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he goal of a physical chemistry experiment is to measure

an interesting property. This property could be the
lifetime of an excited electronic state, the exciton diffusion
length within a solar cell, or the coupling strength between two
optical transitions. In reporting the results of experiments it is
extremely important to quantify the accuracy of the measure-
ments. Errors are inevitable in experiments; however, they can
be hard to work out. This is especially true when complex
fitting functions are used to analyze the data, or when the data
are compared to simulations. Nevertheless, a good analysis of
errors can elevate the quality of your paper and help convince
readers that the data have been carefully analyzed and are
reliable.

The goal of this editorial is to provide a basic practical guide
for reporting errors in physical chemistry experiments. Unlike
experiments in biological sciences which involve controls and
sometimes complex hypothesis testing, errors in physical
chemistry are relatively straightforward. There are two
common situations: (i) the case where a series of experimental
measurements are averaged together to determine an expect-
ation value and (ii) curve fitting where experimental data are fit
to a function. In both cases the goal is to provide a best
estimate for the quantity being measured, as well as an estimate
of the range of possible values. This discussion will assume that
we are only dealing with random errors; that is, that there are
no systematic errors in the measurements.

Averages and Standard Deviations. When a series of
nominally identical measurements have been performed, the
best estimate of the true value of the quantity being measured
is the sample mean %, and the range of the values obtained
from the experiments is characterized by the standard
deviation o,:

x= in/N

(1a)

o, = \/2 (%, — ®)/(N - 1)
i (1b)

where x; are the values from the individual measurements and
N is the total number of measurements. The standard
deviation tells us the range of values we expect in a
measurement, but it is not the error in %. The uncertainty in
% depends on the number of measurements and is estimated by
the standard error (also referred to as the standard deviation of
the mean) ¢,/~/N. For a large number of measurements and
random errors, there is a 68% chance that the true value of the
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quantity you are trying to measure lies in the range
% + 0,/~/N. The 95% confidence limits for the measurements
(which is what should really be reported) is +1.965,/~/N. It is
important to note that the numerical factor in front of o, for
the 95% confidence limits depend on the number of
measurements. For example, the 95% confidence limit for six
measurements is +2.570,/+/6. The values for this numerical

factor (which are obtained from the Student’s t-distribution)
are given in Table 1 for a range of N values (different degrees-

Table 1. Values of Numerical Factor ¢ for the 95%
Confidence Limit (t5,/~/N) in Sample Averages versus the
Number of Degrees of Freedom (N — 1)

N-1 3 N 7 10 20 [+3]
t 3.18 2.57 2.36 223 2.09 1.96

of-freedom). This table shows that there is a significant
advantage to performing more than five measurements in
terms of reducing uncertainty. Also, note that for N < 10 the

value of +/N is similar to the numerical factor from the
Student’s t-distribution, so that the 95% confidence limits are
close to the standard deviations.

Figure 1 shows a plot of some experimental data obtained in
the author’s laboratory (measurements of the quality factors
for the breathing vibrational modes of single gold nanowires),
along with a table of the quality factors and the errors. The
average value of the quality factor is (Q) = ),,Q,/16 = 62.0 and

the standard deviation is 64 = \/Z Q, - (Q))*/(15) =159.

This gives 95% confidence limits for the data of +tog/ JN =

+2.13 X % = +8.5. Thus, the average quality factor should

be reported as (Q) = 62 + 8, where the error is the 95%
confidence limit. The horizontal line in the graph shows the
average value of the measurements, and the shaded area
corresponds to the standard deviation for the data. The
standard deviation is similar to the error bars for the
measurements. This is intuitive as the spread of measured Q
values arises from the errors in the experiments. Note that
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Figure 1. Measured quality factors (Q) and errors in Q for the
breathing modes of suspended Au nanowires. The red line in the
figure shows the average Q value, and the shaded area shows the
standard deviation ({(Q) + 6g).

because there is a reasonably large number of measurements,
the 95% confidence limit for (Q) is significantly smaller than
the standard deviation. Also, because the spread in the Q
values arises from the error in the individual measurements,
there is no need to include the errors for the individual
measurements in the final estimate of the error for (Q)—this
would be overcounting. However, if the errors for the
individual measurements where much larger than the standard
deviation, then it would be better to use the errors for the
individual measurements to determine the final error.

Curve Fitting. A common situation in physical chemistry
studies is to fit the results of an experiment to a function. An
example is shown in Figure 2. In this plot a signal versus time
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Figure 2. Simulated lifetime data (blue markers) and single
exponential fit (red line). The inset shows the results from the
least-squares fit to the data, and the residuals are shown at the top of

the figure.

trace for a single exponential has been simulated with a lifetime
of 3 ns and 10% added noise (a random number between
—0.05 and +0.05). The trace has been fit to a single

exponential function y =y + Ae~ (=) using a commercial

data analysis software program. There are a number of
programs with excellent built-in least-squares fitting routines
that report expectation values along with error estimates. The
results from the fit are shown in the inset (in this fit y, and x,
were held constant), and a plot of the residuals (data minus the
fit function) is shown above the graph (plotting residuals can
be a good way of quickly checking if your model is a good
match for the experiments). The least-squares fitting routine
spits out more significant figures than is justified by the error.
For this example, the lifetime should be reported as 7 = 2.9 +
0.1 ns. It is common in some fields to report two significant
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figures for errors (that is, 7 = 2.95 + 0.12 ns); however, this is
simply wishful thinking and is not justified from the data
analysis!

Figure 3 shows simulated Stern—Volmer data (emission
from a sample with different amounts of added quencher) that
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Figure 3. Simulated Stern—Volmer plot. The blue markers are the
data, and the red line is a fit to the data using the Stern—Volmer
equation.

have been fit to a linear function y = a + bx. The Stern—
Volmer equation is Io/I = 1 + Kg[Q], where I is the emission
intensity, Kgy is the Stern—Volmer constant, and [Q] is the
concentration of quencher. Thus, the value of a in the fitting
function was constrained to a = 1 (allowing a to vary would
naturally give a better fit to the data but would not give the
correct value for the Stern—Volmer constant). The Stern—
Volmer constant from the fit is Kgy = 33 + 4 M™. However,
the error estimates determined from the fit do not account for
the error bars on the data. A simple way to include the
uncertainty from the error in the individual points is to draw
lines through the data points that give estimates of the
maximum and minimum values of Kgy consistent with the
error bars. This is shown as the orange lines in Figure 2. This
analysis gives a more conservative (and safer) estimate of the
error of Kgy =33 + S M.

Error Propagation. In many cases the results from
different experiments are combined together. For example, in
discussing resonances it is common to talk about quality
factors Q = /T, where  is the resonance frequency and I is
the line width (see Figure 1 above). When two quantities are
added or subtracted together, then we add the errors using a
quadratic sum. In contrast, if two quantities are multiplied or
divided, then we add the relative errors. For more complex
functions partial derivatives have to be used.

f=axb=5f=(5a) + (6b) (22)
f=axborf= % = 16f/fl = \/(6a/a)* + (Sb/b)?
(2b)
f=f(x, .., 2) = 6f
= J(0f /0x)*(5%)* + .. + (9f /92)*(52)} (20)

where df/0x and df/0z are the partial derivatives of f with
respect to the different measured quantities (x, .., z).

To give a concrete example of error propagation, Figure 4
shows a simulated time-resolved experiment (similar to Figure
2) that has a double exponential decay (exponentials with time
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Figure 4. Simulated lifetime data (blue markers) and double
exponential fit (red line). The inset shows the results from the
least-squares fit to the data.

constants of 1 and 7 ns with equal amplitudes) with 10%
added noise. The data were fit to a double exponential decay
function y =y + Ale_(x_x”)/rl + Aze_(x_xO)/TZ where y, and
x, were fixed to zero. A least-squares fit to the data gives values
of the amplitudes and time constants of A; = 0.50 + 0.07, 7, =
1.1 £ 0.3 ns and A, = 048 + 0.07, 7, = 6.9 + 0.8 ns. Now let
us say you have a number of these traces and you want to
compare them. One way to do this is to calculate an average
lifetime by (z) = (A; X 7, + A, X 7,)/(A; + A;) = 3.9 ns. The
error for this quantity is determined by the errors in both the
amplitudes and the lifetimes (the amplitude part is often
ignored in analysis of time-resolved measurements). Working
out the partial derivatives and adding the errors according to
the formula above gives (7) = 3.9 + 0.5 ns. Note that if we had
only used the error in the lifetimes, then our error would be
+0.4 ns, which is actually close to the correct answer.
Sensitivity Analysis. In some cases the standard least-
squares routines in data analysis programs cannot be used to fit
the data. Examples include when nonanalytic functions are
used to model the experiments, or where the experiments are
being compared to simulations. Figure 5 shows an example of
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Figure S. Experimental measurements (markers) and simulations
(lines) of heat dissipation for 20 nm radius Au nanoparticles in water.
The inset shows the full transient absorption trace.

the latter case. The experimental data are a transient
absorption trace for 20 nm radius Au nanoparticles in water.
The slowly decaying part of the trace is due to heat dissipation
from the nanoparticles into the environment. The lines in
Figure S are results from finite element simulations of the heat
dissipation process, which require the heat capacity (C,),
density (p), and thermal conductivity (k) of the dlﬁerent

materials, and the thermal interface conductance (G) as input
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parameters. For Au and H,O Co P and « are well-known;
however, G is not and determining a value for G is the object
of the experiment. The finite element simulations were
performed with different values of G, and the results were
compared to the experimental data. The best fit to the data is
obtained for G = 150 MW/(m? K), and the data are bounded
on the low and high sides by G = 100 MW/(m* K) and G =
220 MW/ (m?* K), respectively (shown as the shaded area on
the graph). Thus, the best estimate of G, and the range of G
values that are consistent with the data, is G = 150 +70/—50
MW/ (m?* K). Note that it is hard to be precise about the type
of error here, so it is probably best to be conservative in the
estimate of the error range. Also, Figure 5 is a fairly simple
example because there is only one parameter being varied. In
cases where there is more than one parameter in the analysis,
all the parameters have to be varied to determine a reasonable
range of values that describe the experiments. Unfortunately,
the parameters in this type of analysis are often correlated, so
determining a unique set of parameters with errors can be
challenging.

Best Practices. The error that should be reported depends
on the situation. For example, in electron microscopy analysis
of nanoparticles the average dimensions of the materials should
be reported with standard deviations (as this characterizes the
range of sizes, which is what is important). For solar or
electrochemical cells (or other types of devices) the average
values of the cell parameters should be reported with 95%
confidence limits. The average values and confidence limits
should be determined by measuring the properties of a number
of nominally identical cells, and the number of cells examined
should be given. For quantities obtained from fitting
experimental data, use the errors generated by the fitting
program (if your program does not give error estimates, use a
different program). You should always state the type of error
being reported (standard error, 95% confidence limit, standard
deviation, etc.). For example, for Figure 2 the result could be
reported as “z = 2.9 + 0.1 ns (error equals 95% confidence
limit).” If you choose not to use 95% confidence limits, then it
is very important to give the number of measurements, so that
the reader can work out the 95% confidence limits.

Tables of experimental data should always have errors. If all
the errors are the same (e.g, they are all 5%), it is acceptable to
state the errors in the table caption, rather than listing them in
the table. Likewise, plots of experimental data should have
error bars. Note that error bars are not typically needed for
primary data, such as spectra, transient absorption traces,
current versus voltage, or magnetization versus field measure-
ments. Because the focus in a graph is usually on the
dependent quantity, it is essential to have y-axis error bars.
However, error bars may also be needed for the x-axis. An
example is in nanomaterials studies, when properties are
plotted against sample dimensions. When the error bar is
smaller than the size of the symbol in the graph, this should be
stated in the figure caption.

Error Pitfalls. There are a number of common mistakes
that should be avoided in reporting errors. First, avoid
reporting too many significant figures. In Figures 2—4 above,
the insets that contain the analysis results are fine for the
Supporting Information but should not be included in the
main text. In the main text just give the key result with the
error and the correct number of significant figures. Second, R*
and y* values are not errors. These quantities give information
about the suitability of the model used to fit the data, and
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whether the number of parameters used in the model is
justified. However, they do not directly give the uncertainty in
the parameters being measured.

Sometimes least-squares fitting routines give unreasonably
small errors (for example, time constants in transient
absorption traces with errors of a few femtoseconds). If the
errors look too small, then you should perform a sensitivity
analysis to determine the uncertainty (vary the parameter and
see what range of values gives a reasonable fit to the data).
Likewise if the errors are very large, then the data are not very
sensitive to that parameter, and you may be able to fit the data
without the parameter. In time-resolved experiments you
should not report time constants smaller than the instrument
response function, unless you know the instrument response
function very well and have deconvoluted it from the signal.
For multiexponential decays data should be recorded over
several lifetimes to accurately determine the time constants.
And even though errors can be obtained from the fitting
programs from these experiments, the measurements should be
always be repeated!

The examples discussed above are very basic. There are a
number of textbooks on error analysis that provide a more
sophisticated description of how to statistically analyze data—
for example, how to check for correlations and test for
significant differences between measurements. At the end of
the analysis, it is important to perform a qualitative check on
the error being reported. If the error appears to be too large or
too small, then there may be a mistake or inaccuracy, and the
assumptions behind the fitting or model may need to be
questioned. Some reporting tips are listed in Table 2.

Table 2. Some Tips for Reporting Errors in Physical
Chemistry Experiments

best practices for reporting errors
The number of significant figures should match the error.
State the type of error being reported.
Report the standard deviations for the dimensions of nanomaterials.
Include all sources of uncertainty in error propagation.
Know the limitations of your instrument.

Give the sample size when reporting mean values and errors.

Further reading:

Lyons, L. A Practical Guide to Data Analysis for Physical
Science Students; Cambridge University Press: Cambridge,
1991.

Taylor J. R. An Introduction to Error Analysis; University
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