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Phonon mechanism for the negative thermal
expansion of zirconium tungstate, ZrW2O8

Leila H. N. Rimmer,b Keith Refson c and Martin T. Dove *abd

Negative thermal expansion (NTE) in ZrW2O8 was investigated using a flexibility analysis of ab initio

phonons. It was shown that no previously proposed mechanism adequately describes the atomic-scale

origin of NTE in this material. Instead it was found that the NTE in ZrW2O8 is driven, not by a single

mechanism, but by wide bands of phonons that resemble vibrations of near-rigid WO4 units and Zr–O

bonds at low frequency, with deformation of O–W–O and O–Zr–O bond angles steadily increasing with

increasing NTE-phonon frequency. It is asserted that this phenomenon is likely to provide a more

accurate explanation for NTE in many complex systems not yet studied.

1 Introduction

The last two decades have seen a considerable upsurge of
interest in materials that have the counter-intuitive and poten-
tially technologically important property of negative thermal
expansion (NTE).1–4 This interest was prompted by the dis-
covery, in 1996, that NTE in ZrW2O8, which was first observed
3 decades earlier,5 actually exists over a very wide range of
temperatures (0–1050 K).6,7 Since then a number of other
materials have been shown to exhibit NTE,1,2,8–11 with research
initially focusing on oxides before being extended to other
ceramics and hybrid metal–organic materials. There now exists
a considerable body of work on the ‘archetypal’ NTE material
ZrW2O8, including experiments based on characterisation,
diffraction and spectroscopy,12–25 together with simulations
based on force field and ab initio methods.26–36 However,
despite the wealth of studies, NTE in this material is still not
understood, suffering, perhaps, from a surfeit of simplified yet
untested ideas, as we discuss below.

In this paper we offer an advance in our understanding of
NTE in ZrW2O8 using an approach we have successfully applied
to a number of other NTE materials, including ScF3,37

Zn(CN)2,38 Cu2O,39 MOF-5,40 and Y2W3O12.41 The idea is to
model the dynamics of ZrW2O8 in terms of different flexibility
models, and then to map the vibrational modes of these models
onto the vibrational spectrum of the real material computed
using accurate ab initio methods. These are then compared

with the contribution of each mode to the NTE, and from this
comparison we are able to determine how NTE arises from
specific flexibilities in the material. In some cases the NTE can
be mapped against very specific phonon modes and specific
types of flexibility, but in the case of ZrW2O8 discussed here
we are able to show that its NTE is caused not by a single
mechanism but, rather, by a much wider range of phonons.

Thermal expansion of materials is generally understood in
terms of the Grüneisen model.42–44 Normally, the anharmoni-
city of atomic bonding causes phonon frequencies to decrease
with an increase in volume, due to a corresponding decrease
in the effective interatomic force constants as neighbouring
atoms are pulled slightly apart. This leads to the normal positive
thermal expansion, as the increase in energy due to increasing
the crystal volume is offset by an increase in entropy through the
resultant decrease in phonon frequencies. However, in the case
of NTE materials, we expect to find a significant number of
phonons whose frequencies increase with an increase in volume.
Given that the thermodynamic weighting of any vibration typi-
cally scales as the inverse of the square of its frequency, we
expect to find that the most influential phonons for NTE will be
those that exist at lower frequencies.

Quite why a particular vibration might have a frequency that
decreases on decreasing volume is often understood in terms
of the ‘tension effect’.2,3 In the case of ZrW2O8, for which this
was first articulated,6 the crystal structure – illustrated in
Fig. 1 – shows nearly linear Zr–O–W linkages. Since it is
envisaged that the Zr–O and W–O bonds are relatively rigid, it
follows that transverse vibrations of an oxygen atom in a
Zr–O–W linkage might pull the structure inwards, thereby
giving rise to NTE.6,28,34 The question that this idea poses is
whether there are specific phonons generating this motion with
sufficient thermodynamic weighting. In this regard, the discus-
sion of the tension effect in the simpler material ScF3 is
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interesting, where the specific phonons can easily be identified,45

but the issue of why there is sufficient thermodynamic weighting
hinges on the bending flexibility of the ScF6 octahedra.37,46

In the case of ZrW2O8, experimental and computational
evidence has led to several different proposals for the realisa-
tion of the tension effect and the mechanism of NTE mecha-
nism. The Rigid Unit Mode (RUM) model29,30,47–50 suggests that
the low frequencies can be accomplished by normal modes that
show minimal deformation of coordination polyhedra, namely
the ZrO6 octahedra and WO4 tetrahedra.18–20,29,30 An alternative
model proposed that the Zr� � �W distance remains unchanged,
but significant deformation in one or more of the ZrO6 and
WO4 tetrahedra may be allowed.21–23,31 A further possibility was
that adjacent WO4 tetrahedra may have some additional inter-
action between each other33 which would, in turn, mean that
both tetrahedra may move as a single unit for low frequency
NTE phonons; this model is illustrated in Fig. 2. However, thus
far, no proposed mechanism has been comprehensively tested
against the overall phonon spectrum in this material—an
omission which we now rectify.

In the next section we describe our methodology in detail,
namely the methods of calculation, the analysis of NTE, and the
analysis of structure flexibility. In Section 3 we examine the
phonon spectrum to identify which modes contribute to NTE.
Then in Section 2.3 we interpret the phonon spectrum in terms
of 16 different models of network flexibility. The analysis is

then assessed in the Discussion (5) and Conclusions (6) sections.
Finally, the analysis of the flexibility models is presented in an
Appendix.

2 Methods
2.1 Simulation method

In this work we obtained the phonon spectrum of ZrW2O8 using
plane-wave Density Functional Theory calculations using the
CASTEP software.51,52 The Perdew–Burke–Ernzehof (PBE)
functional53,54 was used with optimised norm-conserving
pseudo-potentials.55,56 A plane-wave cutoff energy of 750 eV
was used, and a Monkhorst–Pack grid57 of size 3 � 3 � 3 was
used to carry out reciprocal-space integration of electronic
states.

The unit cell was relaxed at a set pressure of 0 GPa to give a
lattice parameter of a = 9.26705 Å. Full details of the crystal
structure are given in Table 1, comparing the optimised and
experimental6 (room temperature) crystal structures. The opti-
mised structure has a lattice parameter that is only 1.2% larger
than the experimental structure, which is well within the
usual tolerance of DFT with the PBE functional. The nearest-
neighbour W–O and Zr–O distances, given in Table 2, agree to
around 0.5% in almost all cases, with one Zr–O distance
differing by 2.3%. This too is within the usual tolerance.

Phonon frequencies were calculated using Density Func-
tional Perturbation Theory.58 A Monkhorst–Pack grid of pho-
non wave vectors of size 3 � 3 � 3 was used to compute the
dynamical matrix, and Fourier interpolation of the resulting

Fig. 1 The crystal structure of the ordered phase of ZrW2O8.6 (a) The
structure in ball-and-stick representation. Green spheres are Zr atoms,
grey spheres are W atoms, and red spheres are O atoms. (b) The same
structure represented as green ZrO6 octahedra and grey WO4 tetrahedra.
The space group of this material is P213.

Fig. 2 Two interpretations of the interaction between adjacent WO4

tetrahedra in a pair. The blue atom is the under-bonded O that exists
between the two W. (a) Both W are tetrahedrally coordinated and there is
only weak interaction between the two units (b) the under-bonded O that
exists between the two tetrahedra is part of a stronger bond with a second
tetrahedron. One W has standard tetrahedral coordination and the other
has ‘4+1’ coordination.

Table 1 Comparison between the crystal structures of ZrW2O8 obtained
in this study by DFT calculations and from an experimental study using
neutron powder diffraction at 293 K.6 The difference between the two
values of the lattice parameter are within expectations for a DFT calcula-
tion using the PBE functional. Note that the crystal symmetry, space group
P213, fixes the constraints x = y = z for some atoms

a (Å)

DFT calculation (this study) Neutron diffraction at 293 K

9.26705 9.15993(5)

x y z x y z
Zr 0.0000 0.0000 0.0000 0.0003(4) 0.0003(4) 0.0003(4)
W1 0.3428 0.3428 0.3428 0.3412(3) 0.3412(3) 0.3412(3)
W2 0.5980 0.5980 0.5980 0.6008(3) 0.6008(3) 0.6008(3)
O1 0.2055 0.4383 0.4452 0.2071(3) 0.4378(4) 0.4470(3)
O2 0.7833 0.5654 0.5545 0.7876(3) 0.5694(4) 0.5565(3)
O3 0.4895 0.4895 0.4895 0.4916(5) 0.4916(5) 0.4916(5)
O4 0.2360 0.2360 0.2360 0.2336(3) 0.2336(3) 0.2336(3)

Table 2 Comparison between the polyhedral bond lengths of ZrW2O8

obtained in this study by DFT calculations and from an experimental study
using neutron powder diffraction at 293 K.6 Each polyhedron displays two
distinct bond lengths. Deviations from experiment are within expectations
for a DFT calculation using the PBE functional

W1–O (Å) W2–O (Å) Zr–O (Å)

DFT 1.714 1.817 1.742 1.790 2.052 2.158
Experiment 1.707 1.798 1.733 1.782 2.042 2.109
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dynamical matrices was used to calculate frequencies for any
point within the Brillouin zone. Calculated phonon dispersion
curves for the frequency range 0–12 THz are shown in Fig. 3,
together with the corresponding phonon density of states. The
phonon spectrum shows a gap that extends to 21.5 THz, above
which it shows a set of sharp bands of frequencies corres-
ponding to W–O and Zr–O stretch motions up to around 31 THz
(Fig. 4).

Phonon frequencies were calculated for wave vectors along
the main symmetry directions in reciprocal space for plotting
dispersion curves. Frequencies were also calculated for 757
wave vectors distributed randomly in reciprocal space for the
calculation of the phonon density of states, giving nearly
100 000 independent frequency values (Fig. 4).

2.2 Methodology for analysis of phonon contributions to
thermal expansion

Here we recall that the Grüneisen theory of thermal expansion42–44

leads to a simple expression for the volumetric thermal expansivity,
aV = CV�g/BV, where CV is the constant–volume heat capacity, and
B is the bulk modulus, V is the volume. The fourth quantity �g is

the weighted average of the individual mode Grüneisen para-
meters gi,k,

gi;k ¼ �
V

oi;k

@oi;k

@V
� � V

oi;k

Doi;k

DV
(1)

Here i labels the phonon branch and k labels the wave vector,
and oi,k is the corresponding angular frequency. The D operators
indicate a finite difference obtained from performing calcula-
tions at two slightly different volumes. Thus a second set of
frequencies was calculated for the ZrW2O8 structure relaxed at a
fixed off-equilibrium cell parameter of a = 9.2905 Å. It can be
seen from Fig. 3 that for any wave vector there are many modes
of similar frequency. The exact matching of the same modes to
compute the set of values of Doi,k was performed using the
matching of mode eigenvectors with custom software described
previously.41

2.3 Flexibility modelling

The existence of a tension effect acting as the mechanism for
NTE hinges on the existence of some degree of rigidity in the
structure. This may be as simple as single bonds, as advocated
in some other works,34,59 but, as we argued in the case of
Cu2O,39 this can be too simplistic because it effectively assigns
a tension effect to far too many phonons, including those that
have clearly positive values of their mode Grüneisen para-
meters. The reason why such a mode may have positive thermal
expansion is often associated with correlations of the motion of
a single bond with the motions of other bonds, typically
through the effects of bond-bending interactions. Thus neglect-
ing such correlations prevents a clear understanding of how the
tension effect operates to give NTE. For the tension effect to
operate, the normal modes must be able to allow easy flexing of
the structure whilst taking account of correlations across the
crystal, with corresponding low frequency. Thus here we have set
up a number of flexibility models, following a similar approach
used in previous studies,39,41 and which we now describe.

The ZrO6 octahedra and WO4 tetrahedra were modelled in
two ways. The first was to have rigid bonds (Zr–O or W–O) but
flexible bond angles, and the second was to create rigid poly-
hedra through addition of bond-bending forces within the
polyhedra. The two models for the ZrO6 octahedra are illu-
strated in Fig. 5, and the models for the WO4 tetrahedra are
shown in the upper part of Fig. 6.

Models were also developed to take account of possible
bonding between adjacent WO4 units, as shown in Fig. 2.
Bonding between adjacent rigid WO4 tetrahedra was modelled
in three different ways. First, trivially, was to have no bonding.
Second was to have a rigid bond between adjacent rigid WO4

tetrahedra, with a flexible W–O–W angle. Thirdly was to have a
rigid bond between adjacent rigid WO4 with a rigid W–O–W
angle. These last two are shown in the lower pane of Fig. 6.

The two models for the ZrO6 octahedra coupled with the four
models for the WO4 tetrahedra give a total of 8 models. However,
It has also been suggested that there is a rigidity regarding the
distances between Zr and W distances. Cao et al.21,22 proposed
the existence of rigid groups consisting of three Zr centres and a

Fig. 3 Left: Low energy dispersion curves and densities of states for
ZrW2O8. Right: The same data shaded according to the value of gi,k of
each mode at each wave vector. The linear colour scale ranges from bright
red (gi,k r �6) to white (gi,k = 0) to bright blue (gi,k Z 6). Bins that make up
the density of states are shaded according to the average gi,k for each bin.
Wave vector labels follow convention: G denotes wave vector (0,0,0),
X denotes (1

2, 0, 0) M denotes (1
2, 1

2, 0) and R denotes (1
2, 1

2, 1
2).

Fig. 4 Complete phonon density of states calculated for ZrW2O8. The
colours represent the mean value of the mode Grüneisen parameter
within each small range of frequency values, with bright blue corres-
ponding to positive values greater that +6 and bright red corresponding to
negative values below �6, with intermediate values displayed on the
colour gradient between red and blue passing through white for zero
value.
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single W centre, forming a tent shape. Thus to each of the 8
models we also added a Zr–W constraint, giving a total of 16
different flexibility models. The rigidity and flexibility for each of
these combinations is analysed in the Appendix.

In practice here, bonds and bond angles are described as
either effectively rigid or completely flexible, and the models
were implemented in the lattice simulation program GULP,60,61

which is able to calculate equilibrium structures and lattice
dynamics. Rigidity within the flexibility models was enforced
using harmonic potential energy functions of the form
1
2k(r � r0)2 for bonds (r is the distance between neighbouring
atoms, and values of r0 were chosen to correspond to the DFT
bond lengths) and 1

2K(y � y0)2 for bond angles (y, with ideal
values of y0 for the two types of polyhedra), with large values
used for the force constants k and K.† No additional functions,

such as Coulomb interactions, were used. Given the manner in
which the flexibility models were constructed, any phonon that
does not require deformation of any of the designated rigid
units of a specific model will be calculated to have zero
frequency. Phonon spectra using these simple functions were
calculated for each model at the same wave vectors as used in
the ab initio calculations using GULP.

The frequencies o and eigenvectors e of the model phonons
j were then mapped on to the ab initio phonons i at each wave
vector k using the equation

mi;k ¼ O2
X

j

ei;k � ej;k
O2 þ oj;k

2
(2)

where O is a constant. A value of mi,k = 1 indicates that the
flexibility model is able to perfectly recreate the atomic motions
of the ab initio phonon (mode eigenvector) in question, while a
value mi,k = 0 indicates that there is no relation between the two
mode eigenvectors. More detailed information on the methods
to perform this type of mapping are given in our earlier work.41

3 Distribution of mode Grüneisen
parameters

Fig. 3 also shows the phonon dispersion curves along high
symmetry directions coloured according to the values of the
corresponding mode Grüneisen parameter (eqn (1)). The dis-
persion curves are accompanied by the calculated phonon
density of states coloured by the mean value of the mode
Grüneisen parameter within each frequency bin (a wider ver-
sion of the density of states encompassing the high frequency
modes is shown in Fig. 4). It can be seen from Fig. 3 that the
values of the mode Grüneisen parameters for different phonon
branches span the entire Brillouin zone such that the density
of states captures a large part of the detail of the phonon
spectrum.

The strongest NTE modes exist around 1.2 THz with NTE
character weakening slightly as the frequency increases to
2 THz. Bands of weaker NTE modes range from 2–6 THz and
from 8–10 THz. There are also some low-frequency, positive
thermal expansion (PTE) phonons at wave vectors near G and X
at 2.5 THz, and near G and R at 5 THz. In all, there are 48
phonon branches in the 0–6 THz range which mostly drive NTE
(with some driving PTE in the upper frequencies); 12 PTE
branches in the 6.5–8 THz range; 28 weak NTE branches in
the 8.5–10 THz range; 12 PTE branches in the 10–12 THz range;
and (not pictured) 32 weak PTE branches above 12 THz.

A similar distribution of NTE and PTE phonon branches was
found in Y2W3O12,41 with the exception of the PTE branches at
around 2.5 THz. This is in striking contrast to simpler materials
such as ScF3,37,45 Zn(CN)2

38 and Cu2O39 where the NTE can be
seen to be associated with a relatively small number of phonon
modes (in some cases, with a set of acoustic modes).

Fig. 5 Flexibility models of the ZrO6 unit. Grey octahedra represent rigid
ZrO6 units, and grey rods represent rigid Zr–O bonds. In both cases purple
spheres represent flexible linkages.

Fig. 6 Flexibility models of the WO4 unit. Grey tetrahedra represent rigid
WO4 or WO5 units, and grey rods represent rigid W–O bonds. In all cases
purple spheres represent flexible linkages.

† The exact values of k and K are unimportant. It is only important that they are
either large or zero, depending on the specific flexibility model. A large value
needs to give largest frequencies in the calculations of the lattice dynamics of the
flexibility models that are considerably bigger than the value of O used in eqn (2).
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4 Flexibility models

Fig. 7 and 8 show the phonon dispersion curves calculated by
DFT (same as Fig. 3) shaded according to the corresponding
values of mi,k for each of the 16 models. Fig. 7 shows results for
the 8 models without the Zr–W constraint (labelled as models
a–h), and Fig. 8 shows the corresponding models with the
Zr� � �W constraint (labelled as models i–p). The dispersion
curves in both figures are accompanied by the corresponding
phonon density of states, shaded by the average value of mi,k

over all modes within each frequency bin. We noted above that
the analysis of the flexibility of the different models is dis-
cussed in the Appendix, and Table 3 presented there sum-
marises the quantitative flexibility analysis for each case.

4.1 Model a: rigid Zr–O rods with rigid W–O rods

This model is the simplest and most flexible. It has mi,k E 1 for
nearly the entire low-frequency spectrum, but with some
decline for frequencies in the ranges 6–8 and 10–12 THz,
indicating a degree of bond stretching for these modes.

Nevertheless, most bond stretching is clearly associated with
the higher-frequency modes. In addition, there is some
reduction in mi,k values for the weak PTE modes around 5
THz. The contributions to PTE at 5, 6–8 and 10–12 THz are
therefore the result of part of the motions involving bond
stretching with reduced tension effect.

This model, by design, does not give any account of corre-
lated rotations of bonds. However the results of this model
show unambiguously that that NTE in ZrW2O8 arises from a
tension effect involving nearly-rigid Zr–O and W–O bonds.

4.2 Model b: rigid Zr–O rods with rigid independent WO4

tetrahedra

This model shows values of mi,k E 1 for frequencies lower than
6 THz, but with significant reduced values of mi,k for frequen-
cies above 6 THz compared to model a with rigid W–O rods but
flexible O–W–O bond angles. This result, coupled with the
result for model a, shows that much of the motion for frequen-
cies below 6 THz involves whole-body rotations of the WO4

tetrahedra.

Fig. 7 Flexibility analysis of ZrW2O8 phonon dispersion curves and den-
sities of states. The data are shaded according to the value of mi,k at each
mode for each wave vector. The shading ranges from white (mi,k = 0)
through to black (mi,k = 1). Bins that make up the density of states are
shaded according to the average mi,k for each bin using the same colour
scale.

Fig. 8 Further flexibility analysis of ZrW2O8 phonon dispersion curves and
densities of states. All flexibility models shown here incorporate a rigid
Zr� � �W bond. The data are shaded according to the value of mi,k at each
mode for each wave vector. The shading ranges from white (mi,k = 0)
through to black (mi,k = 1). Bins that make up the density of states are
shaded according to the average mi,k for each bin using the same colour
scale.
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4.3 Model c: rigid Zr–O rods, rigid and bonded pairs of WO4

tetrahedra, and flexible inter-tetrahedral W–O–W bond
bending

The flexibility of this model covers much of the same part of the
phonon spectrum as for model b, but with a slight decrease in
overall mi,k values. One interesting feature is that mi,k values fall
significantly for phonons around 2.5 THz at the specific wave
vectors where the same modes drive PTE rather than NTE. This
suggests, firstly, that the distance between two WO4 units in
a pair does not undergo significant change at low energy;
secondly, that any change in distance that does occur is not a
high-energy process; and, thirdly, that modes involving non-
trivial change in the W–W distance contribute to PTE.

4.4 Model d: rigid Zr–O rods, rigid and bonded pairs of WO4

tetrahedra, and no inter-tetrahedral W–O–W bond bending

This model covers much of the same part of the phonon
spectrum as models b and c, but with another slight decrease
in overall mi,k values. Additionally, there is a further slight
decrease in mi,k values around 4 THz, indicating that W–O–W
bond-angle bending occurs to some extent around this fre-
quency. This motion, however, does not lead to any drastic
change in the NTE contribution of the phonons in that portion
of the full vibrational spectrum. It appears that W–O–W bond
angle bending does not occur to a significant extent in the
low-frequency phonon spectrum of ZrW2O8.

Models e–h, which now follow, have the same constraints for
the WO4 tetrahedra as for models a–d, but have rigid ZrO6

octahedra rather than rigid Zr–O bonds and flexible O–Zr–O
angles.

4.5 Model e: rigid ZrO6 octahedra with rigid W–O rods

This model has small, non-zero values of mi,k for the entire low
frequency phonon spectrum, with mi,k values largest in the
0–2.5 THz region. This shows that O–Zr–O angle bending is a
relatively low-energy process and thus occurs to some extent
throughout the phonon spectrum. The energy cost associated
with bending of O–Zr–O bonds means that this deformation is
smaller for the phonons with lower frequencies.

4.6 Model f: rigid ZrO6 octahedra with rigid WO4 tetrahedra;
rigid unit modes

This is the traditional RUM model, which was initially explored
for insights into the flexibility of the ZrW2O8 structure to
support the tension effect.29 The flexibility analysis, given in
Table 3 in the Appendix, shows that there is an exact balance
between the numbers of degrees of freedom and constraints.
As a result, the RUM analysis showed a curved surface of RUMs.
This model has large mi,k for modes surrounding the G point.
However it has very weak values of mi,k for the rest of the
phonon spectrum, including the reciprocal space regions where
RUMs of this model were previously located. Furthermore, even
when specific wave vectors known to harbour RUMs were
individually inspected, no significant increase in mi,k was

observed. In general, the (small) mi,k values are slightly larger
at the lower frequencies, indicating that there is less overall
polyhedral deformation at the lowest frequency modes.

The result here is consistent with an observation about
RUMs in relatively complex systems.50 ZrW2O8 has 132 normal
modes per wave vector, and relatively low symmetry (compared
to other cubic space groups). This means that there are many
modes of the same symmetry and similar frequency, which
allows for mixing of eigenvectors between such modes – this
point has been discussed recently.49 Therefore, although model
b shows that WO4 tetrahedra often move as rigid units, and
model e shows that ZrO6 octahedra deform less in the eigen-
vectors of modes with lower frequencies, the combination of
both types of rigid-unit motion are both limited as shown by
the RUM analysis, and are diluted by eigenvector mixing.

4.7 Models g, h: rigid ZrO6 octahedra with rigid, bonded WO4

tetrahedra without (g) and with (h) inter-tetrahedral W–O–W
bond bending

Model f represents the cross-over between flexible and con-
strained models, as shown in the flexibility analysis of Table 3
in the Appendix. Models g and h are shown by the same
analysis to be over-constrained, and this is confirmed by the
extremely low of zero values of mi,k E 0 for all phonons. The
results for these two final cases in this suite of models without
constraints on the Zr� � �W distances indicate that modes with
rigid ZrO6 and WO4 units cannot exist without some relative
displacement of the WO4 units within a pair.

Models i–p which now follow use exactly the same sets of
constraints used in models a–h respectively, but now with the
addition of the Zr� � �W constraint implemented as a rigid rod.

4.8 Models i–m: flexible models with Zr� � �W bonding

Fig. 8 shows the results of mi,k mapping for the eight flexibility
models described above when a rigid Zr� � �W bond, corres-
ponding to the proposed tent mode,21,22 is incorporated. In
cases i–m, namely the four models with rigid Zr–O bonds
without O–Zr–O angular constraints, and the model with rigid
ZrO6 octahedra and rigid W–O bonds but no O–W–O angular
constraints. In these cases the distributions of values of mi,k

over the entire vibrational spectrum replicate what is seen in
the corresponding models without Zr� � �W bonds, but with a
significant overall reduction in the values of mi,k. This outcome
conflicts suggests that W–O–Zr bond bending will occur across
the range of frequencies, and offers little support for the
operation of the tent model.

4.9 Models n–p: over-constrained models with Zr� � �W
bonding

These three models with rigid ZrO6 octahedra and WO4 tetra-
hedra are seen from Table 3 in the Appendix to be over-
constrained, and the lack of any flexibility in the vibrations is
shown by the near-zero values of mi,k for all phonons in the
corresponding panels in Fig. 8.
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5 Discussion

Unlike simpler systems such as Zn(CN)2,38 Cu2O39 or ScF3,37

flexibility-model eigenvectors do not neatly map onto a small
number of specific modes identified in the ab initio calcula-
tions. Instead, a high degree of eigenvector mixing is present,
so that a given type of flexibility ends up being spread over
multiple ab initio phonons, a phenomenon made possible by
the low symmetry of the structure and large number of modes.
For example, as noted above, eigenvector mixing is particularly
evident for the rigid ZrO6 and WO4 model – the RUM model –
mapped in Fig. 7f, where the RUMs are spread so widely across
the phonon spectrum that all modes have low values of mi,k.

These results show that the 48 phonons in the 0–6 THz
range correspond to the motions of near-rigid WO4 tetrahedra
and Zr–O rods. O–W–O and O–Zr–O bond bending are mini-
mised (although the O–Zr–O angle distorts more) at the lowest
frequencies. As the frequency increases, so too does the degree
of both types of bond bending, with O–Zr–O bond bending
increasing steadily, whilst O–W–O bond bending increases
slowly before experiencing a jump at 6 THz. This implies that
the O–W–O bond angle is stiffer than the O–Zr–O, even though
both distort. Neither the RUM model nor the rigid Zr� � �W
model corresponding to the tent model correlates well with
any of the NTE modes.

Some NTE modes around 4 THz involve additional bending
of the W–O–W angle between two WO4 units in a pair. However,
since there is no effect on the values of the mode Grüneisen
parameters, this additional angle bending appears to make no
extra contribution to thermal expansion behaviour. Meanwhile
the small number of PTE modes in the 0–6 THz range appear to
correlate with changes in the distance between two WO4 units
in a pair at 2.5 THz and to a small amount of bond stretching
within the coordination polyhedra at 5 THz. From the disper-
sion curves shown in Fig. 7 it can be seen that both sets of
modes (and thus the PTE that they drive) have a strong
dependence on wave vector, appearing around G and X, and
at G and R points respectively. The fact that the occasional
separation of adjacent WO4 units does not significantly affect
mode frequency suggests that there is no strong bonding
between them, but that they do move in tandem more often
than not, most likely as a consequence of constraints imposed
by the wider ZrW2O8 framework.

The 12 PTE phonons in the range 6–8 THz involve further
O–Zr–O and O–W–O bond-angle bending, as well as a signifi-
cant amount of Zr–O and W–O bond stretching. This latter
effect is a well-known mechanism for PTE and is what ulti-
mately gives these phonons their PTE character. The 28 weak
NTE modes in the range 8–10 THz involve negligible bond
stretching but increased bending of both O–Zr–O and O–W–O
bond angles. This band of modes resembles the traditional
tension effect, but they exist at high frequency and thus only
contribute to NTE relatively weakly due to the large amount of
energetically-costly bond bending they incur. The 12 phonons
in the 10–12 THz range comprise another band of weak PTE
modes that involve similar distortions to those seen in the

6–8 THz range but with a much greater degree of bond
stretching that gives these modes both their high frequency
and their PTE behaviour. PTE modes above 12 THz consist of
the remaining bond stretches.

As a result of this detailed analysis, we conclude that the
NTE in ZrW2O8 cannot be described by a mechanism that
involves a small set of normal modes, in contrast to other
NTE materials that have been studied in similar depth.37–40

Instead, NTE is driven by a broad spectrum of phonons
extending over a wide range of energies. The strongest of these
exist around 1.2 THz and involve minimal deformation of the
WO4 and ZrO6 polyhedral units, with the O–Zr–O bond deform-
ing more than the relatively rigid O–W–O bond. As frequency
increases, the level of O–Zr–O and O–W–O bond bending
gradually increases. The behaviour of ZrW2O8 is reminiscent
of that found in Y2W3O12.41

6 Conclusions

Our study of ZrW2O8 presented in this paper, together with the
previous work on other NTE in Y2W3O12,41 strongly suggests
that the wide expectation that NTE might always be explained
in terms of simple mechanisms will not hold for all framework
materials. In the simplest of cases such mechanisms can provide
an elegant description of observed behaviour. For instance, the
specific modes shown to drive NTE in ScF3

37,45 and Zn(CN)2
38

look like RUMs, and in Cu2O the important modes are those in
which linear O–Cu–O rods move as rigid entitites.39 This seems
logical given that deformation of a coordination polyhedron is
an energetically-costly process, and a tension effect in which
the important modes have minimal polyhedral deformation
will exist at the necessary low frequency. However with added
complexity, such as a large number of phonon branches in a
low symmetry structure, we find that simple mechanisms are
not sufficient to explain the NTE, even though such modes can
be supported by the atomic structure of the material. Mode
mixing is always present in the vibrational spectra of real
materials but, in less-complex high-symmetry structures, these
effects are minimal, and simpler mechanisms can be sufficient
to explain NTE.

It is only through the in-depth study of phonons in NTE
framework materials with structural complexity that the more
complete picture can be drawn out. Since many NTE materials
are also have relatively complex structures,10 the authors offer
the identification of this more complete explanation of NTE in
ZrW2O8 as the key contribution of this paper to a general
understanding of NTE across all framework materials.
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Appendix: flexibility analysis

We consider the flexibility of rigidity of the models discussion
in Section 2.3 in terms of both the Thorpe–Phillips constraint
counting approach62–66 and the approach developed for analy-
sis of polyhedral structures and rigid unit modes,47–49 both of
which have been more recently reviewed in a paper on rigid
unit modes.49 The main task is to count the number of degrees
of freedom, F, and the number of constraints C, per formula
unit. The difference F�C gives the number of normal modes
per formula unit in which the structure can buckle without the

constraints being broken. That is, these normal modes will not
stretch bonds or bend constrained bond angles. If F 4 C, the
structure is floppy in some ways, and there will be a set of
normal modes calculated by diagonalisation of the dynamical
matrix to have zero frequency. If C 4 F, the structure is
over-constrained and unlikely to have any floppy modes.
In the special case F = C, symmetry can make some constraints
degenerate, so there will be some floppy modes.

For atoms that are bonded but not constrained by bond-
bending forces, the model assigns 3 degrees of freedom to each
atom, and 1 constraint per bond. Thus in the case were we
consider ZrW2O8 to consist of bonds with no angular forces
(Section 4.1), the 11 atoms give rise to three degrees of freedom
each, and hence F = 33. The Zr–O bonds give 6 constraints, and
the W–O bonds from the two WO4 tetrahedra give 8 constraints,
so that in total C = 14.

When we consider rigid polyhedra, it would be possible to
add bond-bending constraints (for a polyhedra with r bonds,
there are 2r � 3 angular constraints), but we prefer to count
each polyhedron as a rigid entity with 6 degrees of freedom
(now allowing for rotations). Where one vertex is connected to
the vertex of another polyhedron, we assign 3 constraints per
shared vertex. Where the vertex is bonded to another cation
without angular constraints, the bond itself is the constraint as
before. In the case where we have rigid ZrO6 and WO4 poly-
hedra, we have F = 3 � 6 = 18. Each WO4 polyhedron has only
3 linked apices to consider. Avoiding double-counting, we
count the number of constraints from both set of polyhedra
as C = 18/2 + 18/2 = 18. Thus we have the marginal case F = C,
which was discussed in the initial analysis of ZrW2O8 in terms
of RUMs,29,30 and as discussed above in Section 4.6.

In Section 4 we consider two variations of the model. In the
first, it is recognised that in the crystal structure of ZrW2O8 a
pair of neighbouring WO4 tetrahedra have one oxygen atom on
one tetrahedron that is unusually close to the W centre of the
other tetrahedron. Thus it is possible to add bonding between
this atom and the second tetrahedron, making a WO5 poly-
hedron with a shared vertex. With no additional constraints,
we can still associate 12 degrees of freedom to the W2O8 unit,
but we now have 3 additional constraints at the shared vertex
(Fig. 6). The second variant is to add a constraint that prevents
bending of the W–O–W bond, which can be achieved by adding
a single constraint on the W� � �W distance.

It has also been proposed that there are effectively rigid
WZr3 groups of atoms, in what has been called the ‘tent’
model.21,22 We take account of this by adding Zr–W bond
constraints, with three such connections for each Zr and W
atom. In this model, we add 3 constraints per Zr atom.

For a final example of mixing different types of constraint,
let us consider the case of Zr–O bonds (no angular constraints
within the ZrO6 octahedra), and rigid WO4 tetrahedra with the
additional W–O bond to form a linkage of WO5 and WO4

(Section 4.3). The Zr atom gives 3 degrees of freedom and 6
bond constraints. The W2O8 unit gives 12 degrees of freedom
and 3 constraints. Thus in total F = 15 and C = 9. If the W–O–W
is made unbendable, we have C = 10. If additionally we have the

Table 3 Analysis of flexibility for each of the flexibility models for ZrW2O8,
as defined in Fig. 7 and 8, with the keys a–p defined by the grid in these two
figures. F denotes the number of degrees of freedom per formula unit and
C denotes the number of constraints. For the degrees of freedom, the
subscripts ‘‘atoms’’ and ‘‘poly’’ indicate the contribution due to individual
atoms (3 per atom) or structural polyhedra (ZrO6 octahedra or WO4

tetrahedra; 6 per polyhedron) respectively. For the constraints, the sub-
scripts ‘‘bonds’’ and ‘‘links’’ indicate the contributions from the bonding
constraints (1 per bond) and from the atoms shared by two polyhedra
(3 per shared atom). Without subscripts, as in the last column, F = Fatoms +
Fpoly and C = Cbonds + Clinks. The central horizontal space separates the
models shown in Fig. 7 (above the central space, without Zr. . .W constraints)
and Fig. 8 (below the central space, with Zr� � �W constraints)

Model Fatoms Fpoly Cbonds Clinks F–C

a 33 0 14 0 19
b 3 12 6 0 9
c 3 12 6 3 6
d 3 12 7 3 5
e 12 6 8 0 10
f 0 18 0 18 0
g 0 18 0 21 �3
h 0 18 1 21 �4

i 33 0 17 0 16
j 3 12 9 0 6
k 3 12 9 3 3
l 3 12 10 3 2
m 12 6 11 0 7
n 0 18 3 18 �3
o 0 18 3 21 �6
p 0 18 4 21 �7
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constraints of the tent model, we then have C = 13. In all cases
F 4 C.

Analyses for all 16 cases considered in this paper, namely
models a–h as shown in Fig. 7 and models i–o as shown in
Fig. 8, are given in Table 3.
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