. Wang, Y. R. Sun, and S.-M. Hu
J. Chem. Phys. 156, 044201 (2022)
[DOI: 10.1063/5.0074713] [PDF]
- The frequency-domain infrared spectrum of ammonia encodes changes in molecular dynamics caused by a DC electric field
Youngwook Park, Hani Kang, Robert W. Field, and Heon Kang
Proc. Nat. Acad. Sci. 116 (2019)
[DOI: 10.1073/pnas.1914432116] [PDF]
- Effect of Electric Field on Condensed-Phase Molecular Systems. I. Dipolar Polarization of Amorphous Solid Acetone
Sunghwan Shin, Youngsoon Kim, Hani Kang, and Heon Kang
J. Phys. Chem. C 119 15588-15595 (2015)
[DOI: 10.1021/acs.jpcc.5b01849] [PDF]
- Effect of Electric Field on Condensed-Phase Molecular Systems. II. Stark Effect on the Hydroxyl Stretch Vibration of Ice
Sunghwan Shin, Hani Kang, Daeheum Cho, Jin Yong Lee, and Heon Kang
J. Phys. Chem. C 119 15596-15603 (2015)
[DOI: 10.1021/acs.jpcc.5b01850] [PDF]
- Electric Field Effect on Condensed-Phase Molecular Systems. VIII. Vibrational Stark Effect and Dipolar Inversion in Carbon Monoxide Crystal
Hani Kang, Josée Maurais, Youngwook Park, Patrick Ayotte, Heon Kang
J. Phys. Chem. A 123 31262-31271 (2019)
[DOI: 10.1021/acs.jpcc.9b08902] [PDF]
- Infrared spectroscopic monitoring of solid-state processes
Nikola Biliskov
Phys. Chem. Chem. Phys. 24, 19073-19120 (2022)
[DOI: 10.1039/d2cp01458k] [PDF]
- MAIRS: Innovation of Molecular Orientation Analysis in a Thin Film
Takeshi Hasegawa and Nobutaka Shioya
Bull. Chem. Soc. Japan 93, 1127-1138 (2020)
[DOI: 10.1246/bcsj.20200139] [PDF]
- Microwave spectrum of trichloroacetonitrile
A. Sundara Rajan
Proceedings of the Indian Academy of Sciences - Section A 53, 89-94 (1961)
[DOI: 10.1007/BF03045794] [PDF]
- The i.r. and Raman spectra of solid trichloroacetonitrile
H. F. Shurvell, S. E. Gransden, J. A. Fanran, D. W. James
Spectrochim. Acta 32, 559-567 (1976)
[DOI: 10.1016/0584-8539(76)80117-1] [PDF]
- Photoassociation spectroscopy of weakly bound 87Rb2 molecules near the 5P1/2 + 5S1/2 threshold by optical Bragg scattering in Bose-Einstein condensates
Khan Sadiq Nawaz, Liangchao Chen, Chengdong Mi, Zengming Meng, Lianghui Huang, Pengjun Wang, Jing Zhang
Phys. Rev. A 102, 053326 (2020)
[DOI: 10.1103/PhysRevA.102.053326] [PDF]
- Wigner numbers
W. D. Allen
J. Chem. Phys. 151, 244122 (2019)
[DOI: 10.1063/1.5135721] [PDF]
- Determination of the Interaction Potential and Rovibrational Structure of the Ground Electronic State of MgAr+ Using PFI-ZEKE Photoelectron Spectroscopy
Dominik Wehrli, Matthieu Génévriez, Carla Kreis, Josef A. Agner, Frédéric Merkt
J. Phys. Chem. A 124, 379-385 (2020)
[DOI: 10.1021/acs.jpca.9b10435] [PDF]
- A new twist on molecular shape
Frank Weinhold
Nature 411, 539-541 (2001)
[DOI: 10.1038/35079225] [PDF]