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ABSTRACT
The phenomenon of underscreening in concentrated electrolyte solutions leads to a larger decay length of the charge–charge correlation than
the prediction of Debye–Hückel (DH) theory and has found a resurgence of both theoretical and experimental interest in the chemical physics
community. To systematically understand and investigate this phenomenon in electrolytes requires a theory of concentrated electrolytes to
describe charge–charge correlations beyond the DH theory. We review the theories of electrolytes that can transition from the DH limit to
concentrations where charge correlations dominate, giving rise to underscreening and the associated Kirkwood Transitions (KTs). In this
perspective, we provide a conceptual approach to a theoretical formulation of electrolyte solutions that exploits the competition between
molecular-informed short-range (SR) and long-range interactions. We demonstrate that all deviations from the DH limit for real electrolyte
solutions can be expressed through a single function Σ(Q) that can be determined both theoretically and numerically. Importantly, Σ(Q) can
be directly related to the details of SR interactions and, therefore, can be used as a tool to understand how differences in representations of
interaction can influence collective effects. The precise function form of Σ(Q) can be inferred through a Gaussian field theory of both the
number and charge densities. The resulting formulation is validated by experiment and can accurately describe the collective phenomenon of
screening in concentrated bulk electrolytes. Importantly, the Gaussian field theory predictions of the screening lengths appear to be less than
∼1 nm at concentrations above KTs.
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0238708

I. INTRODUCTION
We celebrate 101 years since the publication of the

Debye–Hückel (DH) theory based on Boltzmann’s statistical
distribution of ions.1 Their work has stood the test of time and
comprises a well-known theory for electrolytes in the dilute limit.
Our understanding of charge correlations has its genesis in 1936,
when Kirkwood2 proposed a departure from DH theory, predicting
what became known as the Kirkwood Transition (KT). The KT
is recognized by the transition of the asymptotic long-range
(LR) charge–charge correlations at a specific concentration from
exponential to damped oscillator

hzz(r)∝ exp (−a0r) cos [Q0r − δ]/r, (1)

with a0 and Q0 as the inverse screening and inverse spatial order-
ing lengths, respectively, and δ as a spatial phase.2,3 Here, the
charge–charge correlation, hzz(r), for a given multi-component
system is defined as

hzz(r) =∑
α
∑
β

zαzβcαcβhαβ(r), (2)

with cα as the atomic fraction of ionic species α, zα as the charge qα
valence. Here, hαβ(r) = gαβ(r) − 1, where gαβ(r) is the radial distri-
bution function between ionic species α and β, and r represents the
radial distance from the center of the reference ionic species.4–7

Previous theoretical treatments of electrolyte solutions have
been largely confined to symmetric monovalent electrolyte systems
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FIG. 1. The concentration dependent inverse length scales a0 (blue) and Q0 (red)
taken from the numerical solution of Lee and Fisher8 for 1-1 symmetric restric-
tive primitive models using a hard sphere diameter of 4.2 Å and a water dielectric
constant of 80. The inverse DH length, κD, is shown in black. This represents a
classic KT where Q0 emerges at a concentration where the slope of a0 vs con-
centration changes its sign (the dashed-orange line shows the location of classic
KT). Underscreening is generally defined when a0 < κD at concentrations above
the KT.

that are known to support a KT. Analytical solutions of these simpli-
fied models predict the inverse length scale Q0 will emerge precisely
when the slope of a0 vs concentration changes sign.3,8–13 In addition,
a0 begins to deviate from the inverse DH length, κD, at concentra-
tions below the KT, and a0 becomes equal to κD at low concentra-
tions. In what follows, we refer to this as a classic KT, where at a given
concentration only one dominant screening length, a0, exists.8,11,14

Underscreening is defined as the concentration range where a0 < κD
(see Fig. 1). Since the seminal work of Kirkwood, modern views of
the charge–charge correlations have been put forth.8,11–13,15–21 A goal
of this study is to unify these approaches within a generalized for-
mulation using a single function, Σ(Q) (see Fig. 2), and show the
implications on KTs and breakdown of classic KTs for multivalent

electrolytes. Here, we develop both the theory and numerical proce-
dure that can predict Σ(Q), a correlation–interaction term beyond
DH, for concentrated electrolytes.

An additional impetus for a more quantitative and conceptual
approach to concentrated electrolytes has been motivated by two
distinct experimental observations. First, surface force apparatus
(SFA)23–26 and atomic force microscopy (AFM) measurements by
Hjalmarsson et al.27 have reported large notional screening lengths
in ionic fluids above KTs.23–25 In contrast, other AFM experiments
did not detect large screening lengths.28,29 Although a large screen-
ing length has been obtained from surface techniques, it has been
attributed to phenomena dominated by the bulk properties of elec-
trolytes25 and referred to as the “anomalous” screening length in
the recent literature.21,30 Although recent theoretical and simula-
tion studies have reported on large screening lengths in Coulomb
liquids,21,31,32 a consensus on the precise molecular-scale phenom-
ena responsible for anomalous screening remains an active area of
research.5,6,33,34

In contrast to the surface techniques, small-angle x-ray scat-
tering (SAXS) measurements suggest a different interpretation of
charge correlations under bulk homogeneous conditions. Specifi-
cally, the mapping of the SAXS experimental signal in the prepeak
region (low-Q) to charge–charge correlations predicts underscreen-
ing and KTs.14 In the SAXS measurements, underscreening was
shown to be consistent with standard liquid state theory estimates
and support a picture where large, anomalous screening lengths do
not dominate in concentrated bulk electrolytes.14 Therefore, it is
imperative to understand and contrast the theoretical frameworks
that can describe charge correlations beyond DH in Coulombic
liquids.

Despite many theories being developed for electrolyte solu-
tions to go beyond the DH limit,8,13,15,16,20,35,36 we will demonstrate
that quantitative connections to the SAXS measurements require the
incorporation of molecular detail that cannot be accessed through
practical analytical treatments. Our results suggest that although
current theories of electrolyte solutions8,13,15,16,20,35–37 are able to
capture the phenomena of underscreening, they are unable to

FIG. 2. A schematic showing the origins of Σ(Q) [see Eq. (3)] and the evolution of collective effects from infinite dilution (intrinsic) to concentrated electrolyte solutions. For
isolated interactions between two ions in a dielectric, the electrostatic interaction u(Q) in Q-space scales as 1/(ϵQ2

). Utilizing the intrinsic interaction, u(Q), in conjunction
with linear response theory22 yields collective properties shown in the dilute limit. In the dilute limit, collective effects result in a Q-dependent longitudinal susceptibility,
χDH(Q), giving rise to the well-known DH screening. Beyond the dilute limit, the longitudinal susceptibility, χ(Q), is augmented with a correlation-interaction function, Σ(Q),
that contains all of the corrections beyond the DH limit.
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explain the experimentally observed concentration dependencies
and the dominant inverse length scales a0 and Q0 that describe the
emergent correlations in real multivalent electrolyte solutions.14 A
necessary ingredient in a theory for concentrated electrolytes is the
presence of a non-Coulombic short-range (SR) interaction among
ions that competes with the slowly-varying LR Coulomb interaction.
This SR interaction can be as simple as a hard sphere (HS) inter-
action used in numerical and simulation approaches of restricted
primitive models (RPMs) of electrolytes.21,38–40 Here, we general-
ize the SR interaction, uSR

(r), to include molecular details from
condensed phase simulations using both classical and ab initio-
based interaction potentials from quantum density functional theory
(qDFT). We also present a theoretical framework that will allow us to
differentiate between choices of molecular-informed SR interactions
while preserving the conceptual simplicity of the “frustrated charge”
models16,41–43 (discussed below), providing a seamless connection to
previous formulations of concentrated electrolytes.

The general framework upon which we develop our theory is
schematically presented in Fig. 2, showing the progression of com-
plexity from intrinsic to concentrated. In the intrinsic limit, i.e., an
infinitely dilute dielectric continuum, two ions with charges qα and
qβ interact via the LR Coulomb interaction, uLR

(rαβ) = qαqβ/(ϵrαβ),
where ϵ is the static dielectric constant and rαβ is the distance
between ions. This gives rise to the well-known Coulomb interac-
tion u(Q) in reciprocal Q-space (the left panel in Fig. 2). The effective
response function for dilute systems in the DH limit, χDH(Q), can be
derived by using the intrinsic interaction u(Q) in conjunction with
linear response to get χDH(Q) = κ2

D/(Q
2
+ κ2

D) (the middle panel in
Fig. 2).22 Moreover, χDH(Q) is related to hzz(r) via Fourier Trans-
formation (FT), yielding the DH result of hzz(r) ∼ exp(−κDr)/r.
In the concentrated limit (the right panel in Fig. 2), we show that
the effective response function beyond the DH limit, χ(Q), can
be formulated in terms of a single function Σ(Q). In what fol-
lows we show how Σ(Q) is related to the charge–charge structure
factor, Szz(Q), defined by Szz(Q) = ∑αβ zαzβSαβ(Q). Here, Sαβ(Q)
= cαδαβ + cαcβnĥαβ(Q) is the partial structure factor, where the
Greek subscripts refer only to the ions and ĥαβ(Q) is the FT of
hαβ(r).4

Importantly, we develop a Gaussian field theory and formu-
las for Σ(Q) that arise from a simple coupling between number
and charge density (Sec. III). The theory presented in this perspec-
tive is general enough to describe charge correlation in realistic
descriptions of electrolytes in addition to recovering the DH limit
and the well-studied correlations of primitive models of electrolytes
(the so-called RPM and their variants). An outcome of this research
is a formulation that can be used to directly interpret the SAXS
experimental data in terms of Σ(Q) and connect to the choice
of the molecular representation that determines uSR

(r). Moreover,
this work provides the necessary theoretical framework to connect
all standard numerical and theoretical models of electrolytes and
to demonstrate the importance of molecular details in providing
robust formulations of charge–charge correlations that relate local
molecular structure to screening in aqueous electrolytes.

This perspective is organized as follows: in Sec. II, we review
important relevant theories of electrolyte solutions and discuss how
they can be characterized via Σ(Q). We use simple RPM models to
explain the general form Σ(Q) and demonstrate that Σ(Q) cannot

be formulated as a simple power series in Q. Utilizing a Gaussian
field theory in terms of the number density and charge density fields,
we provide a theoretical formulation of the general form Σ(Q) in
Sec. III. Importantly, it will be shown that Σ(Q) can be solely deter-
mined from SR direct correlations that can be used to quantitatively
reproduce numerical simulations of various models. In Sec. IV, we
present how to extract the pole structure from Σ(Q) and the result-
ing KT for real electrolyte solutions, predicting screening lengths to
be about ∼1 nm for concentrations for multivalent electrolytes above
the KTs. In Sec. V, we conclude the study and present an outlook of
the approach and future directions.

II. Σ(Q ) AND THEORIES OF ELECTROLYTE SOLUTIONS
In this perspective, we will demonstrate that the entirety of

correlations in concentrated electrolyte solutions can be described
with a single function Σ(Q). Σ(Q) can be numerically computed
from simulation and can be determined theoretically under reason-
able assumptions that are guided by liquid state theory. Importantly,
our theoretical analysis suggests that the precise functional form
of Σ(Q) necessitates the coupling of both a number density field,
which describes non-Coulombic SR packing, to a charge density
field. The coupling of both charge and number density fields through
a Gaussian field theory provides a useful framework to understand
the origins of various correlations in Σ(Q). In addition, Σ(Q) can
be used to compare and contrast all standard theories of electrolyte
solutions implicating the precise molecular nature of uSR

(r).

A. Definition of Σ(Q )
As shown in Fig. 2, the general longitudinal susceptibil-

ity of electrolyte solutions, χ(Q), can be represented with the
correlation–interaction term beyond DH, Σ(Q), defined by

χ(Q) =
k2

DSzz(Q)
ζQ2 =

κ2
D

Q2
+ κ2

D −Q2Σ(Q)
, (3)

with Σ(Q) = 0 in the DH limit and ζ = ∑ ciz2
i . This allows one to

formulate and calculate the non-local response of the electrolyte
solution that encapsulates the effects of all interactions beyond DH
in electrolyte solutions.

B. Unifying previous theoretical formulations via Σ(Q )
A formulation of the theory of concentrated electrolytes is

a subject of broad scientific interest. The vast majority of the-
ories to describe the collective effects of screening beyond the
DH theory treat water as a continuum dielectric and find prac-
tical statistical mechanical relations between the local densities of
the ions and the electrostatic potentials that satisfy the Poisson
equations.4,8,9,11,12,17,20,37,44–48 In this regard, the electrostatic poten-
tials have been obtained by the Green function techniques within
the linearized Poisson–Boltzmann framework.8,17 One can then con-
struct electrostatic free energy functionals in terms of a single charge
density, ρZ(r), yielding a direct route to charge–charge correlations
to determine a0 and Q0, yielding the classic KT shown in Fig. 1.8,17

Another distinct approach is based on the modified
Poisson–Boltzmann (MPB) closure that was introduced in
Ref. 49 and successfully predicted classic KTs for 1:1 electrolytes.
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The advantage of the MPB formalism is that one can apply various
hierarchies9,37,44,45,49,50 to access the concentration dependent radial
distribution functions. A recent study by Outhwaite and Bhuiyan
suggests that the present MPB formulation in a given hierarchy
predicts classic KTs even for multivalent electrolyte solutions.37

The liquid state theory with RPMs has also provided impor-
tant insights into charge correlations in electrolytes.38–40,51,52 Here,
the non-Coulombic uSR

(r) is given by a HS interaction that com-
petes with the LR Coulomb interaction. These primitive models
of electrolytes utilize the Orstein–Zernike (OZ) equation of liquid
state theory in conjunction with the HyperNetted-Chain (HNC) or
Percus–Yevick (PY) closures, which have shed light on deviations
from DH theory.38–40 Although these numerical methods are robust,
there is little to be gleaned conceptually regarding the essential
physics that drives charge correlations beyond DH.

Importantly, all of the above-mentioned approaches (in
addition to other formulations similar in spirit11,13,35), although
seemingly disparate, yield substantially similar outcomes of the
charge–charge correlations, screening, and the concomitant KTs
for 1-1 electrolyte solutions that follow the picture provided in
Fig. 1.8,12,13,17,20,37,45 One could build upon these approaches by
formulating a perturbation or diagrammatic theory to connect to
the framework of classical density functional theory. Rather, we
show convincingly that the salient physics to explain the complex-
ity of Σ(Q) can be formulated within a coupling of two Gaussian
fields representing charge and number density53,54 (see Sec. III).
This Gaussian field theory provides a direct route to structure fac-
tors in addition to a direct connection to liquid state theory and
both numerical and primitive models of electrolytes through a
molecular-informed effective 2-body interaction55 that will be dis-
cussed in detail below. In addition, the theory presented here is
flexible enough to utilize input from any theory that provides a
direct correlation function (say, from a classical density functional
theory) to predict the form of Σ(Q) and provide a complete descrip-
tion of charge–charge correlations, the screening lengths, and the
breakdown of classic KTs for multivalent electrolytes.

1. Σ(Q ) for frustrated charge Ising models
We start building our understanding of Σ(Q) through the

frustrated charge Ising (FCI) model, which has been studied exten-
sively and contains the necessary salient physics to describe ion
correlation beyond DH theory.15,16,43,56 The FCI involves both non-
Coulombic nearest neighbor interaction in addition to LR Coulomb
interactions. The microscopic Hamiltonian for this model is given
by

H =
1
2

N

∑
α

N

∑
β≠α

qrαqrβ(
B

rαβ
− Jαβ), (4)

with N as the number of lattice sites, qrα as the instantaneous charge
density of ±1 at site α located at position rα, B > 0 is the Coulomb
interaction strength, rαβ = ∣rα − rβ∣, and Jαβ = J is the strength of
the Ising (non-Coulombic) SR interactions between the nearest
neighbor sites and zero otherwise. Frustration here arises from
competition between LR charge and SR nearest neighbor charge
interactions. In the continuum limit of mean field theory (Q≪ l−1

with l as the lattice of spacing), the static charge–charge structure

factor has the well-known Teubner–Strey (TS) form57 of Eq. (1) and
supports the classic KT for these model electrolytes.16

The resulting Σ(Q) for a 3-dimensional model is given by

Σ(Q) = βJ(6 − l2Q2
). (5)

The form of Σ(Q) in the FCI clearly demonstrates that deviations
beyond DH theory are dominated by the SR non-Coulombic in
the FCI model.16 This remarkable result foreshadows the dominant
physics driving correlations to be discussed in detail in Sec. III.
Although we will show that understanding of the origins of cor-
relations beyond DH can be explained by the FCI, it will become
clear that the function form of Σ(Q) given by Eq. (5) is not general
enough to describe realistic models of electrolytes over the entire
Q-range relevant to screening. Specifically, Eq. (5) seems to sug-
gest that Σ(Q) can be represented as a power series in Q for more
complex systems. In the following, we demonstrate that this is not
generally the case, even for RPM of electrolytes, indicating that the
salient physics that drives correlations is dramatically oversimplified
in FCI. Nevertheless, this simplification will be addressed in Sec. II C,
demonstrating that we can preserve the general form of a FCI with a
molecular-informed SR interaction.

2. Σ(Q ) for RPM models
More insight into the behavior of the Σ(Q) function can be

gleaned from the simple RPM models of electrolyte solutions whose
analytical approaches can provide a conceptual picture but are
usually limited to describing model electrolytes where all compo-
nents are represented by identical sphere sizes. Examples include
Kjellander’s dressed ion theories of RPM models in which the
dressed ion has an effective charge determined by a diffuse charge
associated with an ion.11,20 Lee and Fisher provided an analytical
expression for Szz(Q) enforcing soft oscillatory modes in the charge
density that are found in solutions to the FCI models.8,17,43,56,58 Xiao
et al. followed Kjellander’s work based within the mean-spherical
approximation (MSA) framework and assumed that the electric
potential could be a linear combination of solutions from a DH
theory.35,36 Recently, Adar presented a theory of electrolyte solutions
in which the two-body Coulomb interactions were modified.13

Figure 3 depicts the numerically extracted Σ(Q) for symmet-
ric 1-1 RPM electrolyte solutions with HS diameters of 4.25 Å at
6M from various theoretical treatments. Here, the HNC results
are used as the standard reference, as they give consistent results
with independent all-atom molecular dynamics simulations (see
Appendix C 4 and Fig. 12). Although the FCI and RPM are known
to provide qualitatively similar screening and KTs, the form of Σ(Q)
from the numerical models is distinct from that obtained from
Eq. (5). Closer examination of Fig. 3 reveals that all primitive mod-
els depict a similar peak structure at low-Q qualitatively similar to
realistic models of electrolytes that will be developed in Sec. II C.

To this end, making use of the MSA expression presented by
Xiao et al.35,36 for Σ(Q) (see Appendix A), one observes better agree-
ment, with no fitting parameters, to the numerical HNC predictions
of the RPM results over a wider Q range (see Fig. 3). Similarly, the
Σ(Q) from the approach of Lee and Fisher8 also shows reasonable
agreement with the numerical RPM results over the entire Q-region.
Noting that Adar et al.’s theory does not consider any coupling of
number and charge density fields from their restricted Coulomb
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FIG. 3. Σ(Q), for symmetric 1-1 RPM electrolyte solutions with HS diameters of
4.25 Å at 6 M from various theories8,13,35,57 with HNC as the reference Σ(Q),
which is fitted to a 2-parameter TS function [Eq. (A2)]. The inset shows the
fits to a 5-parameter eighth order polynomial function (∑4

i=0 biQ2i
) and a 5-

parameter Padé-type function [Eq. (G2)]. The expressions from Ref. 13 are based
on the core (co), homogeneous spherical shell (sh), and spherically symmetric (sp)
electrostatic potentials [see Appendix A for the expressions of Σ(Q)].

interactions,13 their approach yields a significant overestimation of
Σ(Q)with respect to the numerical HNC results in the low Q region.
When different variants of Adar’s model are considered, we find
a wide range of results, including a significant underestimation of
Σ(Q) in the low Q region (see Appendix A).

Importantly, the inset of Fig. 3 suggests that a two parameter fit
to a simple TS distribution (i.e., ion correlations predicted by the
FCI) can capture the behavior of Σ(Q) only in a limited selected
range of Q < 1.2 Å−1. This provides a hint as to why these primitive
models of electrolytes yield qualitatively similar screening lengths
as a function of concentration in this important asymptotic regime.
However, a quantitative fit over the entire low Q-range requires a
Padé-type function [Eq. (G2)]. In general, it is clear that a simple
polynomial in even powers of Q (∑4

i=0 biQ2i with the same number
of parameters as the Padé-type function) cannot adequately approx-
imate Σ(Q) over a wide range of Q-space. A general functional form
of Σ(Q) that justifies the aforementioned Padé approximant will be
derived in Sec. III and constitutes the main theoretical result of this
perspective [see Eqs. (18)–(20)].

Figure 4 shows the size dependencies of Σ(Q) for symmetric
1-1 RPM electrolytes at 4.5 M, again solved numerically. HS diame-
ters ranging from 2 to 6 Å are shown. As can be seen, the magnitudes
of Σ(Q) at Q < 0.5 Å−1 are larger for larger ions, showing greater
deviations from the DH limit, tracking with our understanding
that small HS can be well represented by simple theory.17,44,49,59–63

These deviations are also reflected in the susceptibilities χ(Q) [see
Fig. 13(a)], which also show larger amplitudes for larger ions.
Figure 4 demonstrates that Σ(Q) has damped oscillatory behavior
in Q-space with the oscillation wavelengths decreasing as the ion
gets larger. This is due to packing and the emergence of extended
structure in the electrolytes. Interestingly, Σ(Q) values for the largest
studied ion size (a = 6 Å) can become negative around 2.3 and
3.3 Å−1 in the Q < 4.0 Å−1 region, resulting in significant changes in
the slope of χ(Q) around 2.3 and 3.3 Å−1 [see the inset of Fig. 13(a)
in the Appendix D].

FIG. 4. Σ(Q) for symmetric 1-1 RPM electrolyte solutions with various hard sphere
diameters, a, at 4.5 M from a numerical HNC procedure. The black dashed line
denotes the DH limit.

C. Extracting Σ(Q ) for real electrolyte solutions
In this section, we extract Σ(Q) for realistic molecular models

of electrolyte solutions and demonstrate the sensitivity of Σ(Q) to
the details of uSR

(r). For such realistic models of electrolyte solu-
tions, the exact solutions of Σ(Q) in the low-Q region cannot be
reliably estimated directly from all-atom molecular simulations with
explicit water due to insufficient sampling required at the length
scales relevant for the collective effects of screening (low-Q limit).
Therefore, as alluded to above, in the low-Q limit, the collective
effects of screening must be estimated from reduced theoretical
methods. The interested reader is referred to Appendix C for details.
Here we present them concisely.

We use the established numerical approach of integral equa-
tions utilizing OZ in conjunction with the HNC closure. The effec-
tive ion-ion interactions for our electrolytes are determined by the
potential of mean force (PMF) obtained from “infinitely dilute” all-
atom molecular dynamics (MD) simulations with the inclusion of
explicit water. The resulting PMFs of all ion pairs contain the molec-
ular effects of water at the mean-field level, and after removing the
Coulomb interactions, they define our uSR

(r). In particular, in this
work, uSR

(r) is obtained from the all-atom PMFs for a given ion pair,
WMD

αβ (r), assuming WMD
αβ (r) can be split into the SR, uSR

αβ(r), and LR
electrostatics contributions, uLR

αβ(r),

WMD
αβ (r) = uSR

αβ(r) + uLR
αβ(r) (6)

(see Appendix C 3 for details), where uSR
αβ(r) and ϵ are assumed con-

stant for all concentrations.64,65 Noting that water can be conceived
as a spectator to study the properties of interest for the bulk homo-
geneous electrolytes,8,12,13 we mainly focus on the LR correlations,
where the concentration dependence of ϵ has negligible effects on
our predictions (results not shown).

In previous studies, we and others have shown the efficacy of
this approach for predicting a wide range of collective thermody-
namic properties of concentrated electrolytes and comparing well
with all-atom molecular treatments with explicit water.14,64,66 For
the remainder of the text, we refer to the use of uSR

(r) in con-
junction with integral equations as the molecular-informed HNC
(mHNC) approach to distinguish it from previous numerical proce-
dures stated earlier for studies utilizing HS ions, which we will refer
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FIG. 5. Top panel: The uSR
(r) potential (extracted from infinite dilution PMF

from all-atom molecular simulation) for NaCl electrolyte solutions from neural
network potentials (NNPs), Kirkwood–Buff (KBFF), and Smith–Dang (SD) interac-
tion potentials. Bottom left panel: Longitudinal dielectric susceptibility χ(Q) from
mHNC calculations of NaCl electrolyte solutions at concentrations ranging from
0.01 to 6.0 M for various force fields. The highest concentrations have the highest
amplitudes, and the peak positions are shifted to higher Q-values. Bottom right
panel: The correlation–interaction term beyond DH, Σ(Q), from mHNC calcula-
tions of NaCl electrolyte solutions at concentrations ranging from 0.01 to 6.0 M for
various force fields. The highest concentrations have the highest amplitudes, and
Σ(Q) is close to zero over the whole Q-range for the lowest concentration.

to as the HNC method. The intrinsic SR interactions, uSR
(r), for

various models of SrCl2 and NaCl electrolyte solutions are shown
in Figs. 5 and 6, which are obtained from classical neural network
potential (NNP) trained on qDFT67,68 and qDFT representations of
interaction (see Appendix C for details).

As can be seen in the top panel of Fig. 5, there are significant
differences in uSR

(r) based on the form of molecular interactions
used to compute them. In particular, uSR

(r) potentials are shown for
NNP, classical Kirkwood–Buff (KBFF), and classical Smith–Dang
(SD) models between Na–Na, Na–Cl, and Cl–Cl ion pairs, where
uSR
(r) is extracted from the infinite dilution PMFs after removing

uLR
(r). Importantly, the peak positions of uSR

(r) and the NaCl ion-
pair for all three models are in qualitative agreement. Quantitative
differences in the like–like ion uSR

(r) obtained with NNP are softer
than those obtained from the classical force fields (FFs). This is con-
sistent with the current literature where such differences between
classical FFs and NNP representations of interaction require the
effects of explicit polarization that can be corrected by charge scaling
to account for the electronic polarization.69

For a simple monovalent electrolyte, NaCl, the bottom pan-
els of Fig. 5 show the implications of different uSR

(r) for the three
aforementioned models on the longitudinal susceptibility, χ(Q), and
correlation–interaction term beyond DH, Σ(Q). The results show
significant sensitivities of response functions of electrolyte solutions
to minor differences in uSR

(r) interactions. Interestingly, over the
whole concentration range, the general behaviors of χ(Q) and Σ(Q)

FIG. 6. Top panel: The uSR
(r) (extracted from infinite dilution PMF from all-atom

molecular simulation) for SrCl2 electrolyte solutions from qDFT, Kirkwood–Buff
(KBFF), and Smith–Dang (SD) interaction potentials. Bottom left panel: Longitu-
dinal dielectric susceptibility χ(Q) from mHNC calculations of SrCl2 electrolyte
solutions at concentrations ranging from 0.01 to 4.0 M for various force fields. The
highest concentrations have the highest amplitudes, and the peak positions are
shifted to higher Q-values. Bottom right panel: correlation–interaction term beyond
DH Σ(Q) from mHNC calculations of SrCl2 electrolyte solutions at concentrations
ranging from 0.01 to 4.0 M for various force fields. The highest concentrations have
the highest amplitudes, and Σ(Q) is close to zero over the whole Q-range for the
lowest concentration.

for NNP and SD models are in good agreement with each other,
while χ(Q) and Σ(Q) for the KBFF model are significantly differ-
ent from those obtained from the NNP and SD models. The general
behavior of Σ(Q) at high concentrations for the KBFF model at
Q < 0.2 produces a positiveΣ(Q) in contrast with the negative values
of Σ(Q) obtained with NNP and classical SD models.

Again, for the divalent electrolyte, SrCl2, the top panel of Fig. 6
denotes the infinite dilute PMFs extracted from both classical and
qDFT molecular simulations for all of the pair interactions. A simi-
lar trend is observed with the like–like repulsion being significantly
softer for qDFT. The left bottom panel of Fig. 6 shows the resulting
longitudinal susceptibility functions from our mHNC calculations
at concentrations ranging from 0.01 to 4.0 M. For both qDFT and
classical FFs, the longitudinal susceptibility functions at low concen-
trations decrease as Q increases, while at high concentrations both
show maxima, which appear at relatively smaller Q values for the
qDFT uSR

(r).
Figures 5 and 6 demonstrate clear, qualitative differences in

the characterization of correlation from extracting Σ(Q) through
our mHNC procedure. These differences result in quantitative mea-
surable differences in the collective behavior of concentrated elec-
trolytes and will be addressed later in the paper. Indeed, it has
been demonstrated that the choices in molecular interactions pro-
vide qualitative and quantitative differences in our understanding of
the intrinsic properties of ions, namely local structure and single ion
solvation free energies.63,66,70,71 In this perspective we demonstrate
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how collective properties of concentrated electrolyte solutions can
be quantitatively understood via Σ(Q) and the choice of uSR

(r).

III. GAUSSIAN FIELD THEORY FOR Σ(Q )
In Sec. II B 2, we developed a picture where the charge–charge

correlations are characterized by Σ(Q) for various models that could
not, in general, be well approximated by a power series in Q, and
a Padé expansion of the form of Eq. (G2) was necessary to find
near quantitative fits over the entire low-Q region studied here. This
section provides a phenomenological formulation of Σ(Q) that cap-
tures the complexity of the Padé approximation. The theory involves
an implicit averaging over the microscopic degrees of freedom
to obtain a functional (an effective Hamiltonian) at length scales
relevant for describing the collective effects of screening in elec-
trolyte solutions.72 To this end, a general formulation of a Gaussian
field theory coupled to an auxiliary field to demonstrate emergent
phenomena in the liquid state has a long history.53,73,74 Although
providing immense theoretical insight, field theoretical formulations
are often difficult to implement for general molecular systems and
require further simplifications.15,75 Below, we present a formulation
that is both numerically and theoretically tractable for concentrated
electrolytes, providing a molecular-scale picture of underscreening
phenomena in Coulombic systems.

We follow previous studies on anisotropic next-nearest neigh-
bor Ising (ANNNI) models that use Hubbard–Stratonovich trans-
formations to develop a Gaussian field theory based on a single
number density-based order parameter to obtain the correlation
across the phase diagram representing a multicomponent complex
fluid.62,76–78 Going beyond a Gaussian field theory in the ANNNI
model via diagrammatic analysis provided a route to compute cor-
rections to mean field theory near a critical phase boundary where
taking the Q→ 0 limit is justified.62 The continuous forms of both
the FCI model and the ANNNI model are similar. However, in
this application it is required that we are deep in the isotropic
phase well above any critical point of the model to capture electro-
static screening.16 Therefore, we seek different theoretical tools to
describe the complexity of Σ(Q) for the phenomena of screening.
Motivated by previous works, we propose a simple Gaussian phe-
nomenological model with two fields, namely, ρz, representing the
charge density, and ψ, representing an auxiliary field for the number
density.15,53,73,74 We will demonstrate that this formulation provides
a direct route to the charge–charge scattering function, Szz(Q), and
allows us to examine the precise details of uSR

(r) on the collective
property of screening.

In a given configuration of electrolyte solution, the number
density field of electrolyte solution may be defined as

ψ(r) = ρ+(r) + ρ−(r), (7)

with ρ+(r) and ρ−(r) as the cation and anion densities, respec-
tively. Similarly, the charge density field of the electrolyte solution
is defined as

ρz
(r) = z+ρ+(r) + z−ρ−(r), (8)

where zi = νie with ν and e as charge valency and the elementary
charge, respectively.

The coarse-grained Hamiltonian (functional) of the electrolyte
solutions may then be given by

H[ρz
(r),ψ(r)] =

1
2 ∫

dr∫ dr′ρz
(r)Γzz

(r, r′)ρz
(r′)

+
1
2 ∫

dr∫ dr′ψ(r)ΓNN
(r, r′)ψ(r′)

+ ∫ dr∫ dr′ρz
(r)ΓNz

(r, r′)ψ(r), (9)

where ψ(r) couples to ρz
(r) via charge–density kernel ΓNz

(r, r′), and
Γzz
(r, r′) and ΓNN

(r, r′) are the charge–charge and density–density
kernel functions, respectively. Note that the functional involves the
harmonic coupling of number density and charge density.19,53,54,79,80

The partition function is

Q =∫ D[ρz
]D[ψ]e−βH[ρz(r),ψ(r)], (10)

where D[ρz
]D[ψ] denotes integration over all possible configura-

tions of the fields.
For convenience, we write the coarse-grained Hamiltonian in

Q-space as

Ĥ[ρz
(Q),ψ(Q)] =

1
2 ∫

dQ
(2π)3 ρ̂

z
(Q)Γzz

(Q)ρ̂ z
(Q)∗

+
1
2 ∫

dQ
(2π)3 ψ̂(Q)Γ

NN
(Q)ψ̂(Q)∗

+ ∫
dQ
(2π)3 ρ̂

z
(Q)ΓNz

(Q)ψ̂(Q)∗. (11)

In matrix form, the coarse-grained Hamiltonian can be
written as

Ĥ[ρ̂ z
(Q), ψ̂(Q)] =

1
2 ∫

dQ
(2π)3 [(ρ̂

z
(Q) ψ̂(Q))

× (
Γzz
(Q) ΓNz

(Q)
ΓNz
(Q) ΓNN

(Q)
)(
ρ̂ z
(Q)∗

ψ̂(Q)∗
)]. (12)

Finally, the partition function can be written as

Q =∫ D[ρ̂ z
]D[ψ̂] exp∫

dQ
(2π)3

× [−
β
2
(ρ̂ z
(Q)ψ̂(Q))(

Γzz
(Q) ΓNz

(Q)
ΓNz
(Q) ΓNN

(Q)
)(
ρ̂ z
(Q)∗

ψ̂(Q)∗
)]

=∫ [dx] exp−
β
2 ∫

dQ
(2π)3 [x

T
⋅Γ⋅x], (13)

We then utilize Wick’s theorem81 ⟨xix j⟩ = kBT(Γ−1
)ij , yielding

Γ−1
=

1
det Γ

(
ΓNN
(Q) −ΓNz

(Q)
−ΓNz
(Q) Γzz

(Q)
). (14)
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The charge–charge structure factor, Szz(Q), of electrolyte
solution can now be defined in terms of Γ−1 as

Szz(Q) =
1
N
⟨ρz

Qρ
z
−Q⟩ = kBT

ΓNN
(Q)

det Γ
. (15)

Generally, the (number) density–density, ΓNN
(Q),

charge–charge, Γzz
(Q), and density–charge, ΓNz

(Q), kernel
functions are not known for a given electrolyte system. Neverthe-
less, inspired by the work of Stafiej and Badiali79 and Chandler,53

we introduce our phenomenological kernel for isotropic electrolyte
solutions as

βΓ(Q) = β(
Γzz
(Q) ΓNz

(Q)
ΓNz
(Q) ΓNN

(Q)
)

≈
⎛
⎜
⎝

κ2
D

ζQ2 + ζ
−1Azz(Q) ζ−1ANz(Q)

ζ−1ANz(Q) b2Q2
+ ANN(Q)

⎞
⎟
⎠

. (16)

Our key insights are based on two assumptions. First, Azz(Q),
ANN(Q), and ANz(Q) are assumed to capture the Q dependence
of SR interactions in the kernels, noting that the κ2

D
Q2 term captures

the LR Coulombic interactions in the electrolyte solutions and b is
a phenomenological coefficient with dimensions of length, which
can originate from non-local coupling of density field gradients.
Interestingly, the density and charge fields are fully decoupled in
symmetric charged systems when ANz(Q) = 0. In the weak cou-
pling limit for asymmetric electrolyte solutions, one may also assume
ANz(Q) to be a constant.

As we show here, the correlation–interaction term beyond
DH, Σ(Q), can now be derived from the partition function of the
electrolyte solution and be extracted from the SR direction correla-
tions, which constitute the main result of this perspective. The main
derivations follow as

Q =∫ D[ρ̂ z
]D[ψ̂] exp∫

dQ
(2π)3

×

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
1
2
(ρ̂ z ψ̂)

⎛
⎜
⎝

κ2
D

ζQ2 + ζ
−1Azz ζ−1ANz

ζ−1ANz b2Q2
+ ANN

⎞
⎟
⎠
(
ρ̂ z

ψ̂
)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (17)

with the charge–charge structure factor given by

Szz(Q) =
b2Q2

+ ANN(Q)

(
κ2

D
ζQ2 + ζ−1Azz(Q))(b2Q2

+ ANN(Q)) − ζ−2A2
Nz(Q)

,

(18)

and the correlation–interaction term beyond DH obtained as

ΣAux
(Q) = 1 − Azz(Q) +

A2
Nz(Q)

ζANN(Q) + ζb2Q2 , (19)

where ΣAux
(Q) indicates that ψ is treated as the auxiliary field [see

Eq. (7)].
Equation (19) is the correlation–interaction term beyond DH

for the functional of electrolyte solution presented in Eq. (11).
We then make the ansatz that Azz(Q), ANz(Q), and ANN(Q) at a

given concentration can be estimated from the SR direct correlation
functions as

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ANN(Q) = 1 − ρ∑αβ xαxβcSR
αβ(Q),

ANz(Q) = −ρ∑αβ zβxαxβcSR
αβ(Q),

Azz(Q) = 1 − ρ∑αβ zαzβxαxβcSR
αβ(Q).

(20)

We have now provided explicit expressions in Eq. (20) to
directly compute Szz(Q) from the combination of molecular sim-
ulations and estimates of cSR

αβ(Q) through either theory or numerical
approaches82 as outlined above and will be explicitly shown later.
The salient point of Eq. (20) is that we have directly implicated
the SR direct correlation function, cSR

αβ(Q), to contain all correc-
tions beyond the DH limit. For real electrolyte solutions, a formal
connection between uSR

(r) and the terms that appear in Eq. (20)
remains unclear and the subject of future research. Nevertheless,
below we demonstrate the veracity of these assumptions and com-
pare the Σ(Q) between closed expressions from analytical solutions
of model electrolyte solutions directly through Eqs. (19) and (20) to
the numerically extracted solutions based on Eq. (3).

A. Application to RPM models
We first consider symmetric electrolytes, where ANz(Q) = 0 as

discussed earlier. This results in a simplified expression for ΣAux
sym(Q),

ΣAux
sym(Q) = 1 − Azz(Q) = ρ∑

αβ
zαzβxαxβcSR

αβ(Q). (21)

Equation (21) suggests that for symmetric RPMs, Σ(Q) captures all
SR direct correlations. Similarly put, if one assumes that the direct
correlation functions can be decomposed as c(Q) = cSR

(Q) − κ2
D

ρQ2 ,
then one can use Eq. (3) to obtain Eq. (21) via the OZ equa-
tion. Therefore, the auxiliary formulation is consistent with the
OZ framework for symmetric RPMs, and this will be rigorously
demonstrated below.

Analytical expressions of cSR
αβ(Q) in Eq. (21) in the MSA frame-

work61 for symmetric 1-1 RPM electrolytes are obtained by making
use of

cSR
αβ(Q) =

4πa3

(Qa)6 gMSA(Q). (22)

As shown in Appendix B, the MSA SR direct correlations contain
Coulombic contributions showing their significance in the for-
malism. Independent of the above-mentioned expression, one can
directly access the charge–charge structure factor from the MSA35

and Eq. (3) to obtain Σ(Q) presented in Eq. (A3) in the Appendix A.
Figure 7 shows that the MSA auxiliary-field results obtained

from the analytical expressions of SR direct correlation functions for
symmetric 1-1 electrolytes are based on Eqs. (21)–(B5). The results
are in quantitative agreement with the independent MSA analytical
results35 [Eq. (A3)], demonstrating the accuracy of the auxiliary-field
formulation in conjunction with Eq. (20) for these primitive models
of electrolyte solutions.

In addition, one can use cSR
αβ(Q) from the numerical integral

equation (HNC) framework and use it as an input to Eqs. (19) and
(20) to obtain the auxiliary-field formulation results based on an
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FIG. 7. Accuracy of Σ(Q) for 1-1 RPM electrolyte solutions obtained from the
auxiliary-field formulations [Eqs. (19) and (20)]: (A-a) Σ(Q) of symmetric RPMs
from independent analytical MSA [Eq. (A3): cyan dotted lines] and the auxiliary-
field (dashed blue lines), (B-b) Σ(Q) of symmetric RPMs from HNC [Eq. (3)] and
the auxiliary-field (dashed red lines), and (C-c) Σ(Q) of asymmetric RPMs from
HNC [Eq. (3)] and the auxiliary-field (dashed violet lines). Here the ion HS diam-
eters are 4.25 Å for symmetric RPMs, while for the asymmetric RPMs, the HS
diameters are 4 and 6 Å, respectively. The b value is set to 1 Å in Eq. (19), and
the ion concentration is 6 M. Note that in all cases, the agreements are so close
that they almost overlap.

accurate uSR
(r), which is denoted as ΣAux

(Q). On the other hand,
one can denote the Σ(Q) from Eq. (3) as ΣHNC

(Q), where the
non-Coulombic SR interactions are treated as HS. Figure 7 shows
agreement between ΣHNC

(Q) and ΣAux
(Q) for symmetric electrolyte

solutions.
Importantly, the self-consistency of the formulation can be

shown for 1-1 asymmetric RPMs in which the cross term ANz(Q)
in Eq. (19) plays a crucial role in resulting in the excellent agreement
of ΣAux

(Q) and ΣHNC
(Q). This is also shown in Fig. 7. Therefore,

the approximations made for deriving Eq. (19) appear to be robust.
Furthermore, it is clear from Fig. 7 that, unlike symmetric RPMs,
Σ(Q) in various regions of Q-space can be negative for asymmetric
RPMs, which shows the significance of asymmetry in the behavior of
the Σ(Q) function and the decrease of the electrostatic response in
those ranges of Q-space. It is worth noting that the behavior of Σ(Q)
can be due to the interplay between several factors such as asym-
metry, ion size, charge valency, and details of SR interactions, and a
full understanding of the negative behavior of Σ(Q) is an interesting
future study.

In short, these results demonstrate that the dominant contri-
butions to the Γ(Q) matrix in Eq. (16) can be well represented with
the SR terms in Eq. (20) for both symmetric and asymmetric RPM
electrolytes.

B. Application to molecular models of electrolyte
solutions

Here, we examine how ΣAux
(Q) performs for realistic molec-

ular descriptions of electrolytes such as NaCl and SrCl2, whose
effective SR interactions are obtained from NNP or qDFT all-atom
molecular dynamics simulations that include explicit water. Using
uSR(r) constructed from NNP or qDFT, we construct χ(Q) and
ΣmHNC

(Q) from the mHNC procedure and ΣAux
(Q) for NaCl and

FIG. 8. Accuracy of Σ(Q) from auxiliary-field formulations for NaCl and SrCl2 from
NNP and qDFT, respectively. The reference numerical mHNC results are dotted
lines, and the auxiliary-field results are dashed lines. The ion concentrations are 6
and 3 m for NaCl and SrCl2, respectively. The b value in Eq. (19) is set to 1 Å.

SrCl2 aqueous electrolyte solutions. Figure 8 demonstrates excel-
lent agreement between ΣmHNC

(Q) and ΣAux
(Q) for NaCl, where

the b value in Eq. (16) is set to 1 Å. Although there are deviations
betweenΣmHNC

(Q) andΣAux
(Q) for SrCl2, the shapes of both curves

are in good agreement. It should be noted that different procedures
have been used to extract uSR

(r) for NaCl and SrCl2.67 Therefore,
the remarkable agreement of the NaCl mHNC with the theoreti-
cally predicted ΣAux

(Q) could be attributed to uSR
(r) computed via

inversion of the Poisson–Boltzmann equation, providing a superior
reference of interaction.67 According to the formulation presented in
this work, if the exact uSR

(r) is used in Eq. (19), one would expect to
get the exact numerical ΣmHNC

(Q) from Eq. (3). The sources of dis-
agreement and the dependence on the procedure to compute uSR

(r)
will be left for a future study.83

Advances in machine learning, particularly equivariant NNPs,
are leading to substantial reductions in the computational cost of
computing uSR

(r) through both directly accelerating all-atom sim-
ulations and through coarse-graining.67,68 This means that uSR

(r)
will soon be determined with increasingly more accurate levels of
qDFT theory84 and for a wider range of systems, making methods
of interpreting this information increasingly valuable. In addition to
computing Σ(Q), uSR

(r) is also critically important for determining
key thermodynamic quantities such as osmotic coefficients/activity
coefficients through various routes such as the virial equation.64

Reproducing these quantities will be an important task for future
theories of electrolyte solutions.

IV. DOMINANT POLE STRUCTURE
AND GENERALIZED KTS

We have now established that Σ(Q) can be obtained within the
mHNC framework described earlier. In this section, we provide con-
nections to SAXS experiments and determine the dominant poles by
establishing the function form of Σ(Q) as a ratio of rational poly-
nomials in Q going beyond the standard TS form.57 As we show,
we find this form of Σ(Q) supports the observation from the SAXS
experiment and confirms that KTs are more general than the clas-
sic KT. The dominant poles can also be obtained in the r-space (see
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Appendix F), and we show that one can get consistent poles both
in Q-space and r-space. Determining the pole structure, we define
generalized KTs as the decoupling of the onset of oscillations and
underscreening, where the length scale Q0 emerges at concentrations
before the maximum in a0. We show that NaCl follows classical KTs,
while SrCl2 and CaCl2 electrolytes show generalized KTs. In general,
in both types of KTs, we show that at concentrations above KTs, the
screening lengths predicted from this approach are ∼1 nm.

In Q-space, obtaining the inverse length scales (Q0 and a0)
requires the analysis of the pole structure involving Σ(Q). Numeri-
cally, one can extract the poles directly by solving

Q2
+ κ2

D −Q2Σ(Q) = 0, (23)

whose solutions can contain multiple poles.85,86 The dominant poles
can be extracted from Eq. (23) and can be shown to be substan-
tially similar to those fit to the TS distribution and importantly
provide a much better fit over the pre-peak Q-range. Here, we solve
Eq. (23) by fitting Σ(Q) to Eq. (G2) (in the Appendix G) to find
the roots numerically using Muller’s method in the mpmath Python
library that is recommended for complex roots. We show that the
pole structure from this method is consistent with those obtained in
r-space (see Appendix F).

A. SrCl2
Having obtained ΣmHNC

(Q), for the molecular models of SrCl2
solutions, we use Σfit

(Q) to extract the poles by fitting to Eq. (G2) in
the Q-region from 0.04 to 2.3 Å−1. The poles obtained from Eq. (23)
are verified by comparing them to the TS single pole fits obtained in
r-space from hzz(r) defined in Appendix F.

Figure 9 compares the pole structure extracted from hzz(r) and
Σ(Q) when they are fitted to a damped harmonic oscillator function
[Eq. (F2)] in r-space and Eq. (G2). As can be seen, the pole struc-
ture is in excellent agreement. The salient result is that the explicit
coupling between the charge and number density fields is required
to provide excellent fits to the scattering function Szz(Q) over a large
range of Q-space.

FIG. 9. Pole structure (a0 and Q0) of SrCl2 for using the qDFT interaction potential.
The poles are extracted from both the real space [hzz(r): blue] and the recipro-
cal space auxiliary field formulations (red). The poles extracted from hzz(r) are
obtained based on a damped oscillator function [Eq. (F2)] where specific regions
in r-space are chosen at a given concentration to find the dominant poles. The
poles from Σfit

(Q) are extracted by numerically solving Eq. (23) over the whole
concentration range in the Q-region from 0.04 to 2.3 Å−1 with a function form of
Eq. (G2).

FIG. 10. Breakdown of classic KTs for SrCl2 electrolyte solutions: pole structure
of SrCl2 extracted from Σfit

(Q) [Eq. (G2)] for qDFT and KBFF interaction poten-
tials. The black circles and squares in both panels denote the a0 (blue lines and
symbols) and Q0 (red lines and symbols) values estimated from the experimen-
tal SAXS measurements (black symbols), respectively. The details to extract the
poles are presented in Appendix F.

Figure 10 presents the pole structure of SrCl2, which is
extracted from Σfit

(Q) for both qDFT and KBFF. They are compared
with the pole structure extracted from the experimental SAXS mea-
surements over the entire concentration range. The details about the
extraction of the pole structure for the experimental SAXS measure-
ments are presented in Appendix F, and supplementary details are
available in Ref. 14. Interestingly, the a0 values for the qDFT over the
whole concentration range are, in general, in better agreement with
the SAXS a0 values. On the other hand, the Q0 values obtained from
the KBFF seem to better represent the SAXS Q0 values. The origin
of these differences can be traced back to uSR

(r) extracted from both
models. Overall, the pole structure for SrCl2 deviates from the classic
KT. In particular, the emergence of Q0 occurs before the slope of a0
changes sign. This demonstrates that classic KTs break for multiva-
lent electrolytes. In addition, it is clear from Fig. 10 that experimental
and theoretical screening lengths for SrCl2 at concentrations above
KTs are predicted to be less than ∼1 nm.

B. NaCl
Figure 11 depicts the pole structures for the NNP, KBFF, and

SD NaCl models when they are extracted from the fits of Eq. (F2)
to the numerical hzz(r) from the mHNC method. Note that Σ(Q)
for SD and NNP models are generally in good agreement, which
translates to their root structures. Interestingly, for NaCl, the clas-
sic KT is established for all forms of interactions studied. It is worth
mentioning that finding the dominant poles from Σ(Q) is numer-
ically challenging due to the existence of multiple poles predicted
in previous studies.47,48,87 Although the numerical procedure used
for extracting the dominant poles for SrCl2 from Σ(Q) is consistent
with those obtained in r-space [see Eq. (F2)], our preliminary results
suggest that using a similar numerical approach for NaCl does not
provide satisfactory agreement with the r-space approach. There-
fore, a full analysis of pole structure for NaCl will be the subject of
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FIG. 11. Pole structure of NaCl extracted from hzz(r) using NNP, KBFF, and
SD interaction potentials.

further examination in conjunction with the analysis of new SAXS
experimental data. Nevertheless, our theoretical predictions based
on the dominant pole analyses show that the screening lengths are
less than ∼1 nm at concentrations above KTs.

V. CONCLUSIONS AND OUTLOOK
We have recently established the connection between the

SAXS experimental measurements and charge–charge correlations
in electrolyte solutions.14 Although previous theories of electrolyte
solutions8,13,20,37 provide a qualitative picture of the collective effects
of screening, in their present form, they cannot predict the complex
pole structure reported in Fig. 10 verified by SAXS measurements.
In this perspective, we present a Gaussian field theory for Σ(Q)
to explain these recent SAXS measurements.14 The theory involves
coupling between the number and charge density and provides
simple formulas that can be utilized to study the complexities of
molecular representations of concentrated electrolytes. In addition,
we have demonstrated that Σ(Q) can be used to unify the theories
of electrolytes (see Fig. 3) and provide a conceptual understand-
ing of the origins of charge-charge correlations in concentrated
electrolytes.

To this end, our formulation provides a direct and simple
route to Szz(Q) [Eq. (18)] and provides a general formula Σ(Q)
[Eq. (19)] that can be cast in terms of SR interactions through SR
direct correlation functions, which can be estimated by liquid state
theory [Eq. (20)]. An exact Σ(Q) can be extracted from simulation
and, therefore, constitutes a theory for concentrated electrolytes.
According to the formulation presented in this work, if the exact SR
interactions are used in Eq. (19), one would expect to get the exact
numerical ΣmHNC

(Q) from Eq. (3). We have shown in this work
that Σ(Q) can be well represented through a molecular-informed
uSR
(r) within the liquid state framework. This demonstrates the

importance of the coupling between dielectric theory and PMF that
properly integrates over solvent fluctuations to obtain a molecular

picture of the collective properties of electrolyte solutions.63,88 The
choice of uSR

(r) can influence the screening length scales over the
entire concentration range, as shown in pole structure and, there-
fore, the details of the KT shown in Figs. 10 and 11. The agreement
between the Gaussian (auxiliary) field theory presented in Sec. III
with the mHNC results in Fig. 8 is remarkable. To the extent that this
agreement relies on a more rigorous determination of uSR

(r) via the
direct subtraction of the Coulomb term is an open question. Indeed,
Ref. 67 provides a more sophisticated route to uSR

(r) and appears
to give substantially better agreement (see Fig. 8). Future studies will
focus on the self-consistent procedures such as those suggested by
Outhwaite et al.9,37,44,45,50 to construct more rigorous representations
of uSR

(r).
The importance of treating the number density explicitly can be

discerned through the form of Σ(Q) obtained from treating only the
charge density field, namely the FCI. Although the FCI can describe
the qualitative physics of underscreening, it cannot reproduce the
function form needed to reproduce molecular simulation and exper-
imental data over a broad Q range. Therefore, the number density
and charge density fields and their coupling are essential for the
advanced theories of electrolyte solutions. With this in mind, we
discuss the sensitivities of Σ(Q) to the symmetry and asymmetry in
uSR
(r) and show the significance of the coupling of number density

and charge density in theory. We observe that Σ(Q) for the studied
symmetric RPM models in the low Q-region (Q < 2 Å−1) remains
positive, but Σ(Q) can become negative for the asymmetric RPMs
(see Fig. 7). This is further confirmed for the asymmetric classical
and ab initio-based models of 1-1 and 1-2 electrolytes (see Figs. 5
and 6). It would be an interesting future study to fully understand
the complex behavior of Σ(Q) in real electrolyte solutions and its
role in predictions of the thermodynamic properties such as activity
and osmotic coefficients.89

We also demonstrate that Σ(Q) can be used to determine the
screening lengths and KTs. We show that KTs can go beyond clas-
sic KTs in which the emergence of the order in LR charge–charge
correlations, Q0, is coupled with known changes in the behavior of
underscreening (maximum in a0). In this regard, we generalize KTs
for multivalent electrolytes while our numerical analyses show min-
imal deviations from the classic KTs for monovalent electrolytes.
Moreover, although the TS form seems to be robust as a single
pole description of underscreening and the breakdown of DH, this
work provides a formulation that can differentiate between differ-
ent forms of molecular interaction and, therefore, brings us one step
closer to having a molecular rationalization for underscreening in
electrolytes. Finally, above the KTs, our dominant pole analyses of
bulk electrolytes reveal screening lengths comparable to the size of
ion hydration spheres. This is in contrast with the unusually large
screening lengths reported in recent surface technique studies.25,26,30
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APPENDIX A: Σ(Q ) OF SYMMETRIC RPM 1-1
ELECTROLYTES FOR VARIOUS MODELS

In this section, the Σ(Q) is presented for 1-1 electrolyte
solutions for other common theories/models.

Making use of a simple form of TS distribution57 for χ(Q)

χ(Q) =
κ2

D

κ2
D + b1Q2

+ b2Q4 , (A1)

results in

ΣTS
(Q) = 1 − (b1 + b2Q2

). (A2)

In the 1990s, Kjellander et al. split the ion–ion correlations and
the charge density into SR and LR parts and incorporated the n-body
correlations and non-linear effects in a renormalized charge den-
sity and effective screening lengths to develop a dressed-ion theory
for electrolyte solutions in which the mean field analytical solu-
tions are preserved.11,12,20 The MSA was applied to RPM models
in the early 1970s to obtain analytical expressions of thermody-
namic properties and radial distribution functions for electrolyte
solutions44,59,60 by assuming that the OZ direct correlation function,
cij(r), is related to the interaction potential between ions, uij(r), via
cij(r) = −βuij(r) for r > Rij with β as the inverse temperature. Within
the MSA framework presented by Xiao and Song, one can directly
use the charge–charge structure factor from the MSA35 and Eq. (3)
to get Σ(Q) as

ΣMSA
(Q) = Q−4

(κ2
DQ2
+Q4

−Q4
− 4γ2

(Q2
− 2γ2

) cos (Qa)

− 8γ3Q sin (Qa) − 8γ4
) (A3)

with 2Γ = (
√

1 + 2aκD − 1)/a with a as the HS diameter.
In 1997, Lee and Fisher did distinctive work exposing the RPM

ions to periodic soft modes and found the non-local response (longi-
tudinal susceptibility), χ(Q), of the 1-1 RPM electrolyte solutions.8
The KT was predicted by the standard approach to find the poles of
χ(Q) that lie closest to the origin in the complex Q plane. Based on
the Lee and Fisher expressions for RPM ions of size a, one gets8

ΣLF
(Q) = 1 − (Q−2

(
κ2

D

ζ
−Q2
)

+ 2a−2Q−2 cos (Qa)(−aκD + ln (1 + aκD))

− a−3Q−3
(aκD(−2 + aκD) + 2 ln (1 + κDa)) sin (Qa)).

(A4)

Based on Adar et al.’s expressions,13 one gets the core (co), the
spherical symmetric (sp), and the homogeneous spherical shell (sh)
electrostatic potential as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Σco
(Q) =

κ2
D

Q2 (1 − cos (Qa)),

Σsh
(Q) =

κ2
D

Q2 (1 − [j0(
Qa
2
)]

2
),

Σsp
(Q) =

κ2
D

Q2 (1 − [
6

Qa
j1(

Qa
2
)]

2
),

(A5)

where jn(
Qa
2 ) are the spherical Bessel functions (see Ref. 13).
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APPENDIX B: MSA FOR SYMMETRIC 1-1 RPM
ELECTROLYTE SOLUTIONS

In the main text, we provided expressions on how the SR direct
correlations may be formulated within the MSA framework [see
Eq. (22)]. Here, we provide the details with gMSA(Q) given by

gMSA(Q) = 24dαβ − 2bαβ(Qa)2
+ eαβ(Qa)4

− cos (Qa)(24dαβ − 2(bαβ + 6dαβ)(Qa)2

+ (ααβ + bαβ + dαβ + eαβ)(Qa)4
)

+ sin (Qa)(−24dαβ(Qa)

+ (aαβ + 2bαβ + 4dαβ)(Qa)3
), (B1)

where

aαβ = −
(1 + 2η)2

(1 − η)4 − 2B(aκD)
lB
a

zαzβ, (B2)

bαβ = −6η
(1 + η/2)2

(1 − η)4 + (B(aκD))
2 lB

a
zαzβ, (B3)

dαβ = −
η(1 + 2η)2

21 − η)4 , (B4)

eαβ =
lB
a

zαzβ, (B5)

with η = π
6 a3ρ and B(x) = (x2

+ x − x
√

1 + 2x)/x2.
Independent of the above-mentioned expressions, one can get

the Σ(Q) term in the MSA as presented in Eq. (A3).

APPENDIX C: NUMERICAL DETAILS

In this section, we provide the details of numerical methods
used in this perspective.

1. AIMD
Ab initio Molecular Dynamics (AIMD) simulations for the

SrCl2 electrolyte solution in the infinite dilution limit were per-
formed using the Quickstep module of the CP2K software.90

The valence electrons were treated explicitly at the DFT level
employing the revised version of the Perdew–Burke–Ernzerhof
(rev-PBE) functional91 and the double-ζ MOLOPT basis set
(DZVP–MOLOPT–SR–GTH)92 with a density cutoff of 400 Ha.
The core electrons on all-atoms were represented by Goedecker–
Teter–Hutter (GTH) pseudopotentials.93 The Grimme dispersion
correction (DFT-D3)94 was employed to account for LR disper-
sion interactions. The canonical ensemble (NVT ensemble) was
employed with the Nosé–Hoover thermostat, which was used to
maintain the average temperature at 300 K. The initial configura-
tions were generated by increasing the distance between ion pairs at
a rate of 10−3 Å/fs to separate the ion pairs, and 50 windows with
a separation of 0.1 Å were generated. For each window, a restraint
of 80 kcal/Å2 was applied to keep the ions separated within a fixed
distance. A time step of 0.5 fs was used to generate a 20 ps trajectory,
of which the first 2.5 ps of simulation time was dedicated to system
equilibration and the rest for data collection.

The NaCl short range PMFs were originally presented in
Ref. 95. In brief, short AIMD simulations of 2.5M NaCl in solution
were run with CP2K using GPW and the strongly constrained and
appropriately normed (SCAN) functional.96 An equivariant neural
network potential (NNP) was then trained to reproduce the forces
and energies of this simulation using the NequIP software pack-
age.97 Since the NNP only has access to local information (SR, <5 Å)
the LR electrostatic ion–ion interactions were removed from the
forces and energies prior to training using a dielectrically screened
Coulomb interaction.98,99 They were then added back in during all
NNP simulations. The NNP enables much longer and larger simu-
lations than standard AIMD, allowing for the ion–ion RDFs to then
be converged. The modified Poisson–Boltzmann (PB) equation was
then inverted to find the best SR PMF force that reproduces the RDF
at the given concentration.67

2. All-atom classical molecular dynamics
Here, a brief description of classical all-atom MD simulations

is presented. The simulations were performed using the LAMMPS
software program100 at 298 K and a pressure of 1 atm. The SPC/E
water model was used, and for ions, the Smith–Dang (SD) and
Kirkwood–Buff force fields (KBFFs) were used101 and presented
in Table I. The periodic boundary conditions were applied in
3-dimensions and simulations were performed in the isothermal-
isobaric ensemble (NPT) using the Nosé–Hoover thermostat and
barostat. The standard velocity-Verlet time integrator was used with
a time step of 2 fs, and the SHAKE procedure was used to con-
serve the intramolecular constraints. The Lennard-Jones (LJ) and
real-space part of the Coulombic interactions were truncated at
10 Å with additional switching/shifting functions that ramped the
energy smoothly to zero between 10 and 14 Å. The conducting metal
(tinfoil) boundary conditions were used to treat the electrostatic
interactions, and the particle–particle particle–mesh solver was used.

For the potential of mean force calculations in the infinite dilu-
tion limit, the harmonic biasing/umbrella sampling method was
used to enforce moving restraints, where the restraints were intro-
duced on the collective variable ξ, which is the distance vector
between the ion centers. A force constant of 100 kcal/mol/Å2 was
used, where the centers of the harmonic restraints were changed
during the simulations (usually from faraway distances to closer

TABLE I. Force field (FF) parameters used for the ions and water molecules in the
all-atom MD and mHNC calculations. The Cl–FF parameters of the Smith–Dang (SD)
model were used for NaCl electrolyte solutions. The Kirkwood–Buff FF (KBFF) para-
meters were used for CaCl2 and SrCl2 electrolyte solutions. The Lorentz–Berthelot
rule was used for the non-bonded LJ potentials.

FF Site ϵ (kcal mol−1) σ (Å) q (e)

SPC/E O 0.1554 3.166 −0.8476
SPC/E H 0 0 +0.4238
SD Cl− 0.1000 4.40 −1
SD Na+ 0.1300 2.35 +1
KBFF Sr2+ 0.1195 3.10 +2
KBFF Ca2+ 0.1123 2.90 +2
KBFF Cl− 0.1123 4.40 −1
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distances) in discrete stages, where each stage consisted of 30 000
time steps. The initial configuration was equilibrated for 105 MD
steps, and a grid spacing of 0.1 Å was used to discretize the dis-
tance between the ions. The thermodynamics integration methods
available in the colvars package100 were used to get the free ener-
gies, which included the Jacobian term 2kBT ln(r) to the output free
energies.

3. Ornstein–Zernike solver for electrolyte solutions:
Numerical mHNC calculations

Once the SR PMFs between ions were available, the ion–ion
correlations for the electrolyte solutions were obtained by solving the
Ornstein–Zernike (OZ) for a mixture of two ions treating the water
as a continuum. In the RPM models, the SR PMFs were simply HS
interactions, while for other models, the SR PMFs were extracted
directly from the all-atom MD simulations in the dilute limit in
the explicit water molecules as described earlier. We assumed that
the PMFs could be split into the SR, uSR

αβ(r), and LR electrostatics
contributions, uLR

αβ(r), as

WMD
αβ (r) = uSR

αβ(r) + uLR
αβ(r). (C1)

Except for the NaCl NNP simulations (see details in
Appendix C 1), we assumed that the SR PMFs between the ions can
be extracted from all-atom MD simulations by simply subtracting
the qαqβ/(ϵwr) terms corresponding to ions with charges of qα and
qβ from the full effective interactions between the ions from all-atom
MD simulations [PMFs, WMD

αβ (r)],

uSR
αβ(r) =WMD

αβ (r) −
qαqβ
ϵwr

, (C2)

where WMD
αβ (r) shows the asymptotic behaviors of the LR electro-

statics interactions; therefore, the raw PMFs obtained either from
the thermodynamics integration or Weighted Histogram Analy-
sis Method (WHAM) methods were shifted vertically to match
qαqβ/(ϵwr) at a reasonable r. It would be an interesting future
project to address the sensitivities of thermodynamics properties
such as osmotic and activity coefficients to these choices.

The OZ equations were then solved using the hyper-netted
chain (HNC) closure. This numerical procedure for real electrolyte
solutions is called the molecular-informed HNC (mHNC) method,
which builds upon the previous studies by Rasaiah,51 Vrbka et al.,64

and others.5 We used a modified version of the SunlightHNC
code (PNNL-SunlightHNC),82 where the inputs to the PNNL-
SunlightHNC code were uSR

(r) between ions, ion charges, and ion
concentrations that were described in Sec. II C.

The LR electrostatic interactions in the PNNL-SunlightHNC
code were treated as

uLR
ij (r) = kBTzαzαlB

erf[r/(2σ)]
r

, (C3)

where lB is the Bjerrum length setting the magnitude of the LR elec-
trostatics interaction at a given temperature T (lB ≈ 7 Å for water at
room temperature), kB is the Boltzmann constant, and σ is the size
(width) of the Gaussian charges. A σ value of 1 Å was used in the
calculations; therefore, at distances above 4 Å, uLR

αβ(r) ≈ qαqβ/(ϵr),

which justifies the use of Eq. (C2) to extract the SR mean-field ion-
ion potentials for the HNC code. We also checked that consistent
results were obtained using a σ value of 0.2 Å.

4. Consistency of mHNC with all-atom
simulations: RPMs

In a previous work, we demonstrated that the mHNC results
are in good agreement with all-atom MD simulation results for
both SR and LR correlations (see Figs. S5 and 4 in Ref. 14) of
ErCl3 electrolytes at various concentrations. In this section, we pro-
vide numerical results showing that when the mHNC method is
applied to simple RPMs, the SR and LR correlations are, not sur-
prisingly, in good agreement with those obtained from molecular
simulations. The notation mHNC is used here because the all-atom
molecular-informed SR interaction is utilized.

The RPMs are modeled using a 1 − tanh[(r − A)/0.05] func-
tion with A = 4.25 Å in the molecular simulations. The HS sim-
ulations were performed using the CP2K software program90 for
60 ns. The simulation box length was set to 66.4644 Å, consisting
of 1061 positive and 1061 negative HSs. A time step of 1 fs was
used, and the dielectric constant of water was set to 80. The periodic
boundary conditions were applied in 3-dimensions and the MD sim-
ulations were performed for 60 ns in the canonical ensemble (NVT)
using the Nosé–Hoover thermostat and the standard velocity-Verlet
time integrator. The pair correlations were obtained by analyzing
60 000 MD frames. In parallel, making use of the HS interactions,

FIG. 12. Comparisons of pair correlation functions obtained from all-atom MD and
mHNC methods for RPMs at 6 M with a HS diameter of 4.25 Å. (a) Illustrating
the agreement of short-range pair correlations. (b) Illustrating the agreement of
long-range pair correlations, ∣rhij(r)∣ with hij(r) = gij(r) − 1.
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the mHNC calculations were performed under the same conditions
as the explicit MD of HS with a diameter of 4.25 Å.

Figure 12(a) demonstrates good agreement between all-atom
MD and mHNC results for SR pair correlation functions, while
Fig. 12(b) shows that the all-atom MD and mHNC results are in
good agreement up to r ∼ 20 Å, noting that the LR behaviors of
pair correlations cannot be captured by direct simulation. We argue
that for the purpose of this perspective, the accuracy of the mHNC
method is plausible.

APPENDIX D: SUSCEPTIBILITY FUNCTIONS OF RPMS

In this section, the longitudinal susceptibility functions, χ(Q),
of the symmetric 1-1 RPM electrolyte solutions at 4.5 M for various
ion sizes are reported in Fig. 13(a) and compared with the DH limit
with the DH Szz(Q) given by Q2

/(κ2
D +Q2

). As can be seen, as the
ion size increases, a peak in χ(Q) starts to appear around 0.5–0.6 Å−1

for ion sizes with a > 3 Å. This indicates the significance of local
packing on the behavior of χ(Q). Interestingly, from 2.3 to 3.3 Å−1,
where Σ(Q) starts to become negative for an ion size with a = 6 Å
(see Fig. 4 in the main text), the slope of χ(Q) changes significantly
as illustrated in the inset in Fig. 13(a).

FIG. 13. Response functions for symmetric 1-1 RPM electrolyte solutions with
various HS diameters of a at 4.5 M from HNC calculations. (a) The longitudinal
susceptibility function, χ(Q). The black dashed line shows the DH limit. The inset
shows the behavior of χ(Q) from 2.3 to 3.3 Å1. (b) The charge–charge structure
factor, Szz(Q). The black dashed line shows the DH limit.

FIG. 14. Top panel: uSR
(r) potential (extracted from infinite dilution PMF using

all-atom molecular simulation) for CaCl2 electrolyte solutions for qDFT and KBFF
interaction potentials. Bottom left panel: Dielectric susceptibility χ(Q) from mHNC
calculations of CaCl2 electrolyte solutions at concentrations ranging from 0.01 to
4.0 M for various interaction potentials. Bottom right panel: Σ(Q) from mHNC
calculations of CaCl2 electrolyte solutions at concentrations ranging from 0.01 to
4.0 M for various force fields.

APPENDIX E: NUMERICAL RESULTS FOR CaCl2
Here, we also show our numerical results for CaCl2 electrolyte

solutions. The top panel of Fig. 14 shows uSR
(r) for the CaCl2

electrolyte solution, while the bottom panels show the longitudinal
dielectric susceptibility, χ(Q), and Σ(Q). Similar to SrCl2, the KBFF
model shows that peaks in χ(Q) (at higher concentrations) appear at
larger Q values when compared to the qDFT model. In addition, the
KBFF model shows negative behavior of Σ(Q) in Q < 0.2 Å−1, while
in the qDFT model, χ(Q) remains positive.

Figure 15 shows the root structures of CaCl2 electrolyte solu-
tion when they are extracted from the charge–charge correlation

FIG. 15. Pole structure of CaCl2 extracted from hzz(r) using qDFT and KBFF
interaction potentials.
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functions. While the pole structure for both models has similar fea-
tures, the Q0 inverse lengths for the qDFT model turn out to be
smaller than the ones in the KBFF model at higher concentrations.
The screening lengths, on the other hand, are larger for the qDFT
model than the ones obtained from the KBFF model.

APPENDIX F: ANALYSIS OF SAXS SIGNALS

To extract the a0 and Q0 values from the SAXS signals, the fol-
lowing recipe has been currently used, noting that the fitting to TS
functions is very sensitive to the Q-range chosen. The SAXS signals
are fitted to TS distributions with a linear background according to

I(Q) =
4πA0[(a2

0 −Q2
0 +Q2

) cos [δ] + 2aoQ0 sin [δ]]

[a2
0 +Q2

0]
2
+ 2[a2

0 −Q2
0]Q

2
+Q4

+mQ + b,

(F1)
where m and b are the coefficients of the linear background, and
it is assumed that the SAXS signal can be described by only one
phase, δ. In the current study, the Q range for the fitting procedure
is obtained by trial and error such that excellent fits are obtained to
reproduce the SAXS signals. More details are available in Ref. 14. In
future work, the Padé-type functions [see Eqs. (19) and (G1)] will be
developed to analyze the SAXS signals more rigorously.

Finally, assuming that Szz(Q) has a form of a TS function pre-
sented in Eq. (F1), a similar recipe has been used to fit the numerical
mHNC Σ(Q) results [obtained from χ(Q) per definitions in Eq. (3)]
in Fig. 17.

One can also find the pole structure in r-space from the numer-
ical mHNC hzz(r). The FT of hzz(r) is related to the charge–charge
structure factor defined in Eq. (15). Assuming a single pole approxi-
mation, one can extract the root structure by fitting the numerical
hzz(r) at a given region of r-space to the following analytical TS
function:

hzz(r) =
A exp (−a0r)

r
cos [Q0r − δ]. (F2)

In principle, it is possible to find other poles if one chooses different
regions of r-space. In this work, we extract the pole structure from

FIG. 16. Illustrating the existence of multiple poles for NaCl (SD model) electrolyte
solutions at two concentrations using ∣rhzz(r)∣. The dominant poles in this study
are obtained by considering the largest decay length (e.g., pole 2 for 0.4 m). To
determine poles, unlike Hartel’s study,21 which uses explicit simulation data up to
50 Å (Fig. 2 in Ref. 21), our mHNC results use data about one order of magnitude
larger than explicit HS simulation data with no noise.

hzz(r) based on Eq. (F2), where various regions in r-space are cho-
sen at a given concentration to find the dominant poles exhibiting
the relevant largest decay lengths consistent with previous studies.21

For instance, Fig. 16 demonstrates that for NaCl at 0.4 m concen-
trations, one can extract two poles. One is associated with r < 20 Å,
and the other one is associated with r > 20 Å, corresponding to the
dominant pole. We argue that the pole associated with the SR dis-
tances is not relevant for the prepeak region in SAXS. Interestingly,
in our study, we always find that the length scales correspond-
ing to the LR pole agree well with independent analyses for SAXS
measurements.

APPENDIX G: AUXILIARY-FIELD DISTRIBUTIONS
VS TS DISTRIBUTIONS

A careful reader may ask how auxiliary-field formalism can
improve our understanding of the effects of SR interactions on
charge–charge correlations. In fact, this is a deep question whose
examinations require rigorous and full analyses. In this work, pre-
liminary analyses are presented in Sec. IV. In this section, we reveal
a related aspect to the correlations obtained from the SAXS mea-
surements. We present the distributions resulting from the auxiliary
formulation and compare them with the traditional TS distribu-
tions used in the analysis of SAXS spectra. In previous studies,
we discussed the significance of TS distributions in the analysis of
SAXS spectra and established that the pole structure of multivalent
electrolytes for SAXS signals and charge-charge correlations are con-
sistent.14 However, the poles from SAXS were obtained from the fits
of SAXS signals to the TS distributions, which are very challenging
due to the sensitivity of the analyses to the Q range chosen for fit-
ting. In Appendix F, we briefly present the details of the analyses.
Here, we use numerical mHNC results to demonstrate that auxiliary
field formulation can provide a unique avenue to obtain distribu-
tions that have implications for the analyses of SAXS spectra, which
is the subject of future study.

We are motivated by the work of Xiao and Song, where a
Padé approximation numerically fits the dielectric response.35 Here,
we explore extensions to these ideas through Σ(Q). Starting from

FIG. 17. Comparison of fits based on TS functions and the Aux-field (Padé-type)
function [Eq. (G2)] in the same Q-range to get the numerical mHNC Σ(Q) for
SrCl2 at 1 m, where uSR

(r) is extracted from qDFT all-atom molecular simulations.
Two different TS functions are used. The two-parameter TS function is given by
Eq. (A2), while the six-parameter TS function is given by Eq. (F1).
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Eq. (19), in the weak coupling regime, one may approximate the
kernel Γ in Eq. (16) by approximating the SR interactions as

βΓfit
=
⎛
⎜
⎝

1 +
κ2

D

Q2 f

f 1 + g(Q)

⎞
⎟
⎠

, (G1)

where one gets the correlation–interaction term beyond DH as

Σfit
(Q) =

f 2

1 + g(Q)
. (G2)

We show that such a Padé approximation for the
correlation–interaction term beyond DH is well suited to accurately
model the complex behavior with poles found in the Fourier
transforms of charge–charge correlations. Here, f is chosen to be
constant, and g(Q) represents the spatial correlation contributions
to the functional, which may be approximated by a function form
of ∑imax

i=1 biQ2i (where imax = 4), and the term 1 + κ2
D/Q

2 represents
constrained pairwise Coulomb interactions in the system, i.e.,
recovering the asymptotic limit of χ(Q) correctly due to 1.

The solid black line in Fig. 17 shows the numerical mHNC
Σ(Q) for SrCl2 results at 1 molal (m) [with uSR

(r) obtained from all-
atom qDFT calculations]. One can, therefore, test the accuracy of the
Padé-type functions based on the auxiliary formulation for fitting
the numerical mHNC results as compared with the TS functions. As
can be seen, in the Q-range from 0.04 to 2.3 Å−1, excellent agree-
ments are obtained from the fits based on the Padé-type functions,
while the TS functions fail to capture the behavior of numerical
mHNC Σ(Q) even with more parameters as presented in Eq. (F1)
in the fitting procedure.
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