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Acoustic phonons and negative thermal expansion
in MOF-5

Leila H. N. Rimmer,†a Martin T. Dove,*ab Andrew L. Goodwinc and David C. Palmerd

The mechanism of negative thermal expansion (NTE) in MOF-5 has been studied using a rigid unit mode

analysis of the phonons responsible for NTE. In addition to confirming the role of the previously proposed

optic ‘trampoline mode’ mechanism [Lock et al., Dalton Trans., 2013, 42, 1933–2320], we have identified a

new acoustic mode mechanism that makes a major contribution to the macroscopic NTE of this framework.

1 Introduction

Negative thermal expansion—the unusual phenomenon in
which a material will shrink rather than expand on increasing
temperature—is a property which has attracted increasing
interest in recent years. The review of Lind1 identifies a large
and systematic rise in the number of studies of negative
thermal expansion (NTE) in the two decades after 1990. Much
of this work has been carried out on ceramic materials as
described by Lind1 and, in another review, by Romao et al.2 The
structures of many of these materials can be described as
frameworks or networks of linked polyhedral groups of atoms—
potentially a critical feature in any NTE mechanism.3,4 One
example of this description is the network of corner-linked
WO4 tetrahedra and ZrO6 octahedra in ZrW2O8.

Less effort has been devoted to understanding NTE in
metal–organic framework (MOF) materials, which can be
described as nano-porous frameworks composed of cations
connected via molecular ligands. One simple example exhibi-
ting NTE is Zn(CN)2,5,6 in which the Zn2+ cations are tetrahed-
rally coordinated with the CN� molecular ions forming the

linkages between tetrahedra in a manner analogous to the O2�

anion in silicates.
MOF-5, Zn4O(1,4-benzenedicarboxylate), is one of the more

important MOFs that exhibit NTE. Moreover, its crystal structure7

has cubic symmetry, meaning that the NTE is isotropic. The
crystal structure of MOF-5, illustrated in Fig. 1, consists of
Zn4O13 clusters arranged as four ZnO4 units with a shared oxygen
atom; separated clusters are linked by benzenedicarboxylate
(BDC) ligands. MOF-5 has a large volumetric coefficient of NTE
that has been measured as aV E �48 M K�1.8

Fig. 1 The MOF-5 structure. (a) Shows MOF-5 in ball-and-stick format.
Red atoms are O, grey atoms are Zn, black atoms are C and pink atoms are
H. (b) Shows MOF-5 in terms of ZnO4 tetrahedra linked by BDC ligands.
Grey tetrahedra are ZnO4. Unit cells (with cubic cell parameter a = 25.909)
are shown as dashed black lines. This material has space group Fm %3m.
(c) Shows the ZnO4 unit in further detail. The four ZnO4 units are
connected by a single shared O atom at the centre of the cluster.
(d) Shows the BDC ligand in further detail. Two carboxylate groups exist
at either end of the aromatic ring.
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Like most NTE frameworks, the thermal expansion of MOF-5
is thought to be driven by its atomic-scale vibrational modes.
Phonons normally drive positive thermal expansion (PTE) since
the anharmonicity of a typical interatomic potential leads to long-
itudinal thermal expansion of bonds. This, in turn, contributes to
expansion of the material at the macroscopic level as temperature
increases. However, in some framework materials, the energy cost
of bond angle bending is much less than that of longitudinal bond
stretching. When this is the case, a phonon consisting of transverse
vibrations and negligible longitudinal bond stretching can act to
‘pull in’ surrounding atoms which, in turn, contributes to contrac-
tion of the material at the macroscopic level.1,2

Overall thermal expansion is dependent on the balance
between NTE-contributing and PTE-contributing phonons.
Phonon amplitude, and thus the degree to which a given
phonon helps drive NTE, is inversely proportional to the square
of vibrational frequency.9 If NTE phonons exist at sufficiently
low frequency and, if they account for a sufficiently large
proportion of the full phonon spectrum, they can outweigh
the standard PTE modes and result in macroscopic NTE. Since
phonons are cooperative excitations that involve the whole
system (and not just local flexing of the structure) the question
of whether NTE phonons can have sufficiently low frequency is
one of whether the local flexibility associated with bond bending
extends across the whole crystal. The Rigid Unit Mode model10–12

is one way to understand the origin of the structural flexibility
necessary for NTE.3,4 The essential idea is that a set of phonon-
s—called rigid unit modes (RUMs)—can propagate with negligi-
ble deformation of coordination polyhedra or similar units,
thereby corresponding to low-energy flexing of the whole struc-
ture. Not only do RUMs inherently describe the transverse bond
vibrations that are proposed as the mechanism of NTE, but they
also provide the link between local flexibility and the ‘whole
crystal’ flexibility that is required to produce sufficiently low
energy NTE phonons.

In the case of MOF-5, ab initio lattice dynamics calculations of
G-point optic phonons8 found that MOF-5 has a large number of
modes with frequency below 5.4 THz. Many of these were found
to drive NTE and were identified as RUMs involving transverse
vibrations of rigid ZnO4 tetrahedra, carboxylate triangles and
benzene hexagons. The lowest frequency NTE phonons were
those that involve flexing of the BDC ligand8,13—see Fig. 2.

The proposal that NTE in MOF-5 is driven by flexing of the
BDC ligand was later supported by analysis of thermal displace-
ment parameters determined from X-ray diffraction.13 A further
in-depth experimental study, combining X-ray and neutron
diffraction, inelastic neutron scattering (INS), EXAFS and ab initio
molecular dynamics (all examined as a function of tempera-
ture)14 confirmed that this mode, which was termed a ‘trampo-
line mode’, is prevalent in the lowest-energy optic phonons. It
was therefore concluded that this mode drives the NTE in MOF-5.

Despite these studies, our understanding of NTE in MOF-5 is
far from complete. In order to fully understand NTE behaviour,
contributions from all phonons must be considered—therefore
the entire Brillouin zone must be investigated. Although the
INS study was able to capture phonon information for most of
the Brillouin zone, this particular spectroscopy technique
struggles to capture very low frequencies and does not contain
information relating to phonon wave vector. In addition,
although ab initio phonons have previously been calculated
for some of the high-symmetry Brillouin zone directions in
MOF-5,15 detailed analysis has only been carried out for phonons
at zero wave vector. Given the complexity of the phonon spec-
trum of a MOF material, we must also have a means of system-
atically determining whether identified NTE phonons do indeed
correspond to the ‘trampoline mode’ or to other similar modes.

Our approach to this problem, and one which we have
previously applied to simpler NTE materials with some success,6,17

is to map phonons calculated for simple models of framework
flexibility (which, in turn, simulate different types of RUM) onto

Fig. 2 Illustration of the ‘trampoline’ mode thought to be responsible for NTE in MOF-5. (a) Shows the original BDC ligand. (b) Shows a side-view of the
same ligand. (c) Shows a vibration that minimises deformation of the carboxylate and benzene groups. Whilst it reduces the length of the ligand and is low
energy because it minimises deformation of those units, it is not the lowest energy deformation of its type. (d) Shows another vibration that minimises
deformation of the carboxylate and benzene groups involving translation of the benzene ring; the ‘trampoline mode’ thought to drive NTE in MOF-5.
Whilst the length of the ligand is decreased, the overall deformation undergone by the BDC ligand is minimised and so this NTE mode can exist at
extremely low frequency.
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results from calculations of ab initio phonon dispersion curves.
The degree to which each simple model can reproduce the
NTE-driving phonons in the ab initio phonon spectrum tells us
the type of atomic-scale motion that ultimately drives the NTE in
this material.

2 Methodology
2.1 Ab initio lattice dynamics and mode
Grüneisen parameters

Ab initio calculations of the structure and lattice dynamics of MOF-5
were carried out using Density Functional Theory (DFT) using plane-
wave basis sets and representing the effects of core electrons using
the standard pseudopotential method. We used the CASTEP
program18 for this work, with the GGA-PBE functional19,20 and
CASTEP’s internal on-the-fly-generated pseudopotentials for Zn, O,
C and H, regenerated so as to be norm-conserving. The material was
explicitly defined as an insulator for all calculations. For geometry
optimisation calculations, empirical dispersion corrections were
applied according to the Grimmé scheme.21 Forces, stresses and
dielectric constants were converged to within 0.005 eV Å�1, 0.01 GPa
and 0.0001 respectively. This was achieved using a plane wave cutoff
energy of 950 eV and a single wave-vector for the integration of
electronic states across the Brillouin zone. Geometry optimisation at
0 GPa gave final structural parameters as detailed in Table 1.

Phonons were calculated in CASTEP using Density-
Functional Perturbation Theory (DFPT)22 with a 2 � 2 � 2
Monkhorst–Pack23 grid. LO/TO splitting was explicitly
accounted for and the acoustic sum rule was enforced. Fourier
interpolation was used to calculate phonons along high-
symmetry directions24–28 for the production of dispersion
curves. In addition, phonons were calculated for 471 wave-
vectors spaced randomly throughout the Brillouin zone for the
production of the vibrational density of states.

The structural relaxation and phonon calculation were
repeated for a second unit cell, this time with cell parameters
fixed at values 0.1% larger than their 0 GPa counterpart.
Comparison of the phonon frequencies for the two volumes

allowed calculation of the individual mode Grüneisen para-
meters gi,k, defined as

gi;k ¼ �
@ ln oi;k

@ ln V
(1)

where oi,k is the angular frequency of the phonon mode i with
wave vector k, and V is the volume. Essentially gi,k quantifies the
relative change in phonon frequency for a relative change in
volume. Provided that intrinsic anharmonic effects are not too
large, the mode Grüneisen parameters determine the value of
the volumetric coefficient of thermal expansion aV = q ln V/qT
through the relation

aV ¼
�gCV

BV
(2)

where T is temperature, B is the bulk modulus and CV is
the constant-volume heat capacity. �g is known as the overall
Grüneisen parameter, defined as

�g ¼ 1

CV

X

i;k

gi;k�hoi;k

@n oi;k;T
� �

@T
(3)

where �h is the reduced Planck’s constant and n is the Bose–
Einstein distribution defined as

nðo;TÞ ¼ 1

exp �ho=kBTð Þ � 1ð Þ (4)

where kB is Boltzmann’s constant.
From this formalism we see that NTE phonons have negative

values of gi,k; that is, the frequencies of NTE phonons increase
with volume expansion. If these phonons constitute a sufficient
part of the sum in eqn (3), the overall Grüneisen parameter will
have a negative value and hence (from eqn (2)) the value of aV

will be negative.
At this stage one limitation of the ab initio calculations must

be made clear: whilst the parameterised dispersion correction
term can be added to most DFT-calculated values, dispersion
corrections are currently not implemented for DFPT phonon
calculations. Dispersion correction is possible when using a
finite-displacement method (and has been achieved for the
MOF ZIF-8,29 though not yet for MOF-58,13,15) but this approach
is only suitable for G-point calculations since a converged
‘supercell method’ calculation is not feasible for a material of
this size.

As this investigation requires consideration of the entire
phonon spectrum, it was decided to proceed with relaxations
using dispersion corrected DFT but, for the phonon calculation
itself, to proceed with DFPT despite its lack of dispersion
correction. Although the phonons would not be as accurate as
desired, we anticipated that they would nevertheless provide
valuable insight. More specifically, Fig. 1 shows that the BDC
ligands in MOF-5 are not in close contact (nearest neighbour
benzene rings are B16 Å apart), meaning that the effect of van
der Waals interactions on phonons would ultimately be small.
Our study, in any event, provides the first detailed NTE examina-
tion of low frequency phonons away from the G point, a region of
the vibrational spectrum not previously covered in-depth.

Table 1 Structural data for the MOF-5 equilibrium cell as optimised at
0 GPa via DFT with dispersion correction in CASTEP. Experimental data
obtained for evacuated MOF-5 via neutron diffraction at 0 GPa, 3.5 K is
shown alongside for comparison. As can be clearly seen, the ab initio
results are very close to the experimentally-derived values

Space group

This study (DFT + dispersion
correction)

Neutron diffraction
at 3.5 K16

225 (Fm%3m) 225 (Fm%3m)

Cell parameter a = 26.058 a = 25.909

Atom x y z x y z

H 0.3080 0.3080 0.0479 0.3087 0.3087 0.0483
C 0.8892 0.2500 0.2500 0.8882 0.2500 0.2500
C 0.5535 0.2500 0.2500 0.5533 0.2500 0.2500
C 0.2173 0.2173 0.0266 0.2174 0.2174 0.0267
O 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
O 0.7806 0.7806 0.8671 0.7807 0.7807 0.8667
Zn 0.2063 0.2063 0.2063 0.2061 0.2061 0.2061
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2.2 MOF-5 rigid unit models

Given previous work had already shown that ZnO4 tetrahedra
undergo negligible deformation at low energy,14 models invol-
ving such deformations were not considered for this investiga-
tion. Instead, the inorganic Zn4O13 clusters were represented by
one of,

(1) A single rigid cluster.
(2) Four rigid ZnO4 tetrahedra, connected by a single shared

oxygen atom about which each tetrahedron has flexibility to
rotate.

The BDC ligands were represented by one of,
(1) A rigid BDC rectangle.
(2) Three rigid edge-sharing rectangles hinged where car-

boxylates and benzene rings meet.
(3) A rigid benzene hexagon with rigid carboxylate triangles

connected at either end (i.e. a ‘bowtie’ shape).
Illustrations of each of these rigid units can be found in

Fig. 3 and 4.
Rigid unit models for this material were created and analysed

using our program CRUSH,10,30 which carries out molecular
lattice dynamics calculations on structures made up of inter-
connected rigid units.‡ Calculated phonons with zero frequency
correspond to RUMs of the investigated structure whilst phonons
with non-zero frequency correspond to modes that involve
distortions of those rigid units. Taking into account all possible
combinations of the MOF-5 rigid units represented here, a total
of six different models were constructed in CRUSH for the 0 GPa
MOF-5 cell and phonons were calculated.

Our approach to analyse the RUM flexibility of a material is
to quantify the extent to which the phonon eigenvectors can be
matched to the RUM eigenvectors. To quantify this match we
define a dimensionless ‘match’ coefficient, mi,k, as

mi;k ¼ O2
X

j

e
phonon
i;k � emodel

j;k

O2 þ oj;k
2

(5)

where ephonon
i,k is the eigenvector of the ab initio phonon mode i

at wave vector k, emodel
j,k is the eigenvector of the CRUSH mode j

at the same wave vector k and oj,k is the corresponding angular

frequency of the CRUSH-calculated phonon j. O is a scale factor
that avoids division-by-zero errors when o = 0.

By setting O equal to 1 THz, a value of oj,k
2 = 0 gives a values

of 1/(O2 + oj,k
2) = 1 THz�2, which sets the scale of mi,k values to

range from 0 to 1. A value close to 1 implies that the ab initio
phonon i is a close match for a RUM. A value close to 0 implies
that the ab initio phonon i involves significant distortions of the
rigid units described in the rigid unit model in question (i.e.
either it is a poor match for any CRUSH mode, or else it only
matches CRUSH phonons which involve non-trivial distortions
of the rigid units). mi,k, therefore, represents the degree to
which the rigid unit model in question is able to reproduce the
mode i at the wave vector k.

3 Results
3.1 NTE phonons in MOF-5

The full phonon density of states calculated for MOF-5 is shown
in Fig. 5a. Fig. 5b shows the same density of states replotted
with a colour scale that represents the average value of gi,k

within each bin. These results show that NTE phonons (those
with negative values of gi,k) exist with frequencies from zero to
8 THz; this upper value is higher than those observed in
previous ab initio studies.8

Fig. 6 shows phonon dispersion curves and densities of
states in the 0–8 THz frequency range. Fig. 6a shows the
complete set of dispersion curves in this frequency range whilst
Fig. 6b shows the same dispersion curves shaded according to
the value of gi,k using the same scale as for the density of states
plotted in Fig. 5b. The strongest contribution to NTE comes
from acoustic modes in the G–X–W region and a very low
frequency optic mode (B0.5 THz) that spans the entire
Brillouin zone. The acoustic NTE modes have gi,k B �45
around X and W, rising to B�20 around G and to B�4
elsewhere. Meanwhile, the optic mode has gi,k B �30 through-
out the Brillouin zone.

For the modes with higher frequencies, gi,k rises to B0 at a
frequency of around 1.1 THz. There is then a single, weak, PTE
mode (gi,k B 1 at 1.2 THz) before gi,k falls to a value B�15 by
1.6 THz. It then starts to rise again with increasing frequency,
becoming very small above 2.6 THz and reaching B0 by 5.4 THz.
There are some weak PTE phonons (gi,k B 1) at 5.4–7.6 THz,

Fig. 3 Flexibility models of the inorganic unit. Grey polyhedra represent
rigid units, purple spheres represent flexible linkages.

Fig. 4 Flexibility models of the BDC ligand. Grey polyhedra represent rigid
units, purple spheres represent flexible linkages.

‡ The latest version of CRUSH can be obtained from the corresponding author.
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followed by the final band of weak NTE phonons (gi,k B �1) at
7.9 THz. These last NTE phonons have not been noted in any
previous studies.8,13,14

Returning to the lowest frequency phonons in MOF-5, we
have quantified the relative importance of the acoustic modes
and optic mode at B0.5 THz for NTE through computing the
overall Grüneisen parameter �go by evaluating eqn (3) in the
limit kBT/�ho4 1 as a function of an upper cut-off frequency o0.
In effect, we have computed the function

�goðo0Þ ¼
Ðo0
0
gðoÞgðoÞdo
Ðo0
0 gðoÞdo

(6)

where g(o) is the Grüneisen parameter and g(o) is the vibra-
tional density of states at frequency o.

This function is shown in Fig. 7 where the key feature is
the pair of negative peaks at low frequencies. The first, at
B0.25 THz, results from the contribution of the lower-
frequency acoustic modes to the overall Grüneisen parameter.

The second, at B0.5 THz, results from the low-lying optic mode
that undergoes little variation in frequency as a function of
wave vector. Both modes clearly make the largest contribution
to the negative value of the overall Grüneisen parameter. At
higher frequencies, �go tends towards a smaller negative value as
the contribution from phonons with large negative Grüneisen
parameters is increasingly outweighed by higher-frequency
phonons with smaller negative Grüneisen parameters as well as
higher-frequency phonons with positive Grüneisen parameters.

3.2 Flexibility analysis

Since the full MOF-5 phonon spectrum is highly complex, we
present in Fig. 8 a convenient visual representation of the
different types of RUMs in the ab initio phonon spectrum by
colouring the dispersion curves according to the value of the
matching parameter mi,k introduced in eqn (5). The values of
mi,k were converted to a two-dimensional linear colour scale
such that the colour saturation ranges from white (mi,k = 0)
through to full strength colour (mi,k = 1), with the colour

Fig. 5 (a) Full MOF-5 vibrational density of states. (b) The same histogram, shaded according to the average value of gi,k for each bin; the colour scale
ranges from red for gi,k r �40 to white for gi,k = 0 through to blue for gi,k Z +40. For the sake of clarity, this graph omits a black outline to the histogram.
Note that (b) appears almost featureless above 20 THz, indicating that gi,k E 0 above this frequency. These two graphs show that the NTE phonons in
MOF-5 are found in the 0–8 THz region of the frequency spectrum.

Fig. 6 (a) Phonon dispersion curves and full Brillouin zone density of states for the equilibrium MOF-5 cell. Wave vectors for points in the Brillouin zone
of high symmetry are labelled according to the notation of Bradley and Cracknell.31 With respect to the conventional face-centred cubic cell, G = (0,0,0),
X = (1,0,0), L = (0.5,0.5,0.5) and W = (0.5,1,0). (b) Shows the same data shaded according to the value of gi,k of each mode at each wave vector with
respect to phonons calculated for a MOF-5 cell with an 0.1% larger volume. The colour scale ranges from red (gi,k r �40) to white (gi,k = 0) through to
blue (gi,k Z +40). Bins that make up the density of states are shaded according to the average gi,k for each bin using the same colour scale.
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depending on the form of the eigenvector of the flexibility model.
RUMs involving only translations of rigid units are coloured blue
and RUMs involving only rotations of rigid units are coloured red.
RUMs that have mixed rotation/translation character are coloured
purple, the exact ratio of red (rotation) and blue (translation)
depending on their respective contribution.

Densities of states are also shaded using a simpler one-
dimensional colour scale such that the shade of each bin
ranges from white (average mi,k for the bin is 0) through to
black (average mi,k for the bin is 1).

Fig. 8 shows separate representations for shaded phonon
dispersion curves and densities of states for each of the six
models, formed as the permutations of the representations of
the flexibilities of the ligand and of the Zr4O13 cluster. Here we
present the results according to the flexibility of the ligand.

3.2.1 Rigid BDC rectangles. Results from mi,k mapping for
the two models with completely rigid BDC ligands are shown in the
top row in Fig. 8. The model that treats the inorganic unit as a single
rigid polyhedron is highly constrained. Only the acoustic phonons
around G, corresponding to translations of the entire lattice, have
large mi,k. There are also some optic modes with non-negligible
values of mi,k around 2.75 THz, but these are not a major factor in
NTE. When the inorganic unit is instead treated as four separate
rigid ZnO4 tetrahedra, we find non-zero values of mi,k for many of
the phonons with frequencies in the range 0–2.75 THz. mi,k is
largest for the acoustic phonons for wave vectors along the direction
G–X in reciprocal space. It also makes some non-trivial contribution
to the strong NTE phonons of frequency 0.5 THz with wave vectors
away from G as well as to the strong NTE phonons with frequency
1.6 THz at wave vectors close to G. Therefore, a model which
combines motion of rigid ZnO4 units with a rigid BDC rectangle
describes the acoustic NTE phonons in MOF-5 for the G–X direction.
This model also has some association with the strongest optic NTE
phonons in MOF-5, without completely describing them.

3.2.2 Edge-sharing BDC rectangles. The results for the
models that represent the BDC ligand as a set of three edge-
sharing rectangles are shown in the middle row of Fig. 8. The
model that treats the inorganic unit as a single rigid polyhedron
has non-zero values of mi,k for all phonons that are identified as
NTE in Fig. 6. mi,k rises to reach B1 for the strongest NTE
phonons (with the exception of the acoustic phonon X–W). mi,k is
also B1 for the weak NTE phonons around 8 THz.

The rotational and translational components of mi,k vary as
a function of wave vector. However, the lowest frequency
phonons remain primarily translational in nature whilst the
higher frequency phonons have a larger rotational component.

The strong NTE optic mode at 0.5 THz must correspond to
the previously-identified ‘trampoline mode’14 since this mode
involves translation of the benzene ring out of the plane of the
ligand. Higher frequency phonons are variations of this eigen-
vector in that they involve an additional energy cost due to
rotation of components within the BDC ligand.

If the inorganic unit is instead treated as four separate rigid
ZnO4 tetrahedra, mi,k values rise slightly in the 0–2.75 THz range,
but the overall difference is negligible. Therefore, a model treating
the ZnO4 units as four separate tetrahedra along with the BDC
ligand as edge-sharing rectangles, does not add any extra informa-
tion to that already provided by less flexible models.

3.2.3 BDC ‘bowtie’. The results for the two models that
represent the BDC ligand as corner-sharing carboxylate trian-
gles and a benzene hexagon (also known as a ‘bowtie’ model)
are shown in the bottom row of Fig. 8. With the inorganic
cluster treated as a rigid entity, we find mi,k E 1 for phonons
with frequencies 0–1.6 THz and at 7.9 THz and non-zero values
of mi,k for phonons at 1.6–5.4 THz. However, once again, mi,k is
small for the strong acoustic NTE phonon in the X–W direction.

If the inorganic unit is treated as four separate rigid ZnO4

tetrahedra, then values of mi,k for phonons up to 2.75 THz are
all approximately equal to 1. Once again, however, the acoustic
NTE phonon X–W still has small mi,k.

Therefore, most of the lowest part of the frequency spectrum
(including almost all non-trivial NTE phonons) can be described
by a model involving rigid ZnO4 tetrahedra and BDC ‘bowties’.
The very weak NTE phonons at 2.75–5.4 THz are partially
described by such a model, but involve additional distortions
of the crystal structure. Note that this model can also incorporate
some motions that would not actively contribute to NTE, such as
twisting of the benzene group about an axis along the length of
the ligand. These motions appear to be mixed in with other,
NTE-driving, motions in the real vibrational spectrum.

The extra degree of flexibility described by this model does
not actually yield any additional insight into the strongest NTE
phonons, but it does fill in many of the otherwise missing
details relating to weaker NTE phonons at higher frequencies.

3.3 Visual analysis of acoustic modes at X

While the flexibility model analysis has allowed us to explain
the majority of the low-frequency phonon spectrum of MOF-5,
one important region remains unexplained. This is the acoustic
phonon around the X–W region in reciprocal space which,

Fig. 7 Calculation of the overall Grüneisen parameter for all frequencies up to
a maximum cut-off frequency, shown as a function of the cut-off frequency.
Thus the value of the Grüneisen parameter at any value of the frequency arises
solely from the set of modes of lower frequency. The negative peaks arise
respectively from the acoustic modes without (B0.25 THz) and with (B0.5 THz)
the contribution from the low-frequency optic modes.
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according to Fig. 6, makes a significant contribution to NTE but
which, according to Fig. 8, cannot be described by any of the
flexibility model investigated in this paper.

The eigenvector for the acoustic mode at wave vector X is
shown in Fig. 9. It corresponds to a shear displacement of one
layer relative to another whilst retaining the basic character of

Fig. 8 Phonon dispersion curves and full Brillouin zone density of states for MOF-5. Wave vectors are labelled as in Fig. 6. The data are shaded according
to the value of mi,k of each mode at each wave vector. The strength of the colour used in the dispersion curves ranges from white (mi,k = 0) through to full
strength colour (mi,k = 1). The colour itself ranges from blue to represent 100% polyhedral translations, through purple for modes of mixed rotation/
translation character, to red representing 100% polyhedral rotations. The colour scale used in the densities of states ranges from white (mi,k = 0) through
to black (mi,k = 1), with each bin in the density of states shaded according to the average value of mi,k for each bin.
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an acoustic mode. In the case of the mode at the X point,
alternate layers move in opposite directions (note that, at zero
wave vector, each layer would move in the same direction). The
motion of the ligands with the shear pulls the connected layers
together, thereby reducing the volume. At the X point this
displacement can only be accomplished through a small distor-
tion of the shape of the ligands and ZnO4 tetrahedra in a manner
not accounted for by the flexibility models discussed above.

3.4 Overview

In summary, phonons calculated for MOF-5 (without the inclu-
sion of dispersion forces) show that NTE in this material is
primarily driven by two mechanisms. The first is an acoustic
phonon that drives strong NTE in the G–X–W region of the
Brillouin zone which corresponds to motion of rigid BDC
ligands and ZnO4 tetrahedra in the G–X direction and to motion
of near-rigid BDC ligands and ZnO4 tetrahedra in the X–W
direction. The second mechanism involves a very low frequency
(0.5 THz) optic phonon that drives strong NTE across the
Brillouin zone which corresponds to a ‘trampoline mode’ in
the BDC ligand.

As frequency increases to 5.4 THz, NTE phonons continue to
exist but become weaker as their mechanisms resemble tram-
poline mode-like flexing of BDC ligands but with increased
deformation of the ligand itself.

Two other features within this frequency range (0.5–5.4 THz)
merit mention. The first is another, as yet, uncharacterised (i.e.
not explained by any flexibility model considered here) weak
PTE phonon at 1.2 THz. The second is a strong NTE phonon at
1.6 THz that corresponds to a trampoline-like phonon that
minimises deformation of the BDC ligand but which involves
increased motion of ZnO4 tetrahedra within the inorganic unit.

Phonons that involve non-trivial amounts of bond stretching
drive weak PTE in the 5.4–7.9 THz range. Finally, there is a
narrow band of weak NTE phonons around B7.9 THz that
correspond to a trampoline-like motion but involve an extra
deformation of the BDC unit, albeit without significant defor-
mation of the carboxylate or benzene groups.

Phonons above this frequency all involve non-trivial levels of
bond stretching and thus drive PTE.

4 Discussion

Our investigation finds that an acoustic phonon with a mecha-
nism not previously documented (motion of rigid or near-rigid
BDC ligands and ZnO4 tetrahedra) makes a sizeable contribu-
tion to the overall NTE in MOF-5. Specifically, NTE in MOF-5 is
driven by two types of phonon, one of which is this hitherto
unidentified acoustic NTE phonon that spans the G–X–W
region of reciprocal space. In the G–X direction this acoustic
phonon can be described by translations of a rigid BDC ligand
bonded to individual rigid ZnO4 tetrahedra; in the X–W direc-
tion the BDC ligands and ZnO4 tetrahedra undergo some minor
distortion.

The second type of phonon responsible for driving much of
the NTE in MOF-5 is the optic ‘trampoline’ mode that spans the
entire Brillouin zone. In this respect this study is, therefore, in
accordance with previous work that identified the significant
contribution of the trampoline mode in MOF-5 to its NTE. There
are also much smaller contributions to NTE from phonons up to
5.4 THz and in a narrow band around 7.9 THz. These modes
generally represent variations of the trampoline mode (with
additional, higher frequency, deformations of the BDC ligand).
They also incorporate some motions that cannot actively contri-
bute to NTE, such as twisting of the benzene group about an axis
along the length of the ligand.

Acoustic phonons have been shown to play a critical role in
driving the NTE of other materials such as Zn(CN)2

6 and
Cu2O.17,32 In general, however, the role of acoustic modes is rarely
evaluated in published studies of NTE phonons; most studies to
date have tended to limit their focus to the contributions of optic
modes only. This is primarily due to practical difficulties in
observing acoustic phonons experimentally. However, in order
to truly capture the behaviour of an NTE material, one cannot
afford to rule out the importance of acoustic phonons.

Two important issues remain less understood. The first
relates to the acoustic mode in the X–W direction, which makes
a strong contribution to NTE but whose mode eigenvectors
involve distortions of the ligands and ZnO4 tetrahedra and
thus do not readily map onto the flexibility modes investigated
here. The observed distortions are minor (explaining why the
frequencies of these phonons are not large) but, nevertheless,
one might not have expected to see any noticeable distortion of
these structural units at such low energies. The second issue
relates to the single weak PTE phonon at 1.2 THz. This did not
generate any remarkable features in the flexibility mapping but,

Fig. 9 Representation of the transverse acoustic mode at the X = (1,0,0)
wave vector. This shows shearing of alternate layers (in contrast to the
same mode at zero wave vector which corresponds to all layers moving in
the same direction). The subtle bending of the ligands and ZnO4 units pulls
the layers together, and this contributes to NTE.
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rather, it appeared to share the same features of surrounding
NTE phonons.
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