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ABSTRACT: Thermodynamic phase behavior is affected by
curved interfaces in micro- and nanoscale systems. For
example, capillary freezing point depression is associated
with the pressure difference between the solid and liquid
phases caused by interface curvature. In this study, the thermal,
mechanical, and chemical equilibrium conditions are derived
for binary solid−liquid equilibrium with a curved solid−liquid
interface due to confinement in a capillary. This derivation
shows the equivalence of the most general forms of the
Gibbs−Thomson and Ostwald−Freundlich equations. As an
example, the effect of curvature on solid−liquid equilibrium is
explained quantitatively for the water/glycerol system.
Considering the effect of a curved solid−liquid interface, a complete solid−liquid phase diagram is developed over a range of
concentrations for the water/glycerol system (including the freezing of pure water or precipitation of pure glycerol depending on
the concentration of the solution). This phase diagram is compared with the traditional phase diagram in which the assumption
of a flat solid−liquid interface is made. We show the extent to which nanoscale interface curvature can affect the composition-
dependent freezing and precipitating processes, as well as the change in the eutectic point temperature and concentration with
interface curvature. Understanding the effect of curvature on solid−liquid equilibrium in nanoscale capillaries has applications in
the food industry, soil science, cryobiology, nanoporous materials, and various nanoscience fields.

1. INTRODUCTION
1.1. Effect of Phase Boundary Curvature on Phase

Diagrams. Understanding the fundamental science of solid,
liquid, or vapor confined in capillaries or pores is significant in
surface chemistry and physics. Different equations have been
proposed to explain the effect of phase boundary curvature on
equilibrium. One of the most well-known equations is the
Kelvin equation that describes the equilibrium vapor pressure
above a curved interface compared to the vapor pressure above
a flat interface at the same temperature. The initial equation
derived by Lord Kelvin1 was only approximate. It was not
thermodynamically correct as it did not consider chemical
potential equilibrium.2 In the corrected form of the Kelvin
equation, the mechanical equilibrium (Laplace equation) is
combined with the chemical potential equilibrium.3,4 The
Kelvin equation can be applied to drops, bubbles, and capillary-
held wetting liquid menisci, and it has been validated for
surfaces with mean radii of curvature larger than 8 times the
molecular diameter of the material of interest (for example, for
cyclohexane, the Kelvin equation is valid down to a radius of
curvature of 4 nm).5,6 Later on, several groups extended the
Kelvin equation to multicomponent mixtures in vapor−liquid
equilibrium,7,8 taking into account the chemical potential
equilibrium for multiple components in different phases, that
is, the equality of the chemical potential of each component in
different phases.9 Although the Kelvin equation was initially
derived for the case of vapor−liquid equilibrium, the idea can
be extended to liquid−liquid equilibrium. The liquid−liquid

analogue of the Kelvin equation has been applied to investigate
the thermodynamic equilibrium of micro- and nanodrops
concentrated by partial dissolution into a surrounding oil
phase.10,11

The Gibbs−Thompson equation is an analogue of the Kelvin
equation for solid−liquid equilibrium that describes the
equilibrium melting point of a small pure solid crystal in its
own pure liquid as a function of crystal radius. The validity of
the Gibbs−Thompson equation has been proven by experi-
ments.12,13 There are many experiments showing the effect of
curvature on phase equilibrium in a range of porous systems:
metal oxide gels, porous glasses, and nanoporous materials.14

For single-component solid−liquid equilibrium confined inside
of pores, the experimental results have been compared with
theoretical predictions to show the relevance of the size of the
pores.15,16 The capillary freezing point inside of glass capillaries
with radii of 3−87 μm was measured while the image of the
ice−solution interface was captured to analyze the contact
angle.13 For porous materials with different nanoscale curvature
in single-component solid−liquid equilibrium, the freezing
temperature of liquid in a pore is lower than that of bulk liquid
with a flat surface. The Gibbs−Thompson equation has been
shown to be valid to predict the freezing and melting point
depression of ice in nanoscopic glass pores that are as small as
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∼4 nm in diameter.17 The Gibbs−Thompson equation can also
be extended for multicomponent systems in solid−liquid
equilibrium. In cryobiology, in which cells in solution or
tissues are subjected to low temperatures, the temperature at
which ice propagates through confined spaces is lowered by the
Gibbs−Thomson effect.18−20 Also, the Gibbs−Thomson
equation has been applied to predict microstructure formation
during solidification in multicomponent systems.21

The Ostwald−Freundlich equation is another analogue of
the Kelvin equation for solid−liquid equilibrium. Introduced by
Ostwald22 and later corrected by Freundlich,23 the Ostwald−
Freundlich equation24 expresses the solubility of a solid particle
in a bulk liquid solution as a function of particle curvature. As
the size of the solids is decreased to the nanoscale, the solubility
will depend on the size of the particle.25 A nonideal form of the
Ostwald−Freundlich equation developed by Eslami et al. was
used to describe the effect of precipitate solute curvature on
aqueous microdrop concentrating processes.26

The references mentioned above consider only the
computation of the equilibrium state in a narrow range of
concentrations. Studies of the effect of curvature on phase
equilibrium in multicomponent systems have been quite limited
compared with those of single-component systems. To our
knowledge, a rigorous thermodynamic study has not been done
of the effects of curvature on solid−liquid equilibrium in
multicomponent systems over the complete range of
concentrations and temperatures.
Some recent works studied the effect of curvature on

multicomponent vapor−liquid equilibrium.27,28 In nanosized
pores in which vapor and liquid phases coexist, equation-of-
state models have been used to describe capillary condensation
for binary mixtures and to calculate the critical pore radius and
condensed-phase equilibrium pressure for nanosized pores.27,29

Another example by Shardt and Elliott is the investigation of
the curvature effect on multicomponent vapor−liquid phase
equilibrium. They developed phase envelopes and phase
composition diagrams for the ideal system methanol/ethanol
and the nonideal system ethanol/water. They showed that the
azeotrope (equal volatility point in nonideal systems) shifts
with nanoscale curvature.28

In the field of materials science, several studies attempted to
model phase diagrams for nanoscale alloys by adding surface
thermodynamic terms to the Gibbs free energy of bulk available
in CALPHAD (CALculation of PHAse Diagram).30,31 How-
ever, that approach is not consistent with the Gibbsian
thermodynamics of composite systems,2 which is the basis of
the work presented here. That approach30,31 does not lead to
the well-known Gibbs−Thomson equation and Ostwald−
Freundlich equations.
In this work, we develop the effect of solid curvature on the

solid−liquid phase diagram across the entire composition range
for any arbitrary binary solution that forms pure solids
including the effect of the contact angle at which the solid−
liquid interface contacts a confining pore wall.
1.2. Solid−Liquid Phase Diagrams in the Absence of

Curvature. Solid−liquid phase diagrams can have many
complexities. However, there are many multicomponent
systems for which the solid phases are in pure form because
of the differences in molecular size and/or molecular
structure.32 Partial miscibility of solid phases (resulting in
nonpure solid phases) is uncommon in cases other than
metallic systems.33 Here, our focus is on aqueous solutions. For
the purposes of this paper, we restrict our discussion to binary

systems in which a pure solid phase is in equilibrium with a
solution. Such systems have only two possible solid phases and
a single eutectic point.
An illustrative phase diagram in Figure 1 describes the phase

behavior of such a two-component mixture at constant

pressure. At higher temperature, the solution exists as a single
phase, that is, an unsaturated stable homogeneous liquid phase.
At lower temperature, the liquid separates into a pure solid
phase and a liquid solution. The component of the pure solid
phase depends on the concentration of the liquid solution. If we
choose one component to call the solvent and one to call the
solute, the left part of Figure 1 is the freezing process of the
solvent and the right part is the precipitating process of the
solute.
Liquidus lines (curves ae and be) in Figure 1 represent the

onset of solidification. In the case of an aqueous solution, curve
ae shows the composition-dependent freezing point depression,
whereas curve eb represents the concentration-dependent
solubility limit of the other component in the aqueous solution.
The liquidus lines also show the concentration of the unfrozen
or unprecipitated solution at a given temperature. The left and
right liquidus meet at a minimum point e, called the eutectic
(“easy melting”) point.33 The eutectic point is the point where
solid solute, solid solvent, and liquid mixture coexist. The
eutectic point is the lowest temperature for the given pressure
at which the liquid phase is stable. Below the eutectic point, the
system consists of two pure solid phases. When a liquid
solution of a given overall composition is cooled, the system
temperature lowers at constant composition until a liquidus line
is met and solidification begins, and with further cooling, the
composition of the remaining liquid follows the liquidus line to
the eutectic point.

1.3. Objectives of this Work. The phase diagram shown in
Figure 1 is constructed under the assumption that the interface
between the solid and liquid is flat. In this paper, we apply
Gibbsian composite system thermodynamics to understand the
effect of interface curvature on solid−liquid phase equilibrium
in a binary mixture. We start by deriving the general conditions
for solid−liquid equilibrium in a capillary that imposes a curved
solid−liquid interface. The conditions for equilibrium are then
examined for the case of the water/glycerol system, quantifying
the effect of interface curvature on the two liquidus lines
(freezing point temperature as a function of concentration and
precipitation saturation concentration as a function of temper-

Figure 1. Illustrative constant pressure, temperature−composition
phase diagram of solid−liquid equilibrium in a binary system with a
simple eutectic and pure solid phases above the eutectic temperature.
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ature). The eutectic point temperature and concentration are
also calculated. As an example to explore the effects of
curvature, we chose the water/glycerol binary system because
this system exhibits complete miscibility in the liquid state and
nearly complete insolubility between components in the
respective solid states (i.e., pure component solids). Fur-
thermore, water/glycerol solid−liquid phase diagrams have
important applications because glycerol is a popular antifreeze
substance, the first permanent type antifreeze agent for radiator
cooling systems in automobiles,34 and the first cryoprotectant
for preserving living cells.35

2. GOVERNING EQUATIONS
2.1. Derivation of General Conditions for Solid−

Liquid Equilibrium and Calculating the Liquidus Lines
(Freezing and Solute Precipitation) and Eutectic Point.
Gibbsian thermodynamics of composite systems gives a formal
approach for finding the conditions for equilibrium of a
multiphase multicomponent system by extremizing entropy
subject to constraints on the system. Our objective is to find the
effect of confinement in a capillary of radius r on the solid−
liquid phase diagram of a two-component aqueous system.
Here, the largest radius of curvature that a solid phase forming
out of the aqueous solution can have is defined by the
interaction with the capillary wall. Thus, we consider the
equilibrium of the system illustrated in Figure 2, where a single-

component solid phase is in equilibrium with a two-component
liquid phase and where the curved solid−liquid interface
contacts the capillary wall at the contact angle, θ.
We assign the solid components in the capillary wall to be

part of the reservoir and assign the liquid−capillary and solid−
capillary interfaces to be parts of the system.2 The solid phase
can be either pure ice or pure precipitated solute as we limit our
study to only those aqueous solutions in which ice forms as
pure water or solute precipitates as pure solute. Component 1
represents the molecules that are in the solid phase and liquid
phase, and component 2 represents the other molecules that
are in the liquid phase. The solid−liquid interface contains
molecules of both components 1 and 2. The liquid−capillary
and solid−capillary interfaces are considered to be part of the
system so that adsorption of components 1 and 2 at the liquid−
capillary and solid−capillary interfaces is included in consid-
eration. The pressure and temperature of the reservoir
surrounding the system (including the capillary solid), Pres

and Tres, respectively, are considered to remain constant. The

system does not exchange any mass with the reservoir;
therefore, the number of molecules of each component in the
system is constant. Molecules of component 1 are present in
the solid phase (solid solvent or precipitate), the liquid phase
(solvent/solute mixture), the solid−liquid interface, the liquid−
capillary interface, and the solid−capillary interface. Molecules
of component 2 are present in the liquid phase, the solid−
liquid interface, and the liquid−capillary interface; however,
they do not exist in the solid or the solid−capillary interface.
We can find the conditions for equilibrium of the system by

finding the conditions that extremize entropy of the system plus
reservoir

= + + + + + =dS dS dS dS dS dS dS 0S L SC LC SL res

(1)

where SS, SL, and Sres are the entropies of the solid phase, the
liquid phase, and the reservoir and SSC, SLC, SSL are the
entropies of the solid−capillary, liquid−capillary, and solid−
liquid interfaces, respectively. The entropy differentials can be
written as in eqs 2−7 using the fundamental relations and the
definitions of intensive properties temperature T, pressure P,
and chemical potential μ.36 The differential of entropy of the
liquid phase (superscript L) is written as

μ μ
= + − −

T
U

P
T

V
T

N
T

NdS
1

d d d dL
L

L
L

L
L 1

L

L 1
L 2

L

L 2
L

(2)

where V is volume, U is internal energy, μi
L is the chemical

potential of component i in the liquid phase, and Ni
L is the

number of moles of component i in the liquid phase. Because
component 2 does not exist in the solid phase, the differential
of entropy of the solid phase (superscript S) is written as

μ
= + −

T
U

P
T

V
T

NdS
1

d d dS
S

S
S

S
S 1

S

S 1
S

(3)

Using the Gibbs Surface of Tension approach, the curved
solid−liquid interface (superscript SL) is treated as a phase that
has area but no volume and to which are assigned excess
properties (SSL, USL, N1

SL, N2
SL) and an interfacial tension σ, the

value for which does not depend explicitly on curvature.
Therefore, the differential of the solid−liquid interface entropy
is given by

σ μ μ
= − − −

T
U

T
A

T
N

T
NdS

1
d d d dSL

SL
SL

SL

SL
SL 1

SL

SL 1
SL 2

SL

SL 2
SL

(4)

where A is the area of the interface, μ1
SL represents the chemical

potential of surface excess component 1 molecules, and σSL

represents the solid−liquid interfacial tension.
Because the radius of the capillary will not be changing as the

system evolves to equilibrium, it is convenient to adopt the
Gibbs Dividing Surface approach in which the dividing surfaces
between the capillary and either the liquid or solid phases are
placed such that there are no excess moles of the capillary solid
material in the interfaces. We will be either leaving the contact
angle as a variable or setting the contact angle; hence, we will
not have to explicitly introduce any curvature dependence for
the interfacial tension of the capillary solid and therefore
proceed without loss of generality. This is also consistent with
defining the reservoir to contain all molecules of the capillary
solid. Therefore, the differential of the entropy of the liquid−
capillary interface (superscript LC) is

Figure 2. Schematic of solid−liquid equilibrium with a curved solid−
liquid interface in a capillary.
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σ μ μ
= − − −

T
U

T
A

T
N

T
NdS

1
d d d dLC

LC
LC

LC

LC
LC 1

LC

LC 1
LC 2

LC

LC 2
LC

(5)

and the differential of the entropy of the solid−capillary
interface (superscript SC) is

σ μ
= − −

T
U

T
A

T
NdS

1
d d dSC

SC
SC

SC

SC
SC 1

SC

SC 1
SC

(6)

Finally, the differential of the entropy of the reservoir
(superscript res) may be written

μ= + −
T

U
P
T

V
T

NdS
1

d d dres
res

res
res

res
res

res

res
res

(7)

Next the system constraints are enumerated. The total
internal energy of the system plus reservoir is constant

= − − − − −U U U U U Ud d d d d dres S L SL SC LC (8)

The total volume of the system plus reservoir is constant

= − −V V Vd d dres S L (9)

The total number of moles of component 1 in the system (solid
phase, liquid phase, solid−liquid interface, solid−capillary
interface, and liquid−capillary interface) is constant

= − − − −N N N N Nd d d d d1
S

1
L

1
SL

1
SC

1
LC

(10)

The total number of moles of component 2 in the system
(liquid phase, liquid−capillary interface, and solid−liquid
interface) is constant

= − −N N Nd d d2
L

2
SL

2
LC

(11)

The number of moles in the reservoir is also constant

=Nd 0res (12)

The next step is to use geometric knowledge to impose
relationships between phase volumes and areas because changes
in these are not independent. We assume that the solid−liquid
interface takes the shape of a spherical cap with geometry as
defined in Figure 3.

Denoting the surface area of the spherical cap Acap
sph and the

volume of the spherical cap Vcap
sph, the following geometrical

relationships are valid37

π π θ
θ

= = −
A Rh

r
2

2 (1 sin )
coscap

sph
2

2 (13)

π π θ θ
θ

= + = − +
V

h r h r(3 )
6

(sin 3 sin 2)
3 coscap

sph
2 2 3 3

3 (14)

θ θ
= =

−
R

r h
cos 1 sin (15)

The increase in the liquid−capillary area equals the decrease
in the solid−capillary area

= −A Ad dLC SC (16)

The change in the area of the solid−liquid interface can be
found by taking the derivative of eq 13

π θ
θ

π θ
θ

θ= = − − −
A A

r
r

r
d d

4 (1 sin )
cos

d
2 (sin 1)

cos
dSL

cap
sph

2

2 2

3

(17)

The change in the volume of the solid can be found by
realizing that the solid volume can be changed by changes in
the volume of the spherical cap or by moving the spherical cap
up or down in the capillary

π θ θ
θ

π θ
θ

θ

= +

= + − +

− −

V V r A

r A
r

r

r

d d
1
2

d

1
2

d
(2 3 sin sin )

cos
d

(sin 1)
cos

d

S
cap
sph SC

SC
2 3

3

3 2

4 (18)

Substituting eqs 2−7 into eq 1, making use of constraints in
eqs 8−12 and 16−18, noting that because the temperature and
pressure of the reservoir are fixed, dr = 0, and collecting like
terms yields

μ μ μ μ

μ μ μ μ

μ μ μ μ

σ σ

π θ
θ

γ π θ
θ

θ

− + − + −

+ − + −

+ − + −

+ − + −

+ − + −

+ − + −

+ − + −

− − − − − =

⎜ ⎟ ⎜ ⎟
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⎝
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⎠
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⎝
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⎛
⎝
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⎝
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⎛
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N

P
T

P
T
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T

T T
A

P
T
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T
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1 1
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SL
1
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3 2

4
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3

(19)

Figure 3. Schematic diagram of the geometry of solid−liquid
equilibrium in a capillary. The solid−liquid interface is assumed to
take the shape of a spherical cap with height h and base width equal to
the capillary radius r. The radius of curvature of the solid−liquid
interface is R.
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After considering all constraints and geometrical relations, all
differentials in eq 19 are independent. Therefore, for eq 19 to
be true for any possible variation about equilibrium, the
coefficients multiplying the differentials in eq 19 must each be
set equal to zero, thus yielding the following conditions for
equilibrium:

= = = = = =T T T T T T TS L SL SC LC res (20)

μ μ μ μ μ= = = =1
S

1
L

1
SL

1
SC

1
LC

(21)

μ μ μ= =2
L

2
SL

2
LC

(22)

=P PL res (23)

σ θ− =P P
r

2 cosS L
SL

(24)

σ σ σ θ− = cosSC LC SL (25)

Equation 20 is the thermal equilibrium condition. Equations 21
and 22 are chemical equilibrium conditions. Equation 23 is the
mechanical equilibrium between the reservoir and liquid phase.
Equations 24 and 25 are also mechanical equilibrium
conditions; eq 24 is the Young−Laplace equation, and eq 25
is the Young equation.
By assuming that the system temperature T and the liquid-

phase pressure PL are set by the reservoir, the set of equilibrium
conditions that arise from eqs 20−25 can be combined to
calculate the liquidus lines. In eq 24, when the solid−liquid
interface is flat, r goes to infinity and the pressure in the solid
phase is equal to the pressure in the liquid phase. It should be
noted that the radius of curvature is defined to be positive when
the center of the circle that defines the interface is placed inside
of the solid phase, that is, when the interface is curved toward
the solid. We combine the thermal equilibrium (equality of
temperature of the solid phase, liquid phase, and solid−liquid
interface), the mechanical equilibrium of eqs 23 and 24, and the
equality of the chemical potential of component 1 in the solid
and liquid (the first equivalence in eq 21) to get

μ μ=T P x T P( , , ) ( , )1
L L

1
L

1
S S

(26)

To develop the governing equation for the phase diagram, eq
24 and equations of state for the chemical potentials must be
inserted into eq 26. The chemical potential of the solidifying
component in the pure solid phase can be found by assuming
that the solid phase is incompressible and that the solid molar
entropy is independent of temperature and thus can be
expressed by

μ μ= − −

+ −

T P T P s T T

v P P

( , ) ( , ) ( )

( )
1
S S

1
S

m,1
L

1
S

m,1

1
S S L

(27)

where Tm,1, the melting point of pure component 1 at the
pressure of the bulk phase (i.e., liquid-phase pressure PL), is
chosen as the reference point for calculating the chemical
potential. s1

S and v1
S are the molar entropy and molar volume of

pure component 1 in the solid phase at Tm,1 and PL,
respectively.
Before giving the chemical potential of component 1 in the

liquid phase, we define auxiliary functions osmole fraction π̃,
osmotic pressure Π, activity a, and activity coefficient γ by their
relationships to the chemical potential in the liquid.38−40

π
μ μ

̃ = −
−
RT

1
L

1
L0

(28)

where μ1
L is the chemical potential of component 1 in the liquid

phase, μ1
L0 is the chemical potential of pure liquid component 1,

and from here on, R is the universal gas constant. The activity
of component 1 in solution can be expressed as

γ=a x1
L

1
L

1
L

(29)

where a1
L is the composition-dependent activity of component 1

in the binary solution and γ1
L is the composition-dependent

activity coefficient of component 1 in solution, which accounts
for solution nonideality

π γ
Π = ̃ = − = −RT

v
RT a

v

RT x

v
ln( ) ln( )

1
L

1
L

1
L

1
L

1
L

1
L

(30)

where v1
L is the molar volume of pure liquid component 1 and

Π is the binary solution composition-dependent osmotic
pressure.
For the chemical potential of component 1 in the liquid

solution, we use

μ μ

γ

= − −

+

T P x T P s T T

RT x

( , , ) ( , ) ( )

ln( )
1
L L

1
L

1
L0

m,1
L

1
L

m,1

1
L

1
L

(31)

where s1
L is the temperature-independent molar entropy of pure

component 1 in liquid form at Tm,1 and PL.
The chemical potential can equivalently be expressed in

terms of osmotic pressure.20

μ μ= − −
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Substituting eqs 27 and 31 into eq 26, and replacing (s1
L − s1

S)
using the thermodynamic identity

−
=
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T

H
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1
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(33)

where ΔH1
fus is the molar enthalpy of fusion (latent heat of

melting) for pure component 1 at Tm,1 and PL, leads to
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Substituting the Laplace equation, eq 24, for the pressure
difference term in eq 34 and rearranging for the solid−liquid
equilibrium temperature yields

γ
=

− Δ

−

σ θ

Δ
T

H

R xln( )

v
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The freezing or precipitating temperature depression can be
expressed as

γ

γ
− =

−

−

σ θ

Δ
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Equation 36 is a very general form of both the Gibbs−
Thomson equation and the Ostwald−Freundlich equation that
also includes the effect of the contact angle. The way that we
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have done this derivation highlights the equivalence of the
Gibbs−Thomson and Ostwald−Freundlich equations. Equa-
tions 35 and 36 are each nonideal forms of both the Gibbs−
Thomson equation and Ostwald−Freundlich equation, the
naming of the equation depending only on which component is
identified as component 1.
Alternatively and more commonly for the freezing process

than the precipitating process, the solidifying point depression
can also be written in terms of osmotic pressure

σ θ

σ θ

− =
Δ +

+
+

=
Δ

+
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(37)

The first term of eq 37 is the capillary effect, and the second
term of eq 37 is the osmotic effect.13 Equation 37 has an
osmole fraction version and an osmotic pressure version. The
osmotic pressure version can be found in previous work.13,20

The second term of the osmole fraction version has been
applied in multisolute nonideal solutions without curvature
effects.41

For a flat solid−liquid interface, the pressure of the solid

phase equals the pressure in the liquid phase and σv
r

2 1
S SL

in eqs

35−37 is zero. For a curved interface, the pressure difference
between the solid and liquid phases varies as a function of the
radius of curvature according to eq 24, and the curvature term
appears in eqs 35−37.
The freezing and precipitating liquidus lines meet at a

minimum point, which is called the eutectic point. In order to
calculate the eutectic point concentration and temperature, we
use TF and TP to represent the freezing temperature of solvent
and the precipitating temperature of solute, respectively. Then,
according to eq 35 for the solidifying temperature and
considering the fact that summation of the mole fractions in
the liquid phase is 1 (hence, for a binary system xsolvent

L + xsolute
L

= 1)
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where xsolute
L is the mole fraction of solute in the liquid phase

and vF
S and vP

S represent the molar volume of pure solvent solid
phase in the freezing process and pure solute solid phase in the
precipitating process, respectively. ΔHF

fus and ΔHP
fus represent

the molar enthalpy of fusion of solvent in the freezing process
and solute in the precipitating process. σF

SL and σP
SL represent

the interfacial tensions of solid solvent−liquid solution in the
freezing process and solid solute−liquid solution in the
precipitating process, respectively. θF and θP represent the
contact angle between the curved solid−liquid interface and the
capillary in the freezing and precipitating process, respectively.
γF
L and γP

L represent the activity coefficients of solvent in the
liquid phase in the freezing process and solute in the liquid

phase in the precipitating process, respectively. At the eutectic
point, TF equals TP and equating eqs 38 and 39 yields an
equation for the eutectic point solute concentration, xE

γ γ

− Δ

− −
=

− Δ

−

σ θ σ θ

Δ Δ

H

R x

H

R xln[(1 ) ] ln( )

v
r

H
T

v
r

H
T

2 cos
F
fus

E F
L

2 cos
P
fus

E P
L

F
S

F
SL

F

F
fus

m,F

P
S

P
SL

P

P
fus

m,P (40)

which can be solved together with eq 35 for the eutectic
temperature. It has already been noted in previous work that
the eutectic point concentration equation for a binary system
with a flat surface is usually a transcendental equation,42 which
is difficult to solve directly. Therefore, linear fitting43 and
polynomial fitting44 are used. Here, we give the transcendental
equation for the eutectic solute concentration in the case of
curved interfaces. Equation 40 can be solved numerically
together with eq 35 to yield the eutectic solute concentration
and the eutectic temperature for a given curvature.
In order to present the maximum effect of curvature and for

lack of the required information to do otherwise, we take the
contact angle that either the ice−liquid interface or the glycerol
precipitate−liquid interface makes with the capillary solid wall
to be zero for this exploration. Note that this is also equivalent
to considering a nucleating sphere of either ice or precipitate
without interaction with the capillary solid, the maximum radius
of curvature of which equals the radius of the capillary. By
setting the contact angle equal to zero, we have removed from
our concern the role of adsorption at the capillary solid wall.
For this work, the zero contact angle assumption may
exaggerate the predicted freezing/precipitation point depres-
sion due to the capillary radius. In the case of zero contact
angle, eq 35 becomes
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The freezing or precipitating temperature depression can be
expressed as
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The eutectic concentration is then given by
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2.2. Freezing and Precipitation Liquidus Line and
Eutectic Point Calculation for the Water/Glycerol
System. After finding the general form of the conditions for
solid−liquid equilibrium, the next step is to solve this set of
equations for the system of interest in this article, which is the
water/glycerol system. We want to compute the liquidus lines
of the phase diagram, that is, the freezing point as a function of
composition (solidification of solvent water) and the
precipitation saturation composition as a function of temper-
ature (solidification of solute glycerol). We wish to compare
such a phase diagram computed in the presence of a curved
solid−liquid interface (i.e., confined in a capillary) to the
traditional phase diagram computed for a flat solid−liquid
interface (unconfined).
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Figure 4 shows a schematic diagram of the system with
curved solid−liquid interfaces and contact angles of zero. The

left figure refers to the freezing process, and the right figure
refers to the precipitating process. Component 1 represents the
molecules that are present in both solid and liquid. Therefore,
in the freezing process, component 1 is water and component 2
is glycerol. For the precipitating process, component 1
represents glycerol and component 2 represents water.
According to the Gibbs Surface of Tension approach4 that
we have adopted, the solid−liquid interfacial tension is
independent of curvature.
For all of the preceding equations, we have used the index 1

for the component that exists in both solid and liquid phases.
Thus, for the left liquidus line (freezing of water as the solid),
component 1 refers to water molecules, and all of the
properties of water must be inserted into eq 41 or 42. For
the right liquidus line (precipitating of glycerol as the solid),
component 1 represents glycerol molecules, and all of the
properties of glycerol must be inserted into eq 41 or 42. The
properties of pure water and pure glycerol are tabulated in
Table 1.

2.3. Activity Coefficient Model. Equation 41 must be
used along with a model to express the activity coefficient of
component 1 (γ1

L in eq 41). In this paper, we consider a
solution consisting of water and glycerol. To model the activity
coefficients, we used the Margules model and obtained the
coefficients by fitting the model to solid−liquid equilibrium
data for the water/glycerol system. For the water/glycerol
system, the two-parameter Margules model gives a better fit
compared to the osmotic virial equation.46 γ1

L is the activity
coefficient of component 1, the component that is in both solid
and liquid. To show the activity coefficients of different
molecules clearly, here we use γw

L and γg
L to represent the

activity coefficients of water and glycerol, respectively. xw
L is the

mole fraction of water in the liquid, and xg
L is the mole fraction

of glycerol. According to the general Margules equation, the
activity coefficients of the two components of a binary system
are given by

γ = + +b x c xln( ) ( ) ( ) ...w
L

w g
L 2

w g
L 3

(44)

γ = + +b x c xln( ) ( ) ( ) ...g
L

g w
L 2

g w
L 3

(45)

where coefficients bg, cg, ... are not independent and are related
to bw, cw, ... through the Gibbs−Duhem equation at constant
temperature and pressure. γ1

L should be replaced by γw
L from eq

44 for the freezing process, and γ1
L should be replaced by γg

L

from eq 45 for the precipitating process. Considering the
dependency of the coefficients (through the Gibbs−Duhem
equation) and truncating the polynomials to third-order terms
results in the two-parameter Margules equation47

γ = + −A A A x xln( ) [ 2( ) ]( )w
L

wg gw wg w
L

g
L 2

(46)

γ = + −A A A x xln( ) [ 2( ) ]( )g
L

gw wg gw g
L

w
L 2

(47)

Parameters Awg and Agw are obtained by fitting eq 41 in the
absence of curvature (r → ∞) along with eq 46 for the freezing
process or along with eq 47 for the precipitating process to the
experimental data of temperature versus the mole fraction of
the left and right liquidus by minimizing the residual sum of
squared errors. The Margules coefficients Awg and Awg are
considered to be independent of temperature.

3. RESULTS AND DISCUSSION
3.1. Margules Coefficients for the Water/Glycerol

System from Experimental Data. Figure 5 shows our fit

of the two-parameter Margules equation to the experimental
solid−liquid equilibrium data of Lane48 for the water/glycerol
binary system. Margules coefficients that minimize the residual
sum of squared errors are presented in Table 2, along with the
coefficient of determination (R2). Because the two-parameter
Margules equation fits the experimental data with a coefficient

Figure 4. Schematic diagram of equilibrium with a curved solid−liquid
interface and contact angle of zero. The freezing process is shown in
the left panel, and the precipitating process is shown in the right panel.

Table 1. Properties of Pure Water and Pure Glycerol at PL =
1 atma

Tm,1 (K) ΔH1
fus (J/mol) at Tm,1 v1

S (m3/mol) at Tm,1

water 273.15 6010 1.963 × 10−5

glycerol 291.35 18300 6.896 × 10−5

aData from ref 45.

Figure 5. Fitting of the two-parameter Margules equation to the
experimental solid−liquid equilibrium data for the water/glycerol
system at PL = 1 atm. Experimental data are from the work of Lane.48
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of determination close to 1, we conclude that the two-
parameter Margules model adequately represents this data for
our purposes.
3.2. Effect of Curvature on the Solid−Liquid Equili-

brium Phase Diagram and the Eutectic Point for the
Water/Glycerol System. Equation 41 gives the relationship
between equilibrium temperature (T) and liquid mole fraction
of the solidifying component (x1

L). Values for the parameters
Tm,1, ΔH1

fus, and v1
S can be found in Table 1. The activity

coefficients of component 1 can be calculated from eq 46 or 47
with the parameters of the two-parameter Margules model
shown in Table 2.
The interfacial tension is dependent on temperature and

concentration,49 but it is hard to measure the interfacial tension
of a nanoscale solid particle with liquid directly by experi-
ment.50 It should be noted that the main goal of this article is to

investigate the effect of curvature on the freezing and
precipitating liquidus lines and on the eutectic point. Knowing
the exact value of the interfacial tension would allow
quantitative prediction of the equilibrium temperatures for
the freezing and precipitating processes; however, the value is
subject to change with the system’s conditions. For simplicity,
we assumed that the interfacial tension is constant and
independent of temperature and concentration. We investigate
the curvature effect at constant capillary radius r using 32 mN/
m51 as the interfacial tension of the ice−aqueous solution
interfacial tension. There is a lack of experimental data and
theoretical models for interfacial tension of glycerol precipitate
with glycerol aqueous solution. Therefore, we make computa-
tions over a range of possible solid glycerol−aqueous solution
interfacial tensions (100, 32, 10, and 1 mN/m). Figure 6 shows
the temperature of equilibrium as a function of concentration
where the radius of the capillary changes from 1 μm to 100, 10,
and 5 nm for various possible values of interfacial tension.
According to Figure 6a,b, when the radius of the capillary is 1

μm or 100 nm, the freezing point and the solubility limit are
not appreciably different from those of the flat surface. When
the radius of the capillary decreases down to 10 nm, as shown

Table 2. Parameters Obtained from Fitting the Two-
Parameter Margules Model to the Experimental Data of
Lane48 at PL = 1 atm

Awg Awg coefficient of determination, R2

−1.0952 −2.1641 0.997

Figure 6. Predicted solid−liquid equilibrium phase diagram for the binary system of water and glycerol in capillaries at PL = 1 atm with radii of (a) 1
μm, (b) 100 nm, (c)10 nm, and (d) 5 nm. Predictions are done over a range of possible glycerol solid−liquid interfacial tension values for lack of
data to do precise calculation.
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in Figure 6c, the freezing point is significantly decreased, and
the decrease becomes larger when the capillary radius is
reduced further down to 5 nm, as shown in Figure 6d.
The freezing point line (left-hand liquidus) and the

precipitating line (right-hand liquidus) meet at the eutectic
point. The eutectic point can be found by solving eq 43
together with eq 41 to see how the eutectic point temperature
and concentration change with curvature. Figures 7 and 8

predict the eutectic point temperature and concentration as a
function of radius of curvature in the range from 5 to 100 nm.
Figure 7 shows how the eutectic point temperature changes
with the radius of curvature. The eutectic point temperature of
the water/glycerol system decreases as the radius of the
capillary decreases. When the radius of curvature is around
hundreds of nanometers, the eutectic point does not change
appreciably as a function of the curvature. When the radius of

curvature is under 100 nm, the eutectic point temperature has a
significant drop from its flat interface value.
Figure 8 shows that the eutectic point concentration changes

as a function of radius of curvature. The eutectic point
concentration stays almost the same when the radius of
curvature is above 100 nm. When the radius of curvature is less
than 100 nm, the trend of the eutectic point concentration
change depends on the difference between the solid glycerol−
liquid interfacial tension and solid ice−liquid interfacial tension.
If the glycerol σSL is bigger than the ice σSL, then the
precipitating liquidus changes more than the freezing liquidus,
which makes the eutectic point concentration increase as the
radius of curvature decreases. If the glycerol σSL is smaller than
the ice σSL, then the freezing liquidus changes more than the
precipitating liquidus, which makes the eutectic point
concentration decrease as the radius of curvature decreases.
Regardless of the trend, the eutectic concentration changes
significantly when the radius of curvature becomes less than
100 nm.

4. CONCLUSIONS
We have presented a derivation of thermal, mechanical, and
chemical equilibrium conditions for solid−liquid equilibrium in
a capillary of radius r, with different contact angles. We
investigated the effect of curvature on solid−liquid equilibrium
for the water/glycerol system. Curvature affects both the
freezing process and the precipitating process. The solidifying
points and the eutectic point temperature decrease as the radius
of the capillary decreases, and when the radius of curvature is
reduced to the nanoscale, the decrease becomes significant. The
derived conditions for equilibrium shown for solid−liquid
equilibrium can be applied to other multicomponent systems in
capillary pores. The calculation procedure presented for a
multicomponent phase diagram with curvature provides a way
of combining chemical potential equilibrium with the
mechanical equilibrium of a curved solid−liquid interface.
There are limitations to this work that can be enumerated

and discussed: (1) The Margules parameters are considered to
be independent of temperature. (2) The interfacial tensions
between each solid and the aqueous liquid solution were taken
to be constants, independent of curvature, concentration, and
temperature. The shift of freezing point and eutectic point
could be made accurately using the methods presented in this
work if the glycerol solid−liquid interfacial tension were
known. (3) Our calculations are based on the assumption that
both ice−liquid and glycerol precipitate−liquid interfaces make
a zero contact angle with the capillary solid wall.
This study gives a promising theoretical method to predict

thermodynamic properties of solid−liquid equilibrium across a
curved interface in nonideal multicomponent systems (dem-
onstrated here for a binary system but extendable to
multicomponent cases) that has applications in many fields
such as cryobiology, forestry, and soil sciences. In cryobiology,
the freezing point of solutions containing diverse solutes,
including salts, cryoprotectants, proteins, and many other
macromolecules in confined spaces such as membrane pores, is
of vital importance.18−20,41,44 Furthermore, during freezing,
direct cell injury has been associated with eutectic crystal-
lization.52 In forestry, in the xylem parenchyma of hardwood
tree species and in dormant flower bud primordia of woody
species, extracellular water exists in microcapillaries in the
extracellular space.18 These microcapillaries can depress the
freezing point of water in the intercellular spaces and impede

Figure 7. Predicted eutectic point temperature as a function of radius
of curvature at PL = 1 atm. Predictions are done over a range of
possible glycerol solid−liquid interfacial tensions for lack of data to do
a precise calculation.

Figure 8. Predicted eutectic point concentration as a function of the
radius of curvature at PL = 1 atm. Predictions are done over a range of
possible glycerol solid−liquid interfacial tensions for lack of data to do
a precise calculation.
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the spread of ice through the tissue. The freezing point
depression of the microcapillaries can help the plant survive at
low temperature. In soil science, the freezing and melting of
water in porous particles that are abundant in soil are of critical
interest in cold regions because of their role in frost damage.
Previously, solid−liquid equilibrium inside porous media has
been studied for ice with pure water.53,54 With our equations,
the prediction of freezing and melting temperatures in
nanoscale pores in soil could be extended to water that
contains various soluble substances, such as salt or organic
components that are abundant in soil.
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