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ABSTRACT: The van der Waals (vdW) equation of state has long fascinated researchers and engineers, largely because of its
simplicity and engineering flexibility. At the same time as vdW and other equations of state (EoS) have been proposed, at first
mostly used for petrochemical applications, solution theories in the form of activity coefficient models have been developed,
focusing on the accurate representation of the liquid phase, of interest to the chemical industry. For both the van der Waals
(and other cubic EoS) and the activity coefficient models we can identify size and energy terms, although different
terminologies have been used (e.g., combinatorial-free volume, entropic, excess entropy or repulsive terms on one side and
“residual”, energetic, excess energy or attractive contributions on the other side). These definitions are not necessarily identical,
as it will be shown here, and the identification of distinct separable contributions in thermodynamic models is not always
straightforward. Moreover, the different traditions lead sometimes to confusion as to the actual range of applicability of these
models, and it may be useful to consider them (EoS and activity coefficient models) together. While much has been written
about the van der Waals equation of state, a particular insight is obtained when the model is expressed in terms of excess Gibbs
energy and activity coefficient expressions. We show that such a transformation, analysis of the distinct size and energy terms of
vdW and comparison to classical solution theories, provides insight into the physical meaning, capabilities, and limitations of the
model, including the associated mixing and combining rules used. We will discuss how this analysis of the vdW and subsequent
equations of state, such as the Soave-Redlich-Kwong and Peng-Robinson, have enhanced our understanding of the actual
applicability range of the models in terms of size effects or excess properties. The analysis reveals that the capabilities of the vdW
and in general of the vdW-type cubic equations of state are possibly more significant than traditionally considered, and that the
task of more advanced models in trying to “beat them (the cubic EoS)”, may be more difficult than previously anticipated.

1. SOME INTRODUCTORY REMARKS

The van der Waals equation of state (vdW EoS) was presented
by van der Waals in his 1873 Ph.D. thesis1 and for this he was
awarded the Nobel Prize in Physics 1910. The 100 years Prize
anniversary (2010) was celebrated among others with a special
issue in J. Supercrit. Fluids, also including a history review by
Valderrama,2 who points out that the well-known form of vdW
EoS is not included in his thesis. It was, however, presented
later, as well as it is present in his Nobel prize speech.3

van der Waals, at the beginning of his Nobel prize speech,3

states that

“Thus, I conceived the ideas that there is no essential dif ference
between the gaseous and the liquid state of matter... And so the
idea of continuity occurred to me”.
His thesis was indeed entitled ”On the continuity of the

gaseous and liquid state” and this together with Andrew’s
discovery of the existence of the CO2 critical point
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many to connect the two and consider that van der Waals’
original target was indeed an understanding of this continuity.
Klein5 in his excellent account of the historical origins of the
vdW equation, is of another opinion. In his view, van der Waals
was more concerned (having studied the Laplace work on
capillarity and the Clausius work on the second law) to add
“molecular concepts” and to continue Newton’s uncompleted
work on the search for the short-range molecular (nongravita-
tional) forces and their role in determining structure and
properties of matter.
The molecular aspects of the van der Waals equation are also

evident in his Nobel prize speech,3 as close to the end of his
speech, he states:
“It will be perfectly clear that in all my studies, I was quite

convinced of the real existence of molecules, that I never regarded
them as a f igment of my imagination... When I began my studies I
had the feeling that I was almost alone in holding that view...
Many of those who opposed it most have ultimately been won over,
and my theory may have been a contributory factor”.
The qualitative success−agreement of the theory with many

experimental data−was evident quite soon and as Lebowitz
and Waisman6 wrote in 1980:
“Indeed, George Uhlenbeck has complained that the successes of

the van der Waals equation were so remarkable that they
practically killed the subject for more than 50 years”.
Indeed, the vdW EoS is a successful model, being a

representation of the two-parameter corresponding states
principle (when the parameters are estimated using critical
point data) and it is shown that it can represent five out of the
six types of general phase diagrams according to the van
Konynenburg and Scott classification.7,8

Various researchers9−11 have presented rigorous derivations
of the vdW EoS based on statistical thermodynamics, where it
can also be seen that both parameters of the model have a clear
physical significance and can, in principle, be estimated from
intermolecular potential constants and molecular diameters.
Even though this is rarely done, it does not deprive the model
from its fundamental nature, something of which van der
Waals himself was aware and quite proud:3

“The two constants that appear in the theory have a real
physical meaning, namely that of molecular volumes and attraction
and no one will deny that the theory will inf luence progress in this
f ield”.
van der Waals was also aware and rather forthcoming of

several of the limitations of his theory or issues that demanded
clarification. The temperature-dependency of the parameters
will be discussed in depth in the next section.
He was aware that, despite the importance of what since has

been known as “van der Waals forces”, strong interactions
could not be accounted for by the vdW EoS. In his Nobel-prize
speech,3 he stated at various places:
“In fact, bluntly speaking, the result would be an equation of

state compatible with experimental data is totally impossible. No
such equation is possible, unless something is added, namely that
the molecules associate to form larger complexes”
”I have termed it pseudo association to dif ferentiate it f rom the

association which is of chemical origin”
“The number of formed complexes increases with decreasing

temperature. At the critical point, so I was compelled to conclude,
only a very small part of the weight is present as complexes”.
”What is the origin of this complex formation, this pseudo

association?”

He does not actually conclude that the origin of complex
formation (pseudo association) is hydrogen bonding or Lewis
acid−base interactions in more general terms, but we would
like to believe that this is what he actually meant!
This was a period where Frederick Dolezalek had insisted12

that all nonidealities are due to association−complex
formation, not just in the obvious cases of acetic acid dimers
or acetone−chloroform strong complexes, but for all mixtures.
He insisted in neglecting the physical interactions, believing
that the “chemical theory” can explain all nonidealities, and this
resulted in deep polemic between him and the Amsterdam
school, esp. van der Waals’ student van Laar who wrote among
others:13,14

“Unfortunately, I have to rob Mr. Dolezalek of many illusions”
and then lists ten such illusions, the last being his (van Laar’s)
illusion that Mr. Dolezalek will be convinced of the indefensibleness
of his theory”
Today, most researchers agree that both physical and

chemical forces are needed for an appropriate and general
representation of solutions; with the chemical forces
dominating in hydrogen bonding and related systems, while
being essentially zero in nonpolar/polar solutions.
Indeed, in a short manuscript in Proceedings of the National

Academy of Sciences, Heidemann and Prausnitz15 presented “A
van der Waals-type equation of state for fluids with associating
molecules” (title of the article), illustrating how a chemical-
type approach can be incorporated into a vdW-type EoS
enabling it to model associating fluids. This article in many
respects opened up the field of especially the chemical-type
approaches developed by Anderko and others in the
subsequent years16,17 and, about 10−15 years later, of the
advent of the SAFT approach, which was subsequently much
used for associating fluids.
Another aspect of the vdW EoS about which van der Waals

himself was even more concerned (compared to the lack of
accounting for “pseudo-association”) was its repulsive term
(concern mentioned several times in his Nobel-prize speech).
He recognized that this term was not an optimum
representation of the repulsive effects. As Figure 1 shows,

indeed the vdW repulsive term is not in agreement with the
simulation data or the equation of state (Carnahan−Starling18)
that represents a hard-sphere fluid. While we are not aware if
van der Waals suspected this (probably not!) and even though
the hard-sphere fluid only represents part of the repulsions, van
der Waals in his Nobel prize speech3 mentioned that “I still

Figure 1. Repulsive part of vdW EoS compared to the Carnahan−
Starling (C−S) equation18 and Molecular Dynamics data. y is the
reduced density bρ/4.
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wonder whether there is a better way, in fact this question
continually obsesses me, I can never f ree myself f rom it, it is with
me even in my dreams”.
It is rather interesting that, despite this, it is actually the vdW

repulsive term that has remained in the two most widely used
cubic EoS today (SRK; Soave;19 Peng−Robinson20), while the
attractive term has been modified in more than one way.
Mathias and Klotz21 have underlined this by stating “RT/(v −
b) is wrong, but somehow will exist in the most popular (reliable)
models”.
One aspect is the cancellation of errors between attractive

and repulsive terms (adding the C−S term and maintaining the
vdW attractive has not helped22), but another aspect is the fact
that the vdW repulsive term results greatly depend on the
covolume parameter used, and as shown in Figure 2; an
effective covolume equal to half the “original” covolume brings
the vdW term somewhat closer to the C−S results.

This has been noticed by Wong and Prausnitz24 and
Prausnitz,25 but it was known to van der Waals as well, as he
stated in his Nobel-prize speech:3

”To my surprise I realized that the amount by which the volume
must be reduced is variable, that in the extremely dilute state this
amount which I have notated b, is 4-fold the molecular volume but
that this amount decreases with decreasing external volume and
gradually falls to about half. But the law governing this decrease
has still not been found!”
In other words, while for dilute solutions and in its original

formulation the vdW covolume is given as

b N V
2
3

4vdW
A

3
moleculeπ σ= =

(1)

where NA is the Avogadro number and σ is the molecular
diameter. The molecular volume, noted Vmolecule in eq 1 is
today called the van der Waals volume and will be noted VW
hereafter.
In the effective form, the value is half:

b
b

N V
2

1
3

2effective
vdW

A
3

moleculeπ σ= = =
(2)

As mentioned above, van der Waals was well aware of the
limitations of the repulsive term of his EoS and also the need
for lower values of the covolume compared to those obtained
from the theoretical eq 1. For CO2, he recommends in his
Nobel prize speech,3 a value equal to 0.001565 instead of the

“theoretical” value of 0.0023, that is, a factor of 1.5 instead of 2
in the denominator of eq 2 (note that these values are actually
volume ratios in cm3/cm3 NTPwhere NTP is the
abbreviation of normal temperature and pressure−and are
thus dimensionless).
Based on more rigorous calculations today and experimental

values for the CO2 diameter, using eq 1 we could calculate a
covolume equal to 77.3 cm3/mol (b/Vw = 3.8; Vw is the van
der Waals volume), while an effective value according to eq 2
would yield 38.6 cm3/mol (b/Vw = 1.9) and a covolume
estimated from the critical data (temperature and pressure),
the one typically used, see discussion next, has a value equal to
43.4 cm3/mol (b/Vw = 2.2).
In practice, neither equation 1 or 2 is used but instead the

covolume is estimated from the critical properties. There are
two choices for the covolume and three for the energy
parameters, as shown below for vdW:

i
k
jjjjj

y
{
zzzzz

a V T RTV a P T
R T

P

a P V PV b V V

b P T
RT
P

( , )
9
8

( ) ( , )
27
64

( , ) 3 ( )
1
3

( , )
1
8

c c c c c c
c

c

c c c c c c

c c
c

c

2 2

2

= =

= =

=
(3)

That there are various possibilities to estimate the pure EoS
parameters was known from the early days when cubic EoS
were used in engineering (see, e.g., Martin26), but as Vera and
Vera27 state “van der Waals made his master move” by adopting
the equations which give the parameters as a function of Tc
and Pc rather than of Vc. This was then justified by the fact that
critical volume data were more difficult to obtain, but it is
interesting to note that even today this is the preferred
approach for most widely used cubic EoS such as SRK19,28 and
PR.20,28

van der Waals was aware that the critical volume estimation
using the covolume, shown in eq 3, was not accurate. It is well-
known that this value yields a constant Zc for the vdW EoS of
0.375, much higher than most experimental data (0.26−0.28)
and even of other cubic EoS (SRK, 0.333; and PR, 0.307). In
his Nobel Prize speech van der Waals says:3

“...Vc = 3b. And it can again be seen f rom this equation that
what I have termed the weak point of my theory is actually
responsible for the theoretical impossibility of calculating accurately
the critical volume. Using an approximation formula for b I was
able to determine Vc as about 2.2 b”.
It is interesting that if the vdW EoS could result to such a

Vc−b relationship (as van der Waals considered to be correct),
then the critical compressibility factor would be 0.275. This is,
of course, a “hypothetical” calculation as all equations in eq 3
are connected and directly derived from the application of the
vdW EoS to the critical point.
Another interesting observation is that using eq 2 and van

der Waals statement about Vc and covolume, we can arrive to a
relationship between Vc and the effective covolume (Vc =
4.4beff) which is not that far from the relationship between Vc
and van der Waals volume (Vw) first presented by Bondi in his
book29 (Vc = 5.3Vw) and later rediscovered and further
validated by Elbro et al.30 The similarity between the two
values becomes even more pronounced if we consider
Wilson’s31 statement that the fluid hard-core volume is
expected to be around 1.15 times the closed packed/van der

Figure 2. Repulsive part of vdW EoS, with the original covolume and
an “effective co-volume” (half of the original covolume) compared to
the Carnahan−Starling equation. Figure reprinted with permission
from ref 23. Copyright 2016 Technical University of Denmark.
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Waals volume. If we assume that beff and fluid hard-core
volume are equivalent terms, then van der Waals’ hypothesis
(Vc = 4.4beff) will lead to a Vc = 5.1 Vw.
When eqs 1 and 3 are combined, some reasonable values are

obtained for the molecular dimensions, as shown for some
compounds in Table 1.

It is difficult to identify what is the “correct” value of the
covolume parameter to be used with vdW (or any other cubic
EoS for that matter) as this will depend on the application of
interest. The choice of the covolume will, among others,
determine the accuracy of the representation of the critical
point (eq 3) and is expected to affect the density calculations
from the model.
For example, let us consider six representative molecules

(propane, pentane, decane, hexadecane, benzene, and argon).
If the covolume is estimated using eq 1 (with diameters from
experimental values), then the ratio between covolume and van
der Waals volume Vw (as calculated from Bondi’s approach29)
is, for these molecules, 3.4−4.5. This ratio is much smaller, 2−
3, if the covolume is estimated from the critical temperature
and pressure, eq 3. We like this smaller ratio more, as the hard-
core volume/van der Waals volume ratios which correspond to
the face-centered cubic (FCC) structure (co-ordination
number 12) is 1.35, and it rises to 1.41 for co-ordination
number 10, which is an acceptable value for the liquid phase.
The vdW EoS parameters have not been estimated so far

from a simultaneous regression of vapor pressure and liquid
density data, an approach which has been used for CPA and
SAFT models. We can mention32 that for the same six
compounds mentioned above the b/Vw ratio for CPA (SRK
with fitted covolume and energy) is 1.5−1.7, even closer to the
“theoretical ratios” of 1.41 or 1.35.
It is interesting to note that, as shown by several

researchers33−37 and for both SRK and PR, the energy and
covolume parameters for alkanes (and other compounds)
increase linearly with the molecular weight or van der Waals
volume when these parameters are fitted (as in the SAFT
approach) from vapor pressure and liquid density data. This is
not the case, that is, the linear trends are not observed as
clearly, when the parameters are obtained from the critical
point. Even for heavier alkanes (C16...C36) the b/Vw ratios
obtained with the covolume values of Ting et al.33 and Voutsas
et al.34 are of the order 1.7−1.8, much lower than those
obtained with the same models using covolumes estimated
from the critical point (over 2, close to 3 for heavier alkanes).
Let us also note that in a paper devoted to the reliability of

EoS at high pressures, Polishuk38 highlighted that the key to
successfully correlate very high-pressure data is in fact an

appropriate representation of the ratio between the covolume
and the liquid volume at saturation.
In all the above discussion, the covolume parameter has

been considered constant, independent of temperature.
Indeed, this is the usual practice but as Deiters,39 and other
researchers have shown, accurate representation of caloric
properties and several features such as maxima of the virial
coefficients, Cp minima (inflection curves) or the Joule
inversion curves require “softer repulsions” which can be
obtained by temperature (T)-dependent covolumes. While this
is indeed correct, as Polishuk and co-workers40 emphasize,
great care should be exercised, as with T-dependent covolume
parameters there is danger for obtaining negative heat
capacities or negative virial coefficients at high temperatures.
Finding an appropriate T-dependency for the covolume
parameter (both physically correct and engineeringly useful)
is not a trivial thing and this may be the reason why this path is
not pursued in most successful engineering cubic equations of
state.
Finally, we wish to emphasize that it is not our target to

provide in this work a comprehensive review of vdW or other
cubic EoS; for this we recommend the recent manuscript by
Lopez-Echeverry et al.41 and the earlier ones by Valderrama,42

Wei and Sadus,43 and Ghosh44 and from a more historical
point of view the excellent review of Gubbins.14 The legacy of
van der Waals and its significance in science and engineering,
even up to the period before the advent of the modern cubic
EoS (SRK and PR), is presented in an excellent short review in
Nature by Rowlinson.45 Our purpose in this work is to analyze
some characteristics of vdW (and other vdW-type cubic EoS)
which can offer an insight into some of the important
capabilities and may also point out some limitations. In some
sense, our manuscript adds one more angle to look at the
model, in addition to the “Thirteen ways of looking at the van
der Waals equation” presented by Abbott in 1989.46

2. EXCESS PROPERTIES FROM THE VAN DER WAALS
EQUATION OF STATE

The van der Waals equation of state (vdW EoS) is well-known
in its usual form:

P
RT

V b
a

V2=
−

−
(4)

The two parameters, a and b, can be estimated from the critical
point and considered constants (specific for each substance) or
can be left variable, dependent on temperature. Despite the
fact that the former is what is mostly considered or referred to
in textbooks, the latter (i.e., letting the energy parameter and
sometimes even the covolume parameter) being functions of
temperature is clearly a possibility and may even be the correct
way to do it, as van der Waals himself admitted in his Nobel-
prize speech more than 100 years ago:3

”I have never been able to consider that the last word had been
said about the equation of state and I have continually returned to
it during other studies. As early as 1873 I recognized the possibility
that a and b might vary with temperature, and it is well-known
that Clausius even assumed the value of a to be inversely
proportional to the absolute temperature”.
Even in this 1910 speech he was surprised that others

considered these parameters to be constant. He said:3

“I never expected this equation, with a and b assigned a constant
value to give results numerically in agreement with experiment and
yet people almost always thought that were my opinion. This

Table 1. Molecular Diameters from the vdW EoS Estimated
Using Critical Properties and the Equation:

b N R0.125 T
P

2
3 A

3 c

c
π σ= =

molecular diameter (nm)

compound
from vdW EoS using
critical properties

from “Experimental” or quantum-
chemistry calculations

argon 0.294 0.328
methane 0.3245 0.376
n-octane 0.5733 0.7451
CO2 0.3252 0.3941
methanol 0.331 0.3626
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astonishes me as in my treatise of 1873 not only did I expressly
emphasize the variability of b but also quoted a series of b-values
f rom Andrew’s experiment in which for small volumes the change
in b with the volume is calculated”.
Sandler11 presented two alternative derivations of the van

der Waals equation of state and in both cases, even under
simplifying assumptions, the energy parameters obtained are
functions of temperature (with an exponential dependency).
Letting the energy parameter of vdW be a function of

temperature in order to reproduce vapor pressures, has been
indeed adopted in modern approaches with the vdW EoS for
example, the vdW-711 by Tassios and co-workers47 and the
vdW EoS with advanced mixing rules by Soave.48 Tassios47

showed that the vdW EoS with suitable T-dependency of the
energy parameters yields for all alkanes (from methane to n-
C20) excellent vapor pressures, with deviations around 2%,
entirely comparable to what is obtained by the Peng−
Robinson equation of state. A similar conclusion was reached
by Vidal and Bogdanic49 where vdW, SRK, and PR behave
similarly for a series of n-alkane vapor pressures, if the energy
parameter is estimated the same way using a Soave-type
temperature dependency. Equally good results are obtained for
volumes, as shown by Tassios, using a T-dependent volume
translation in vdW, actually better than SRK and PR. These
modern vdW approaches are also discussed later, in the mixing
rules section.
In some of our previous works50,51 we have presented the

vdW EoS expressed in the forms of excess Gibbs or Helmholtz
energies and even activity coefficients (depending on mixing
rules). We take another look at these expressions, considering
also that the energy parameter may be T-dependent and we
will analyze the separability of energy and size contributions in
the vdW EoS. The latter distinction is not as clear as previously
anticipated, as we will show below, and is more complicated
when the energy parameter depends on temperature. The
superscripts E and res stand for excess and residual properties,
in the usual rigorous thermodynamic definition (i.e., different
from the “residual” contributions to activity coefficients used in
solution theories, discussed later).
It is rather straightforward to obtain the gE from vdW using

the general equation:

g
RT

x
g
RT

x
g

RT
ln lni i i

i
E res res

∑ ∑φ φ= − = −
(5)

The fugacity coefficient expression for vdW, either for a pure
compound or the mixture, is given by the equation:
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Combining eqs 5 and 6, we get after some algebra:
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Equation 7 can be written in a more compact form as
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The excess volume term can be easily recognized, but are the

other two terms of eq 8b the excess entropy and excess energy

contributions, thus reflecting (to some extent) the entropic

and energetic effects?
The excess entropy and excess energy contributions can be

independently calculated from the residual properties as

follows:
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where a da
dT

′ = . It is thus clear that only if the energy parameter

is T-independent does the excess enthalpy reduce to the form

“implied” by eq 8b:
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Similarly, for the excess entropy, we have
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Again, only for a T-independent energy parameter does the

excess entropy correspond to the equation implied by eq 8b:
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Of course the excess Gibbs energy and the fugacity coefficient

can be calculated, either from eqs 5 and 6, or as the sum of the

excess enthalpies and entropies from eqs 9 and 11, yielding the

general equations below where the excess entropy and

enthalpy/energy contributions can be clearly identified:
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which is of course identical to eq 6:
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As expected, eqs 13 and 14 are identical to the “simpler
forms” of eqs 5 or 6; that is, all T-derivatives of energy
equations cancel out in eqs 13 and 14 (as can be easily seen),
however the “simple” expressions for the excess energy and
entropy seen in eqs 10 and 12 can only be obtained when the
energy parameter is T-independent.
Table S1 of the Supporting Information presents the

relevant equations for the vdW and SRK EoS.
The T-dependency of the energy parameter in the form of

the derivative of the parameter with temperature will affect
both the excess entropy and energy (enthalpy) terms and, in
general terms, SE and UE (or HE) should be given by eqs 11
and 9, respectively. We also notice that the da/dT term is not
included in the residual Helmholtz or Gibbs energies or the
excess Helmholtz and Gibbs energies and naturally neither in
the expression for the fugacity coefficient.
Once again, we recognize Gibbs statement that “the total is

easier or simpler than the sum of its parts” in the sense that gE is
indeed much simpler than adding or calculating separately the
excess enthalpy/energy and entropy contributions.
At this moment, it would be interesting to discuss some

differences in the terminology used in equations of state and
activity coefficient models, with regards to the energy and
entropy terms. This is also useful as later we will examine what
can be learned from the vdW EoS when it is written as an
activity coefficient model.
Activity coefficient models are often expressed in terms of

excess Gibbs energy or activity coefficient as

g
RT

g
RT

g
RT

FVE E,comb E,res

= +
−

(15)

ln ln lni i i
comb FV resγ γ γ= +‐

(16)

The comb-FV (combinatorial-free volume) roughly accounts
for the size/shape effects and the so-called “residual” term
accounts for the energetic interactions. We will, in the
remainder of this manuscript, use “E,res” for the “residual”
contributions to the excess Gibbs, Helmholtz energies, or
entropies in order to avoid confusion with the rigorous term of
residual properties as defined in thermodynamics.
For example, the universal quasichemical (UNIQUAC),

UNIQUAC functional activity coefficient (UNIFAC), and
Wilson models contain both combinatorial-FV and “residual”

terms, while the nonrandom two-liquid (NRTL) has only a
“residual” Gibbs energy, or activity coefficient term.
As indicated above, a point of caution: the “residual” part of

the excess Gibbs energy or activity coefficient is not the same
as the rigorous residual Gibbs energy from thermodynamics, as
shown in eq 5. The use of the word “residual” in both contexts
may cause some confusion. The residual properties in
thermodynamics have a clear definition and connection to
excess properties:

M M MT P x T P x T P x
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, ,
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, , , ,= − (17a)

M M x M
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i i
E res res∑= −

(17b)

The “residual” in eqs 15 and 16 probably means the
“remaining” contribution to the excess Gibbs energy or activity
coefficient, that is, the contributions not associated with the
size/shape effects.
Since excess Gibbs energy is rigorously connected to excess

entropy and excess enthalpy, the following equation can be
written:
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(18)

Looking at eq 18 and the physical significance of the comb-FV
and “residual” terms, it is tempting to state that the entropic
effects (SE) and comb-FV are identical and the same can be
said for the enthalpic (hE) and “residual” terms.
This is not precise. Applying the general equations below to

eq 15:
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We get (if the comb-FV term of the excess Gibbs energy is
linearly proportional to temperature like, e.g., in the Flory−
Huggins expression):

TS g TSE E,comb FV E,res− = −‐
(20a)

h g TSE E,res E,res= + (20b)

and apparently we recover eq 18:

g TS h g gE E E E,comb FV E,res= − + = +‐
(21)

In the above expressions, the so-called “residual” contribution
to the excess entropy present in both eqs 20a and 20b stems
from the T-dependency of the “residual” term:
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From the above, it can be concluded that neither the comb-FV
nor the “residual” terms of activity coefficient models are
exactly equivalent to the excess entropy and excess enthalpy
terms. They may be “close”, but both must be corrected due to
the T-dependency of the “residual” term (see eqs 20a and
20b). From the above, it can be understood that even NRTL
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has an excess entropy contribution (which is equal to SE,res),
due to the T-dependency of its residual term. This is in
contrast to what is sometimes stated that NRTL is a “purely”
energetic model.52

Similar comments can be made for the vdW equation of
state, if we compare eqs 8b and 13 and try to identify the
comb-FV and “residual” contributions to the excess Gibbs
energy (or even better the excess Helmholtz energy, thus
ignoring the excess volume term). By doing so, in general
terms we can write for the vdW EoS:
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(23a)

U A TSE E,res E,res= + (23b)

A TS U A AE E E E,comb FV E,res= − + = +‐ (24)

Note that AE,comb‑FV was identified as the Helmholtz energy
part stemming from the repulsive part of the vdW EoS (or, in
other words, this is the excess entropy of the vdW EoS when a
constant energy parameter is selected, see eq 12). Equation
23a highlights a linear T-dependency of AE,comb‑FV, making it
similar to a Flory−Huggins expression.
The Supporting Information shows an application of eqs

20a, 20b or 23a, 23b) in the case of the Wilson activity-
coefficient model.
Thus, once again, the reason that, in eq 24, the comb-FV

and “residual” parts are not identical to the excess entropy and
excess energy contributions is the presence of SE,res which is
due to the T-dependency of the energy parameter and can be
recognized in both eqs 9 and 11 for the vdW EoS:
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(25)

The presence of this T-dependency of the energy term is what
prohibits the “complete” separability of size and energy terms
in the vdW EoS (when the energy parameter is a function of
temperature).
If, on the other hand, we assume that the energy parameter

is T-independent (as is often considered for vdW in its
traditional form), then a much simpler result is obtained:
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We will not discuss it in detail in this work, but it can be easily
shown that similar concepts about the separability of entropic
and enthalpic terms and the importance of the T-dependency
of the energy parameter are valid for other cubic EoS of the
vdW-type, like SRK, see the relevant equations in Table S1 of
the Supporting Information.

Abbott and Prausnitz53 and Abbott46 had arrived to similar
conclusions in an earlier analysis of the vdW EoS. They first
indicate that a more appropriate division of the compressibility
factor of vdW (or other similar EoS) is not just the sum of
rep(ulsions) and attr(actions):

Z Z Zrep attr= + (27a)

They recognize that repulsions can be both “hard” for example,
as represented by a hard-sphere fluid term (dominating at very
high/infinite temperature) and “soft” (for other temperatures;
could be accounted by an additional term or a temperature-
dependent covolume):

Z Z Zhard sphere attr soft repulsions= +‐ + (27b)

They showed that the vdW-type EoS can be expressed in the
following general form for the residual Helmholtz energy:
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or alternatively as

A
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res∫ τ= − +
τ

(28b)

where S Slim0
res

0

res=
τ→

In eqs 28a and 28b, the term containing

the Z0 or the residual entropy at infinite T is the “strictly”
entropic part, or in other words, the hard-core part of the
potential, while the term with Ures includes both intermolecular
interactions and a second entropic part from the soft part of
the repulsive potential.
Abbott and Prausnitz53 also showed, inspired from the vdW

approach and the free-volume concept, that eq 28a or 28b can
be now written using “molecular concepts” in an equivalent
form as
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where Vf is the free volume term (=V − b for the vdW EoS)
and a ̃ = VT ∫ 0

τUres dτ is a term called the ”energy intensity”
which is further expressed as

U U T S Sd ( )
0

res res res
0
res∫ τ = − −

τ

(29b)

The term in parentheses in eq 29b is the entropic contribution
due to attractions and soft repulsions.
Applying the aforementioned concepts to the van der Waals

equation of state, we can write the following equivalent
expressions for the residual Helmholtz energy:

A TS Ures res res= − + (30a)
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Equations 30b, 30c, and 30d are identical but are written in
somewhat different forms in order to identify the different
contributions to the residual Helmholtz energy. The overall
conclusions and take-home message is the same, as that given
previously: we can obtain for the vdW EoS complete
separability of Sres and Ures (entropic and energetic
interactions) only if the energy parameter is T-independent
and in the latter case Ures is also T-independent.

3. MIXING AND COMBINING RULES WITH THE VAN
DER WAALS EQUATION
3.1. The vdW 1f Mixing Rules. Nowhere in section 2 did

we need to use or imply a specific type of mixing rules, but of
course these rules are needed for obtaining numerical values of
the excess and all other properties mentioned there. The
results of any EoS can be very much dependent on the choice
of mixing and combining rules. We address this issue in this
section.
Although van der Waals himself was, in his Nobel-prize

speech, rather reluctant to talk about mixtures, devoting a very
short part of the speech on this and no equations were shown,
his name and the classical use of the vdW (and other cubic)
EoS are associated with the so-called van der Waals one-fluid
mixing rules with which he had frequently worked:

a x x a b x x b
i j

i j ij
i j

i j ij∑ ∑ ∑ ∑= =
(31)

These quadratic mixing rules satisfy also the statistically
mechanically imposed quadratic dependency of the second
virial coefficient (=b − a/RT for vdW and SRK, PR;54 but not
for the third virial coefficient, see Sandler11). This limiting
behavior for the second virial coefficient has been considered
important by some (e.g., Wong and Sandler55), and it
sometimes has even been stated56 that mixing rules which
are not in agreement with this theoretical constraint lead to
“thermodynamic inconsistency”. This is, in our view, a rather
strong statement and there is nothing thermodynamically
inconsistent with models/mixing rules which do not obey the
quadratic composition dependency of the second virial
coefficient. Moreover, several researchers have stated that
they have not seen any practical implications even if this limit
of the second virial coefficient mixing rule is not fulfilled (Vidal
and Bogdanic,57 Michelsen and Møllerup58).
The mixing rules of eq 31 are typically used with the

geometric mean combining rule for the cross-energy
parameter, justified from London theory of intermolecular
forces and the arithmetic-mean rule for the cross covolume
parameter.
The van der Waals EoS has been used, in a translated form,

with success by Tassios and co-workers (e.g., Czerwienski et
al.59 and Tassios47) for VLE calculations of nonpolar/weakly
polar mixtures using these simple mixing rules, and the results
are comparable to the PR equation of state. Please notice that
the translation does not affect the phase equilibria calculations,
and it can be shown that it does not change the activity
coefficient calculated from the EoS either (i.e., the same values
are obtained from the original and translated vdW for the
activity coefficients) if the volume translation is given by a
linear mixing rule.60,61

If we assume these classical mixing and combining rules and
we ignore the excess volume contribution, the excess Gibbs
energy from vdW EoS from eq 8b can be written (for a binary
system i−j) as
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where the free-volume and volume fractions are defined as
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Similarly, the activity coefficient can be derived from the ratio
of the fugacity of component i in a mixture divided by that of a
pure component as (in eq 33b we show to illustrate the
expression for the infinite dilution activity coefficient in a
binary mixture from the vdW EoS):
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Equations 32 and 33 yield some interesting conclusions. First,
we see a complete separability of the combinatorial-free
volume and “residual” interactions, as in the excess Gibbs
energy expression. As previously mentioned, this is not
identical to a complete separability of entropic and
enthalpic/energetic contributions (in terms of excess entropy
and enthalpy properties). The latter is the case only if the
energy parameter is T-independent.
The second interesting conclusion is the direct similarity of

eqs 33a and 33b with the Flory−Huggins model (here in form
of free-volume rather than volume or segment fractions)
supplemented by a regular solution-type term, with the
“solubility parameter” from vdW defined as shown in eq 33a.
This may suggest that vdW could be used even for polymer
solutions. This has been indeed done with success, and for
both the vdW and other cubic EoS (Sako et al.,62 Kontogeorgis
et al.;63 for a review, Kontogeorgis and Folas32). This is further
discussed later.

3.2. Corrections to Quadratic Mixing Rules. Equations
33a and 33b are derived under the assumption of the vdW 1f
mixing rules (eq 31) and the conventional combining rules,
shown below, but without the use of any adjustable
parameters:

a a a k(1 )ij i j ij= − (34a)

b
b b
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i j

ij=
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−
(34b)

that is, the kij and lij shown in eqs 34a and 34b are set to zero.
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In the more general form where we allow for interaction
parameters or even other combining rules for the cross energy
and cross covolume parameters, the more general expression
for the activity coefficient of vdW is shown below, in eq 35b for
the infinite dilution activity coefficient in a binary mixture.
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If, in eq 35b, we employ the classical combining rules shown in
eqs 34a and 34b without using interaction parameters, then we
arrive, after some algebra, to the simpler expressions shown in
eq 33b. In eq 35b, we see a complete separability of the
combining rules for the covolume and energy parameters; the
former affecting only the size/comb-FV term and the latter
only the energy/residual term. This is interesting, as this
apparent separability is not observed in the case of the more
modern cubic EoS, SRK, and PR. We will illustrate this with
SRK and for simplification we show its form for the infinite
dilution activity coefficient in the general case (eq 36a to
compare to 35b) and when the classical combining rules are
used without interaction parameters (eq 36b to compare to
33b):
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As discussed elsewhere (e.g., Kontogeorgis and Economou,
2010;51 Kontogeorgis and Coutsikos, 201250), all contribu-
tions except for the last one refer to the combinatorial-free
volume term (which disappears at infinite pressure, by setting
V = b). The last part of eqs 36a and 36b is the energetic term

which, in the simplest form, resumes a regular-solution type
form, as in the vdW EoS (see eq 33a and 33b). However, while
the cross energy parameter only affects the energy (“residual”)
term, it is evident that the combining rule for the cross
covolume, b12, affects both the combinatorial free-volume and
the energy/“residual” terms or, said in another way, it appears
that b12 has a significant effect on the activity coefficient terms
and (possibly also) values.
Analogous expressions can be written for the PR EoS as well.
Another observation is that the “additional” to the Flory−

Huggins/free-volume part of the comb-FV term which appears
in SRK, see eq 36b (and also a similar term in PR),
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is of importance, when activity coefficient calculations are
performed (see also section 3.5, and for more details,
Kontogeorgis and Economou, 2010;51 Kontogeorgis and
Coutsikos, 201250). This “additional” term gives the correct
“size dependency” of the activity coefficients, indicating
indirectly a satisfactory size/comb-FV term for the modern
cubic EoS such as SRK and PR. More in section 3.5.
The importance of the combining rule for the covolume has

been studied in some details by several authors. Polishuk et
al.64,65 found that an EOS with classical mixing rules and
proper selection of the two interaction parameters gave a
relatively good quantitative agreement with experimental data
of the critical line, even for systems that are difficult to
correlate such as water−hydrocarbon. They highlight that
while the positive k12 values increase the extents of both VLE
and LLE phase splits, the l12 values influence the extent of the
LLE, the curvatures of the bubble point lines along with the VL
critical points compositions. Kontogeorgis et al.66 showed that
a single lij (around 0.02) with PR yields very good results for
ethane/alkanes (from C12−C44), while a single kij does not
perform as wellsuch a lij improves apparently the comb-FV
term of the EoS. That the lij improves the comb-FV term of the
EoS for PR was also shown for alkane mixtures as well in the
same study. It was also shown that the arithmetic mean rule
(without corrections) performs better than other combining
rules for b12, like Lorentz and Lee and Sandler (eqs 37a and
37c). The other combining rules, eqs 37b and 37d have been
proposed by Voutsas and co-workers for the UMR-PR model67

and Gmehling and co-workers for the VTPR model.68
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Even though, the simplest combining rule performed best for
cubic EoS when used with the traditional (and rather
problematic, see later) mixing/combining rules for the energy
parameters (as shown by Kontogeorgis et al., 199866), this may
not be the case when a more advanced mixing rule, such as
those discussed below (in section 3.5), are considered. It
would be interesting to see activity coefficient calculations with
the more advanced models and these alternative combining
rules for cross covolume (eqs 37a−37d). The fact that so many
rules have been proposed and no definite conclusions are made
indicates that the topic merits further investigation. Activity
coefficient calculations and the aforementioned separate
analysis of the size/comb-FV and energy/“residual” terms
can contribute to a clarification of the situation.
3.3. Predicting the Interaction Parameters for the

Quadratic Mixing Rules. The quadratic mixing rules, eq 31,
are proposed for the vdW (and other cubic EoS) but they have
a theoretical foundation on the conformal solution theory and
the one-fluid approach as proposed in literature several years
after van der Waals from Leland and co-workers (see also the
review by Gubbins, 201314). They have showed that these
mixing rules can be derived more rigorously from molecular
considerations and expressed in a more general way in terms of
the microscopic molecular parameters, energy, and diameter,
as follows:

x x
i i

i j ij ij
3 3∑ ∑εσ ε σ=

(38a)

x x
i i

i j ij
3 3∑ ∑σ σ=

(38b)

Gubbins (2013)14 mentioned that these vdW 1f mixing rules
were shown, when compared to molecular simulation studies,
to perform much better for size asymmetric systems compared
to other types of random-mixing type rules previously
proposed by Longuet-Higgins but also better compared to n-
fluid theories proposed later.
These mixing rules do not assume a specific combining rule

for the cross parameters, but the usual cases are the Lorentz
(for the cross covolume) and Berthelot (for the cross energy)
combining rules:

12 1 2ε ε ε= (39a)

212
1 2σ

σ σ
=

+
(39b)

Sometimes, see Gubbins (2013),14 we notice in the literature
that the Lorentz−Berthelot name is used not only for the
combining rules of eqs 39a and 39b, but also for the
“equivalent” rules for the macroscopic EoS parameters, a,b,
eq 34a and 34b. This is, however, not correct and the
equivalent combining rules to Lorentz−Berthelot are shown
later in this section (eqs 44a and 44b).
There have been several studies on the applicability range of

the conformal solutions theory (vdW 1f mixing rules, eqs 38a
and 38b also with the combining rules, eqs 39a and 39b) with
the most convincing and general study that of Harismiadis et
al. (1991).69 These authors show that, contrary to what was
previously thought, the vdW 1f theory and molecular
simulation agree well in their predictions of phase coexistence
envelopes (especially for pressure−composition curves, less so
for density-pressure ones), even for highly asymmetric
mixtures with components that differ in volume by a factor

of 8. Their results establish the validity of conformal solutions
theory for simple mixtures of much greater degree of
asymmetry than previous investigations. The authors admit
that, while the vdW 1f theory can give good estimates for the
coexistent properties of highly asymmetric mixtures, it may not
correctly predict the chemical potentials at infinite dilution or
the excess properties of these mixtures. These may also depend
on the values of the combining rules as well.
Gubbins in his review (2013)14 writes that the Lorentz

combining rule is closer to the reality, while the weakest of the
two combining rules is the Berthelot one for the molecular
cross energy parameter. We agree on the second remark as,
exactly as Gubbins writes, in eq 39a should be expected
corrections due to size and ionization potential differences.
Indeed, starting from the London theory of intermolecular

forces, the cross intermolecular potential is related to the self-
potentials and the ionization potentials Ii:
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This equation can be enhanced further if we assume an
expression for the intermolecular potential. Hudson and
McCoubrey (1960)70 used the Lennard-Jones potential. If
we use more generally the Mie potential with an attractive
exponent n, then the final equation is (recognizing in this way
the comment of Gubbins on the range of applicability of the
Berthelot rule):
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It is thus clear that according to the theory of London/
Hudson-McCoubrey, the terms with the last two parentheses
in eq 41 are a type of “correction” to the Berthelot rule and
could be used to calculate a value of the interaction parameter
(e.g., in molecular models like SAFT which indeed are based
on molecular energies and diameters).
For the vdW and other cubic EoS, there is an important step

prior to obtaining an expression for the interaction parameter.
We use the proportionalities which are deducted by the
comparison of the vdW 1f mixing rules in the molecular (eqs
38a and 38b) and macroscopic parameters (eq 31):

a
b

b3ε σ∝ ∝
(42)

The final result is (we substitute eqs 42 in eq 41):
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which can be simplified if we accept the relationship between
the ionization potential term and the covolumes presented by
Coutinho et al. (1994, 2000):71,72
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It is of interest to note that the geometric-mean combining rule
for the cross-energy parameter is obtained from eq 43b with
the exponent n = 6 (Lennard-Jones value).
The use of eq 43b leads to the following equation for the

interaction parameter:
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These methods to estimate kij, eq 43c and the rule which can
be deduced from eq 41, appear useful and predictive, but their
applicability has been limited and with rather mixed results.
Equation 41-based kij has been used by Tihic for PC-SAFT73

and in a similar form adapted for SAFT-VR by Haslam et al.74

In the case of PC-SAFT, the predicted kij values (using n = 6)
are for various gas-alkanes only in qualitative agreement with
the “optimum” kij values regressed from experimental data
(and even poorer for polar molecules). These calculations have
several uncertainties; for example, ionization potential values
are not available for heavy alkanes.
Equation 43b has been used for SRK by Coutinho et al.

(1994, 2000)71,72 using the n- exponent as fitting parameter.
There are some promising results for CO2/hydrocarbons and
in the 2000 manuscript it is shown that for various series of
systems (diverse gas/alkanes, etc.) the n-exponent decreases
with size asymmetry, while kij sometimes decreases and
sometimes increases. Thus, the combining rule from
Hudson-McCoubrey,70 shown in eq 43b, has some merit at
least for qualitative estimations and for predicting some trends
of the interaction parameter. This work has not been pursued
further and it remains to be seen whether this equation can, in
the future, develop to a semipredictive estimation of the
interaction parameter.
Finally, it is interesting to see that the Lorentz−Berthelot

rule (eq 39a and 39b) can be expressed in terms of vdW/cubic
EoS parameters as
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These eqs 44a and 44b cannot be used directly in the cubic
EoS; the results will not be successful as shown in the literature
(Kontogeorgis et al., 1998,66 etc.). Thus, the Lorentz−
Berthelot combining rules are far less successful compared to
the conventional combining rules for real fluids in the context
of cubic EoS. Equation 44a has been used in connection with
the extension of vdW to polymers (Kontogeorgis et al.,
199463).
However, it is appropriate to use the combining rules of eqs

44a and 44b in cubic EoS when we wish to compare their
results against Lennard-Jones mixture simulation data, which
are also generated using the Lorentz−Berthelot combining
rules. This is a way to investigate in a systematic and unbiased
way whether there are any inherent deficiencies of cubic EoS
that do not permit their applications to asymmetric mixtures.
This analysis has been done by Harismiadis et al. (1994)75 and
the predictive results of this study (no interaction parameters
are used) show that, at least for pressure−composition phase
diagrams, cubic EoS can be used (together with vdW 1f mixing
rules and Lorentz−Berthelot combining rules) to model
mixtures of significantly different size and energy compounds.
It appears, thus, that cubic EoS do not have inherent
limitations in describing phase equilibria for asymmetric

systems, while problems may occur for densities and excess
properties.
Equations 38a and 38b have been generalized with leaving

some or all of the exponents freely defined, resulting to a large
number of mixing rules, either for the molecular or for the
vdW/cubic EoS parameters. Some have found applications in
specific cubic EoS for specialized applications; none of these
generalizations has received any wide acceptance. We will not
pursue them further here but a review of these diverse
combining rules can be found elsewhere (Kontogeorgis and
Folas, 201032).
At this step, let us also mention that predictive methods for

estimating kij derived from the combination of an EoS/gE-type
mixing rule with a predictive method for estimating gE

parameters (e.g., the PPR78 approach) are presented in
section 3.5.
To our knowledge, there are no successful predictive tools

for predicting the lij parameter (irrespectively of the combining
rule used). When cubic EoS such as SRK and PR are used with
both kij and lij, the successful correlation results often seen12,76

are obtained at the cost of parameters which often assume
unrealistic and physically incorrect values. This is because, as
shown from eq 36a, these interaction parameters must be
highly intercorrelated, at least for the SRK and PR EoS. This
may not be the case for vdW where the various terms are
highly separable, but simultaneous use of kij/lij has not been
extensively studied with vdW (to the best of our knowledge).

3.4. Another Look at the Separability of Terms and at
the Size Effects from the vdW EoS. Use of the Carnahan−
Starling and similar terms suitable for hard-sphere fluids
together with the vdW or other cubic attractive terms have not
led to superior equations of state,20,41 maybe because real
fluids’ repulsive contributions cannot be represented alone by
hard-spheres or because cancellation of errors is easily
accomplished when the vdW-type repulsive and attractive
terms are combined. There is, however, another aspect; the
importance of rotational and vibrational modes in real,
especially polyatomic, molecules and their density dependency.
This aspect and a further understanding of the separability of
terms in vdW-type EoS can be obtained from Statistical
Thermodynamics using the concept of the generalized van der
Waals partition function (vdW p.f.). Following, among others,
Vera and Prausnitz,10 Tassios,47 and Sandler,11 the generalized
vdW p.f. can be written as
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This is a simplified form of the general partition function, as
the latter cannot be easily used for engineering calculations
(Tassios, 199347).
In eq 45, we identify from left to right, the ideal gas term, the

combinatorial (VN), the free volume term (with Vf), the
rotational/vibrational contributions, and the energy term with
the total potential energy (which is related to both the pair
intermolecular potential and the radial distribution function).
The last term in eq 45 includes the effect of the potential

energy, and for its estimation are needed both the
intermolecular potential and the radial distribution function,
that is, the position of molecules in space.10 In this way, even
this so-called energetic term does include (because of the
radial distribution function, which is in principle a function of
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distance, density, and temperature) an “entropic” contribution.
We will come back to this aspect later.
When the partition function is known, then the equation of

state (pressure equation) and the Helmholtz energy (con-
venient to derive an expression for the activity coefficient) can
be derived from the following general equations:
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Applying eq 46a to eq 45, the general form of the equation of
state is

P P P Pcomb FV rot,vib attr= + +‐ (47a)

With three distinct contributions, from the combined
combinatorial-free volume, rotational/vibrational, and ener-
getic/attractive effects (all equations with derivatives based on
total volume, N is the number of molecules, and k being the
Boltzmann constant):
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Very often eq 47c is ignored, assuming that the rotational/
vibrational effects only depend on temperature. Then, using
eqs 47b and 47d alone, the vdW EoS is derived when the free
volume is given by the usual equation (Vf = V − b), and the
total potential energy is given as (on a molar basis) a

VN
2

A
ϕ = −

There is an interesting aspect in this derivation of the van
der Waals EoS, following Sandler’s approach. Sandler11 shows
that the vdW EoS can be derived using the square-well
potential and either assuming that the radial distribution
function is constant equal to one or that the radial distribution
function is density independent but a function of temperature
(g(r, ρ = 0,T) = e−u(r)/kT). In the first case (g = 1), vdW is
derived with a temperature-independent energy parameter
(original formulation of vdW) and as we saw previously in this
case, we have a complete separation of entropic and energetic
effects. In the second case (low density limit of g), again the
vdW EoS is derived, but in this case the energy parameter is
temperature-dependent (exponential function of temperature).
Energetic and entropic effects are not quite as easily separable
in this case and this could be indeed anticipated also from the
generalized vdW p.f. and the link between the total potential
energy and pair potential and radial distribution function, as
mentioned previously.
Returning to the generalized vdW p.f. and eq 45, following

Prigogine,77 it can be assumed that the rotational and
vibrational contribution to the partition function has a part
that is density dependent which thus contributes to the
equation of state. This part can be given by the expression
shown in eq 48a below (and C is the external degrees of
freedom parameter; 3C is the number of external and density
dependent degrees of freedom). Moreover, as also Prigogine

suggested, all three contributions (combinatorial, free-volume,
and rotational) can be combined, and this is shown in eq 48b.
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With the use of the final form of the generalized vdW p.f. eq
48b and eq 46a (together with the SRK-attractive term

potential; in absolute value equal to ( )ln 1aN
N b

N
N

b
V

2

A A
φ = − + ),

Sako, Wu, and Prausnitz62 presented the first cubic equation of
state ever proposed for polymers:
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Using also eq 48b (only the comb, FV, and rotational
contributions) and eq 46b, Kontogeorgis and co-workers78,79

developed a more general “size, free volume” expression for the
excess Gibbs energy and the resulting equation for the activity
coefficient:
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They called it Chain-FV and using diverse ways to get the C-
parameter, for example, as r/q (ratio of the vdW volume over
area), they obtained improved results over the Flory−Huggins
and the free-volume model of Elbro et al.80 for activity
coefficients of alkanes, solid−liquid equilibrium calculations,
and against molecular simulation data. When C = 1, the model
results to the same “comb-FV” term proposed by Elbro et al.68

and also implied in the van der Waals equation. There are no
rigorous approaches to predict the C-parameter, and different
(rather similar values) have been proposed in the literature in
models which use this parameter, like the UNIFAC-FV model
by Oishi and Prausnitz81 and the Flory equation of state.
Sako, Wu, and Prausnitz62 (and other researchers in

subsequent studies82) have also been successful in modeling
some nonpolar polymer systems at high pressures.
None of these approaches have been pursued very much

after these publications, but both studies illustrate that it is
possible to improve the representation of the “size” effects
within the van der Waals framework, and in a physically
meaningful way while maintaining the simplicity and original
spirit of the van der Waals approach, even maintaining the
cubic form of the equation of state.

3.5. The EoS/GE-Type Mixing Rules. An interesting
mixing rule can be obtained if we take the limit of infinite
pressure and apply it to eq 8b. At this limit we can assume that
the volume equals to the covolume. If moreover we assume
that the linear mixing rule is used for the covolume parameter,
we can show that
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This is the Huron−Vidal mixing rule83 applied to the vdW
EoS. We can see that this infinite pressure limit only stems
from the “residual” term of the gE expression of the EoS and
the combinatorial-free volume part disappears.
Exactly the same expression can be obtained for the excess

Helmholtz energy, but in this case no assumption is made for
the mixing rule for the covolume parameter. As Wong and
Sandler55 showed, this has the advantage that any mixing rule
can be used for the covolume. Wong and Sandler55 used this
extra degree of freedom to satisfy the quadratic composition
dependency for the second virial coefficient.
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Equation 51, when the vdW 1f mixing rules are used from
section 3.1, is the van Laar equation in its predictive form. For
a binary system i−j, one has
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Where: i
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activity coefficient expression for a binary system i−j:
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The use of a binary interaction parameter kij in the vdW 1f
mixing rules, that is,

a x x a a k b x b(1 ) and
i j

i j i j ij
i

i i∑ ∑ ∑= − =
(55)

modifies the vdW gE expression as follows:
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After some algebra, one obtains (for a binary system i−j):
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The Eij binary coefficient is now introduced:

E k2 (1 )ij i j i j ij
2 2δ δ δδ= + − − (58)

Thus,
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E
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(59)

Equation 59 thus establishes a connection between the binary
interaction parameter Eij of a Van Laar-type gE model and the
binary parameter kij of the vdW 1f mixing rules. This

connection was advantageously used by Jaubert and co-
workers84−88 to develop the PPR78 model enabling the
calculation of Eij(T) (and thus, of kij(T), see eq 58) from a
group-contribution method for the PR EoS. The Eij parameter
is predicted using the following expression:
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In eq 60, Ng is the number of different groups defined by the
method (for the time being, 40 groups are defined); aik is the
fraction of molecule i occupied by group k (occurrence of
group k in molecule i divided by the total number of groups
present in molecule i). Akl = Alk and Bkl = Blk (where k and l are
two different groups) are constant group-interaction parame-
ters (Akk = Bkk = 0).
In the classical van der Waals−van Laar concept the

solubility parameter shown in eq 53 is equal to the square root
of critical pressure. Unfortunately, experimental data do not
agree to this, and otherwise interesting is the observation that
the nonideality is proportional to the difference of the square
root of the critical pressures of the components. Thus, the
predictive form of the van Laar is not very useful. It is more
convenient to use the van Laar as a correlative model with two
adjustable parameters. Alternatively, the predictive extension of
the van Laar in the form of PPR78 or the Hildebrand’s regular
solution theory is often highly useful, where in eqs 53 or 54,
volumes are used instead of covolumes and the solubility
parameters are obtained from the “definition” (square root of
cohesive energy density) rather than from the van der Waals
equation.
Still, all the above shown models, the vdW EoS with the

classical mixing/combining rules, section 3.1, or the excess
Gibbs energy versions in the form of van Laar and regular
solution theory, are not very accurate for complex systems. The
underlying hypothesis is that the mixing of molecules is
random, which is an assumption rigorously valid for relatively
nonpolar systems. Interaction parameters and other correc-
tions should correct for the limitations of the theory.
A more useful application of eq 51 is to see it as an

opportunity for a mixing rule for the energy parameter of the
equation of state, when an external local-composition activity
coefficient model is implemented in the mixing rule.
The so-called EoS/gE mixing rules have been a “hot” topic in

the 90s and are now considered to be established models.
Their original targets were 2-fold; to extend cubic EoS to
complex mixtures, by incorporating a local composition model
in the mixing rules, or extend the activity coefficients to high
pressures and, at a second level, develop predictive equations
of state, by incorporating a UNIFAC model in the mixing rule
(or using existing parameters of local composition models from
databases). The latter target, which is partially achieved by the
zero reference pressure assumption, is slowly being abandoned.
This approach was popular at the start with models such as
MHV1/MHV2 (Dahl and Michelsen89) and PSRK (Gmeh-
ling90), but it turned out that poor results are obtained for size-
asymmetric systems due to “changing in the wrong direction”
the combinatorial-free volume term of the equation of state.
These problems were corrected by semiempirical approaches
such as LCVM (Boukouvalas et al., 199491), but it soon
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became clear (Kontogeorgis and Vlamos, 200092) that ideally
the “double combinatorial” introduced by MHV1/PSRK/
MHV2 models and the like should be completely eliminated.
This is what was done by Gmehling and co-workers in recent
versions of PSRK and in the VTPR model.68 Moreover, the
MHV1/PSRK/MHV2 models are only “approximate zero
reference pressure” models as the approximations introduced
essentially change the reference pressure to an approximate
zero one (see Kontogeorgis and Coutsikos,50 for details).
Thus, we believe that the infinite pressure Huron−Vidal

approach is the most promising way forward (the approach
also used in the Wong−Sandler and VTPR models).
Indeed, as mentioned previously, and recognizing that the

combinatorial-free volume term disappears at infinite pressure,
eq 51 can be rewritten as follows:
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According to eq 61, which is the general formulation of the
EoS/gE mixing rule (here applied at the infinite reference
pressure), the vdW EoS contribution at infinite pressure can be
equated to the “residual” part of an external activity
coefficient/gE model indicated with M in eq 61 for example,
NRTL (which as mentioned only has a “residual” term) or the
“residual” part of UNIQUAC, Wilson, or other models.
This “detail”, that in principle only a “residual” term of an

external activity coefficient model should be used in eq 61,
when the infinite pressure limit is used, has not been clear from
the start. Soave has indicated in several publications between
1993 and 201093−96 that this is indeed the case and he
employed the “residual” term of UNIQUAC and UNIFAC in
several of these studies. The explanations were rather “loose”
for example, “if we use the combinatorial term also, over specif ied
values are obtained or calculations have shown that excessive
decrease of volatility is shown for asymmetric alkane mixtures”,
etc. These statements are, in principle, correct but from the
derivation of eq 61 it is, in our view, clear that at the infinite
limiting pressure, only the “residual’ part of the excess Gibbs
energy of the external model should be used. The
combinatorial-FV contribution is covered by the EoS and
moreover is eliminated at the infinite pressure limit. It should
be mentioned that eventually Vidal himself (e.g. Vidal97)
recognized that it is a “residual gE” that should be used in eq
61. He recommended in most cases NRTL but in more recent
manuscripts, he suggested also using the “residual term” of
UNIQUAC or even UNIFAC if a semipredictive model should
be developed.
The use of the vdW EoS with the mixing rules shown in eq

61 has been indeed done by Soave48 in 1984 who used vdW
with the Huron−Vidal mixing rule, as shown in eq 61. Soave
employed NRTL and ensured that accurate vapor pressures are
obtained using a T-dependent energy parameter with two
adjustable parameters:
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Soave obtained excellent results for the ternary acetone−
chloroform−methanol system, using interaction parameters
exclusively obtained from binary data. If accurate densities are
needed, a Peńeloux-volume translation can be used.

The EoS/gE mixing rule affects only the “residual”/energetic
part of the activity coefficient model expression from vdW
which can be now written as (using the linear mixing rule for
the covolume parameter):
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Equations 33a and 63 can be directly compared, and it can be
seen that the comb-FV term is the same, while the “residual”
term is now given by the external activity coefficient model,
which as mentioned should only contain a “residual” term, for
example, NRTL. With such an approach the regular solution
term which is a direct outcome of the use of the vdW 1f mixing
rules is replaced by the much more correct local-composition
concept. As such local-composition models, at least approx-
imately, account for (rather) strong polar interactions, their
incorporation in an EoS concept permit (i) their use at high
pressures and (ii) potentially being applicable for a wider range
of systems, as a combinatorial-FV term is added (in NRTL).
While the comb-FV term of eq 63 is an improved Flory−

Huggins term (yielding reasonably accurate values of activity
coefficients if experimental densities and physically correct
hard-core volumes are used), this may not be the case when
the volumes and covolumes are calculated from the equation of
state. Even for PR, we have shown in a previous study
(Kontogeorgis et al., 199866) that this term yields qualitatively
correct activity coefficients for athermal alkane systems
(showing the expected negative deviations from Raoult’s
law) but still much higher than the experimental values.
Thus, while Soave48 wonders why the vdW EoS has not

been used even more than the SRK, having a more rigorous
theoretical basis, there may be an additional reason for the
widespread use of SRK and PR.
As we have shown in previous studies32,50,51 (Kontogeorgis

and Folas, 2010; Kontogeorgis and Coutsikos, 2012;
Kontogeorgis and Economou, 2010) the use of SRK or PR
with the Huron−Vidal mixing rules, while leaving essentially
unchanged the “residual” term of eq 63, adds an additional
contribution to the combinatorial-FV term of the model,
stemming apparently from the attractive term (eq 36c). For
SRK and at infinite dilution, the activity coefficient can be
expressed as
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Note that the EoS comb-FV term resulting from the addition
of a Flory−Huggins type term with an additional term is very
similar to combinatorial terms present in UNIQUAC/
UNIFAC gE models associating a Flory−Huggins type term
with a Staverman−Guggenheim contribution.
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This additional term yields a comb-FV term for SRK and PR
which is in very good agreement with experimental data for the
activity coefficients of several mixtures of hydrocarbons, even
at high asymmetries. A typical example is shown in Figure 3.

Please notice that exactly the same form of PR is used (green
and purple lines) with the same values of pure compound
parameters and linear mixing rule for the covolume. The only
difference is the mixing rule for the energy parameter, vdW 1f
and the a/b- mixing rule (eq 51 or eq 61 with gE equal to zero).
This has been further emphasized by Sacomani and

Brignole98 (2003) who recommended this term (the
combinatorial-free volume part of SRK with experimental
densities), over Flory−Huggins, for polymer solutions (see
Kontogeorgis and Coutsikos, 200599 for a further discussion).
The addition of the “residual” term of a local-composition
model such as the NRTL renders SRK or PR/Huron−Vidal/
NRTL to be a very powerful model with excellent VLE and
LLE results for a wide range of highly polar and even hydrogen
bonding systems such as alcohol−hydrocarbons and water−
hydrocarbons and very good predictions even for LLE/VLLE
of water−alcohols/glycols−hydrocarbons over a wide temper-
ature and pressure range (Kontogeorgis and Folas, 2010;32

Folas et al., 2007100).
Others (Zhong and Masuoka101,102) have used the same

concept which yields the excellent comb-FV term for SRK and
PR (i.e., the a/b- mixing rule, eq 51 with gE = 0) together with
a mixing rule satisfying the second virial coefficient and
extended cubic EoS to polymer solutions with success.
This success of the Huron−Vidal approach combined with

cubic equations of state for size-asymmetric systems was not
evident to Vidal himself. In one of his last manuscripts (Vidal
and Bogdanic57) and in his book,103 Vidal stated that one of
the two problems he saw with existing approaches was the
description of mixtures with molecules differing in size, for
example, methane with heavy alkanes. (The other was VLLE
for hydrogen-bonding systems). However, we know today that
the cubic EoS/Huron−Vidal approach can very accurately
describe VLE and infinite dilution activity coefficients for such

asymmetric systems32,50,51 (see Kontogeorgis and Folas, 2010;
Kontogeorgis and Coutsikos, 2012; Kontogeorgis and
Economou, 2010).
A more recent development which has the ambition of

resulting to a predictive model is the already mentioned VTPR
EoS from the group of professor Gmehling,68 essentially a
combination of the PR/Huron−Vidal with the residual term of
UNIFAC with all new UNIFAC parameters being re-estimated
in the context of the EoS model and when the combinatorial
term only stems from the cubic EoS.
We can thus safely state that in the form of SRK or PR, the

Huron−Vidal mixing rules and a model such as the NRTL use
the vdW concept in a highly satisfactory way, resulting under
many circumstances in a model as accurate as some of the
most successful modern association models such as CPA and
PC-SAFT, at least for phase equilibrium calculations.

4. CONCLUSIONS AND FUTURE OUTLOOK
We have emphasized in this work that cubic equations of state,
starting from van der Waals, are both of theoretical and
practical merit. Their conformance with the corresponding
states principle, their ability to predict most universal phase
diagrams, and their approximate representation of entropic/
free-volume and energetic/enthalpic effects are some of the
successes. The mixing and combining rules of vdW have a
theoretical basis and are still used, but the true value of vdW
and other EoS is when they are combined with a local-
composition model using the infinite pressure (Huron−Vidal)
mixing rule. This transformation makes the cubic EoS highly
useful even for polar/complex mixtures. And this has been
recognized also by Soave (2002 talk at IVC-SEP meeting) who
recommended to abandon the quadratic mixing rules and use
Huron−Vidal instead with a suitable modified form of NRTL.
On this basis, it is not surprising that Tsonopoulos and

Heidman (from Exxon) stated in 1986104 that they were
satisfied with the performance of cubic EoS for petroleum
applications, repeated later by Jack Heidman when he said that
“Cubics are here to stay” (IVC-SEP Discussion Meeting,
1998), a view expressed also by Jose Valderrama (2003)42 in
his excellent review on “The state of the Cubic Equations of
State”. More recently, Hendriks (2011)105 mentioned that the
industry will first of all use proven models such as the cubic
EoS and return to more advanced models only when “true gaps
exist”. Michael Michelsen has often been heard to say about
cubic equations of state as being “a technology that refuses to
die”.
The capabilities of cubic EoS especially with the advanced

mixing rules mentioned are unprecedented and are widely
recognized by those who have carefully looked into the subject.
Shortly before he passed away, Marco Satyro wrote to one of
the authors of this manuscript:
“There are simple f ixes we can do to the cubic estimation

f ramework that still allow us to use it reliably to model asymmetric
systems” and ”I have not seen yet a detailed study showing an
objective comparison between a cubic EoS and SAFT if both
equations of state are parametrized in the same way”.
Especially the latter statement is very significant as the

model parametrization is of huge importance, as also shown in
this work. The work with noncubic/advanced EoS should of
course continue, but it is useful to have the above statements in
mind.
Cubic EoS can, especially with the advanced mixing rules,

perform several of the “basic tasks for chemical engineering”, as

Figure 3. Activity coefficients at infinite dilution of n-butane in alkane
solvents at 373 K as a function of the alkane carbon number using the
Peng−Robinson equation of state. Results are shown using the vdw 1f
mixing rules (with kij = 0) and the a/b mixing rule (which is
essentially the Huron−Vidal mixing rule without the term for
“residual” interactions; gE = 0). For comparison are shown the results
with the modified UNIFAC activity coefficient model. Reprinted with
permission from ref 32. Copyright 2010 John Wiley and Sons.
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called them by Zeck,106 for example, VLE and LLE with the
same adjustable parameters.
Of course, there are various opinions, for example, Gupta

and Olson (2003)107 in a seminal paper wrote:
“Most past work focused on extensions of cubic vdW-type EoS···

This has occurred despite the now famous recommendation of
Henderson. No matter how sophisticated a mixing rule, the use of
van der Waals-type cubic equations of state force their inherent
limitations on the users. These are the ability to reasonably predict
only the vapour pressure of a select series of components and only
an approximate modelling of the ef fect of liquid density and
compressibility. van der Waals-type cubic equations are unable to
accurately model other liquid phase properties, for example,
enthalpy and heat capacity also phase equilibria at high pressures,
particularly the mixture critical locus.”
While we do not agree with everything in the above

statement, especially the comment on the mixing rules, we
certainly agree with the last comment on the importance of
validating all equations of state for thermal properties such as
enthalpy and heat capacity. This may very well be a serious
limitation of the cubic EoS, but it remains to be seen how
accurate other models are. To the best of the authors’
knowledge, there has been no systematic comparison or
evaluation of any SAFT approach for enthalpies or heat
capacities. These properties are largely ignored by the scientific
community and even the modeling of other derivative
properties such as speed of sound has attracted interest by
researchers only rather recently.
New trends in the field such as the analysis and criteria to

determine the correct temperature dependency of the energy
parameter of cubic EoS (by Jaubert and co-workers108−111)
and the use of heat capacity in the determination of EoS
parameters (by Coutinho and co-workers112−114) may turn out
to be useful approaches for the further validation not only of
cubic equations of state but also of the more advanced models.
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