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An expression for the entropy of a monoatomic classical ideal gas is known as the Sackur-Tetrode equa-
tion. This pioneering investigation about 100 years ago incorporates quantum considerations. The pur-
pose of this paper is to provide an alternative expression for the entropy in terms of the Heisenberg
uncertainty relation. The analysis is made on the basis of fluctuation theory, for a canonical system in
thermal equilibrium at temperature T. This new formula indicates manifestly that the entropy of macro-
scopic world is recognized as a measure of uncertainty in microscopic quantum world. The entropy in the
Sackur-Tetrode equation can be re-interpreted from a different perspective viewpoint. The emphasis is on
the connection between the entropy and the uncertainty relation in quantum consideration.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

The entropy of a monoatomic classical ideal gas has been
given independently by the Sackur [1,2] and Tetrode [3,4], which
is known as Sackur-Tetrode equation (ST-equation). This is a
pioneering investigation about 100 years ago which incorporates
quantum considerations. This entropy S at temperature T can be
written as

S
NkB

¼ 5
2
þ ln

V
N

2pmkBT

h2

� �3=2
( )

; ð1Þ

which shows a fundamental step towards modern physics. Here
N is the number of particles in the gas, kB is Boltzmann’s con-
stant, V is the volume of the gas, m is the mass of a gas particle
and h is Planck’s constant. The detailed explanation and sum-
mary for the derivation of the ST-equation is described in a text-
book [5].

Experimental verification and validity of this equation is not
easy because the ideal gas does not exist indeed, and real gas
becomes condensed state at low temperature. Experimental mea-
surements and analyses are carried out for Ne, Ar, Kr and Hg,
with a calorimetric method. Their vapors are monoatomic and
behave in good approximation as ideal gases in gaseous phase.
These experimental analyses, taking into account the corrections
caused from the difference between the real monoatomic gases
and the ideal gas, are described in detail in Ref. [6]. The
experimental justification and correctness of the ST-equation
has been inferred.

The almost forgotten episode for the physics of derivation of the
ST-equation is highlighted in a recent paper ‘‘On the 100th
anniversary of Sackur-Tetrode equation” by W. Grimus [7] He
emphasizes that the charm of the ST-equation has not changed
over 100 years, which never fades away timelessly, and its impor-
tance in development of quantum theory and statistical mechanics.

What kind of re-interpretation for the ST-equation is possible?
Is it really possible to add new explanation for entropy? This paper
intends to provide an alternative expression for the entropy of a
monoatomic classical ideal gas. Consequently, the entropy of a
classical ideal gas can be written in terms of the thermal uncer-
tainty relation based on the Heisenberg uncertainty relation. The
key issue is to introduce the thermal uncertainty relation, which
will be defined below.

2. General remarks on the Sackur-Tetrode equation and a
possible extension

In the derivation of ST-equation, the following two conditions
(a) and (b) are considered in the context the quantum nature.

(a) The entropy is obtained by the Boltzmann relation S ¼ kBln
W, where W is the number of accessible microscopic states
and kB is the Boltzmann’s constant. In order to count the
number of microscopic possible states W, Sackur and
Tetrode have introduced the elementary cell or domain in
phase space of position and momentum. In this way, the
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phase space needs to be quantized in cells of volume hf , here
f is the number of degrees of the freedom of the system. The
Planck’s constant h is used properly, more than ten years
before the establishment of quantum mechanics [7].

(b) The other assumption is made in deriving the ST-equa-
tion. The correct number of configurations in phase
space is counted by taking into account the indistin-
guishability of atoms in the non-localized system for a
gaseous state, N is the number of particles in the gas.
The possible permutations N! among atoms themselves
cannot lead to physically distinct situation, because the
identical monoatomic atoms are indistinguishable. Hence,
the number of configurations in phase space is divided
by N!, otherwise too large by factor N!. In this way
the entropy behaves properly as an extensive quantity,
avoiding Gibbs paradox.

When the natural logarithm term decreases below �5/2 in Eq.
(1), the entropy becomes negative. This is not possible, in contra-
diction to the third law of thermodynamics. The ST-equation is
not valid at low temperature. The concept of a classical ideal gas
breaks down at low values of V/N and low values of T. The gas
begins to behave as a quantum gas, composed of either bosons
or fermions. The relevance of the thermodynamic third law, the
absolute entropy, and the testing method with calorimetric mea-
suring based on the validity of the ST-equation is reported and dis-
cussed [8]. Here, the entropy will not be discussed in the limit as T
? 0, because this is not main subject.

With the establishment of quantum mechanics and the statis-
tical mechanics, an alternative approach to the entropy for ideal
gas can be carried out, without using the condition (a). The
Planck’s constant h will be introduced more naturally in this
paper.

In order to get more insight into the entropy of a monoatomic
classical ideal gas, the entropy is considered from a different per-
spective in the present study. A thermal uncertainty relation is
introduced, which is an application of the Heisenberg uncertainty
relation to thermal physics. The Heisenberg uncertainty relation,
DxDpx P �h=2ð�h � h=2pÞ, is well known in quantum mechanics.
The uncertainty principle arises from the basic result in quantum
mechanics due to the particle-wave duality. Here Dx and Dpx are
the root-mean-square deviation from the expectation values in
its position and momentum for a quantum state. The present paper
focuses a key theme on the connection between the entropy and
the uncertainty relation.

The analysis is made and developed on the basis of fluctuation
theory, for instance, in Ref. [9]. The same method in the framework
of the present story has been reported in a different model [10].
The development is carried out by two steps. First, the thermal
average of the uncertainty relation is obtained for canonical system
in thermal equilibrium at temperature T, which is denoted by
ðDxÞTðDpxÞT and defined as thermal uncertainty relation in this
paper. Second, the entropy of a classical ideal gas will be expressed
analytically as a function of ðDxÞTðDpxÞT . The final result of the
entropy can be written as

S
NkB

¼ constantþ ln
ðDxÞTðDpxÞT
� �3

h3N

( )
: ð2Þ

The details of this Eq. (2) will be a man story described below. It
will be expected to gives a re-interpretation of the ST-equation.
The entropy is a measure of the uncertainty. The calculations to
derive Eq. (2) are primitive, using elementary mathematics. Since
the context of the story must be clear, each small step on the cal-
culations will be provided with sufficient details for better
understanding.
3. Results and discussion

3.1. Uncertainty relation in a potential well

For the particle trapped between rigid walls in one-dimension
the quantized energy is

en ¼ h2

8mL2
n2 � an2; a ¼ h2

8mL2
; n ¼ 1;2;3; . . . ; ð3Þ

where m is the mass of a gas particle, L is the length of the well in a
linear dimension.

The energy e0 ¼ 0 is not permitted, that is, the particle cannot
be at rest between the rigid walls. The wave functions in
�L=2 6 x 6 L=2 are given by

un ¼
ffiffiffi
2
L

r
cos

np
L

x
� �

; n ¼ 1;3;5; . . . ; ð4Þ

un ¼
ffiffiffi
2
L

r
sin

np
L

x
� �

; n ¼ 2;4;6; . . . ; ð5Þ

Since hunjxjuni are odd functions, one has simply

hnjxjni � hunjxjuni ¼ 0; n ¼ 1;2;3;4; . . . ;

Next, one obtains

hnjx2jni � hunjx2juni;

¼ 2
L

Z L
2

�L
2

x2cos2
np
L

x
� �

dx; n ¼ 1;3;5; . . . ;

¼ 2
L

Z L
2

�L
2

x2sin2 np
L

x
� �

dx; n ¼ 2;4;6; . . . ;

¼ L2

12
1� 6

n2p2

� �
; n ¼ 1;2;3;4;5;6 . . . ;

ð6Þ

Hence the dispersion in position hnjðDxÞ2jni becomes

hnjðDxÞ2jni ¼ hnjx2jni � hnjxjni2;
¼ hnjx2jni;

¼ L2

12
1� 6

n2p2

� �
; n ¼ 1;2;3;4; . . . ;

The root-mean-square fluctuation, ðDxÞn, in its position is given
by

ðDxÞn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hnjðDxÞ2jni

q

¼
ffiffiffi
3

p

6
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 6

n2p2

� �s
; n ¼ 1;2;3;4; . . .

ð7Þ

Then the uncertainty in the position of the particle is propor-
tional to the width of the well for any eigenstate of energy.

On the other hand, the eigenvalue of the energy can be written
as

en ¼ h2

8mL2
n2 � an2 ¼ 1

2m
hnjp2

x jni; a ¼ h2

8mL2
: ð8Þ

hnjp2
x jni � hunjp2

x juni ¼ 2mheni;

¼ h2

4L2
n2; n ¼ 1;2;3 . . . ;

ð9Þ

The expectation value hnjpxjni becomes zero for any eigenstate
because of symmetry consideration in back and forth motion. Then
one has
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hnjðDpxÞ2jni ¼ hnjp2
x jni � hnjpxjni2

¼ hnjp2
x jni:

The root-mean-square fluctuation, ðDpxÞn, in the momentum
becomes

ðDpxÞn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hnjðDpxÞ2jni

q
¼ h

2L
n; n ¼ 1;2;3 . . . ; ð10Þ

The uncertainty in the momentum of the particle is inversely pro-
portional to the width of the well. Thus Eqs. (7) and (10) yield

ðDxÞnðDpxÞn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hnjðDxÞ2jnihnjðDpxÞ2jni

q
;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

48
n2 � 6

p2

� �s

¼
ffiffiffi
3

p

12
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 6

p2

r
; n ¼ 1;2;3; . . . ;

ð11Þ

where, for avoiding confusion, the subscript n in ðDxÞn and ðDpxÞn
indicates a certain quantum eigenstate. It is noted that
ðDxÞnðDpxÞn does not depend on the length L. The minimum value
occurs when n = 1, where

ðDxÞ1ðDpxÞ1 ¼
ffiffiffi
3

p

12
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 6

p2

r
ffi 0:568� h

2p
>

�h
2
: ð12Þ

In this way, Eq. (11) obeys the Heisenberg uncertainty relation,
DxDpx P �h=2, for any allowed n. When the value of n goes to large,
the magnitude of ðDxÞnðDpxÞn becomes an approximate value

ðDxÞnðDpxÞn ¼
ffiffiffi
3

p

12
hn � bn; b ¼

ffiffiffi
3

p
h

12
; n � 1: ð13Þ

In this approximation in Eq. (13), the error for the value of
ðDxÞnðDpxÞn is estimated to be 0.305% when n = 10, and less than
0.30% for values for n > 10.

3.2. Thermal average of the uncertainty relation

In sufficiently low density or sufficiently high temperature
(classical regime), the quantum distribution laws reduce to the
Boltzmann distribution, whether boson or fermion. Hence, in order
to calculate the average of the uncertainty, the Boltzmann distribu-
tion is applied to the monoatomic classical ideal gas. The canonical
ensemble leads to a distribution of the system over possible
energy. The partition function, Zx, of a single particle in one-dimen-
sional model in thermal equilibrium with a heat reservoir at tem-
perature T, is given by

Zx ¼
X1
n¼1

e�ben ; b ¼ 1
kBT

;

¼
Z 1

0
e�ban2dn ¼ 1

2

ffiffiffiffiffiffi
p
ba

r
; a ¼ h2

8mL2
;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p
h

L:

ð14Þ

Next calculations are executed by using approximation of Eq. (13),

X1
n¼1

ðDxÞnðDpxÞne�ben ¼
X1
n¼1

bne�ban2
; b ¼

ffiffiffi
3

p
h

12
;

¼ b
Z 1

0
ne�ban2dn;

¼ b
2ba

¼
ffiffiffi
3

p
mkBTL

2

3h
:

ð15Þ

Consequently, the thermal average of the uncertainty, which
is called thermal uncertainty relation in this paper, can be
written as
ðDxÞTðDpxÞT � 1
Z

X1
n¼1

ðDxÞnðDpxÞne�ben ;

¼ b
p

ffiffiffiffiffiffi
p
ba

r
;

¼
ffiffiffi
3

p

6p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p
� L;

ð16Þ

which is rearranged as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p
¼ 2p

ffiffiffi
3

p

L
� ðDxÞTðDpxÞT : ð17Þ

It is noticed that ðDxÞTðDpxÞT does not include the Planck’s con-
stant h because of a cancelation of h in the calculations of Eq. (16).
This relation (17) breaks down at low temperature. In particular for
T = 0, ðDxÞ1ðDpxÞ1 in the ground state is not zero because of the
zero-point energy, as shown in Eq. (12).

In addition, the other calculations yield

ðDxÞT � ðDpxÞT ¼ 1
Z

X1
n¼1

ðDxÞne�ben

( )
� 1

Z

X1
n¼1

ðDpxÞne�ben

( )
;

¼
ffiffiffi
3

p

6p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p
� L:

This result agrees with that obtained in Eq. (16).

3.3. Entropy of the ideal gas in a three-dimensional box

Taking into account the indistinguishability of the particle, the
partition function Z for three-dimensional system is given by

Z ¼ 1
N!

Z3N
x : ð18Þ

Here Zx is given by Eq. (14) for a single particle, and the factor 1/
N! is necessary to make entropy extensive quantity, avoiding Gibbs
paradox. The Helmholtz’s free energy F is

F ¼ �kBT ln Z ¼ �kBT ln
1
N!

Z3N
x

� �
: ð19Þ

By using Eqs. (14) and (18) one then has

Z ¼ L3N

N!
2pmkBT

h2

	 
3N=2

: ð20Þ

The result can be written with the Stirling’s formula,
lnN! ¼ NlnN � N,

F
NkB

¼ �T � T ln
V
N
� 3
2
Tln

2pmkBT

h2

	 

; V ¼ L3; ð21Þ

where V is the volume of the gas.
The entropy, S, is derived from F in the forms

S ¼� @F
@T

� �
V
;

S
NkB

¼5
2
þ ln

V
N
þ 3
2
ln

2pmkBT

h2

	 

; ð22Þ

¼5
2
þ ln

V
N

2pmkBT

h2

� �3=2
( )

: ð23Þ

These Eqs. (22) or (23) are the so-called Sackur-Tetrode equation,
which is the same given in Eq. (1). When the extensive valuables
V and N are multiplied by 2, the entropy is multiplied by 2.
Formally : S(T, 2 V, 2 N) = 2S(T, V, N) is satisfied, hence the entropy
is satisfied with an extensive quantity. When the logarithm term
decreases below �5/2, the entropy becomes negative. Hence the
Eq. (23) is appropriate approximation when the argument of the
logarithm is much higher than unity.
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Now let us consider the thermal uncertainty relation in order to
connect the ST-equation. From Eq. (17), one has

½ðDxÞTðDpxÞT �3 ¼
ffiffiffi
3

p

72p3 ð2pmkBTÞ3=2V ; V ¼ L3: ð24Þ

In this way, the magnitude of ½ðDxÞTðDpxÞT �3 is proportional to

T3=2V . Using Eqs. (17), (21), and (22), F and S are connected to
the thermal uncertainty relation, and given by

F
NkB

¼ �T � 3T lnð2p
ffiffiffi
3

p
Þ þ TlnN � 3Tln

ðDxÞTðDpxÞT
h

	 

; ð25Þ

S
NkB

¼ 5
2
þ 3 lnð2p

ffiffiffi
3

p
Þ � lnN þ 3 ln

ðDxÞTðDpxÞT
h

	 

;

¼ C1 þ ln
½ðDxÞTðDpxÞT �3

Nh3

( )
;

C1 ¼ 5
2
þ 3 lnð2p

ffiffiffi
3

p
Þ:

ð26Þ

Substituting Eq. (24) to Eq. (26), the arrangement yields

S
NkB

¼ C2 þ ln
V
N

2pmkBT

h2

� �3=2
( )

; C2 ¼ 5
2
þ 2lnðpÞ: ð27Þ

The difference between Eqs. (1) and (27) is 2lnðpÞ ¼ 2:29, which
may arise from the small errors for the approximation in Eq. (13).

The Eq. (26) is equivalently expressed as,

S
NkB

¼ constantþ ln
½ðDxÞTðDpxÞT �3

Nh3

( )
: ð28Þ

This Eq. (28) is the main result in this paper, which shows an alter-
native expression for the entropy of a monoatomic classical ideal

gas. The entropy is regarded as the number of h3-elementary cell

in the thermal uncertainty volume space ½ðDxÞTðDpxÞT �3 per N. This
uncertainty volume space is determined at given temperature.
The fundamental concept of entropy is provided from an aspect of
uncertainty relation. The entropy specifies manifestly a measure
of uncertainty.

Fig. 1 shows the Eq. (28) in graphical representation. It is noted
that the value of S=NkB becomes negative below 1.0 for the x-axis.
Fig. 1. Entropy of a monoatomic ideal gas as a function of thermal uncertainty
relation. The entropy is interpreted as a measure of uncertainty.
In addition, the internal energy of the gas, E, and the heat capac-
ity at constant volume, CV, are

E ¼ kBT
2 @

@T
lnZ

� �
V

¼ 3
2
NkBT;

CV ¼ @E
@T

� �
V

¼ 3
2
NkB:

ð29Þ

It is noted that E, CV, pressure P ¼ �ð@F=@VÞT ¼ NkBT=V , and heat
capacity CP at constant pressure, are free from the Planck’s constant
h. On the other hand, the Helmholtz’s free energy F and the entropy
S include the Planck’s constant h.

Another calculation from Eqs. (25) and (26) leads to the same
result

E ¼ F þ TS ¼ 3
2
NkBT;

¼ 9Np
m

� ðDxÞTðDpxÞT
L

	 
2

;

kBT ¼ 6p
m

� ðDxÞTðDpxÞT
L

	 
2

:

ð30Þ

This is a connection between internal energy of monoatomic ideal
gas and the thermal uncertainty relation.

3.4. The thermal de Broglie wavelength

Thermal de Broglie wavelength kT , is defined as [11]

kT � hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p : ð31Þ

This wavelength shows the quantum nature of matter, reflecting
the wave particle duality. Using the Eqs. (21), (22) and (29), the fol-
lowing expressions are obtained.

E ¼ 3N
4pm

� h
kT

	 
2

; ð32Þ

F
NkB

¼ �T þ Tln
N
V
k3T

	 

; V ¼ L3; ð33Þ

S
NkB

¼ 5
2
þ ln

V

Nk3T

( )
: ð34Þ

The entropy approaches negative infinity as the temperature
approaches zero, then this Eq. (34) is valid in the region

V

Nk3T
� 1:

The thermal wavelength will be approximately equal to the
inter particle distance at T. A linkage between the kT and

fðDxÞTðDpxÞT=hg3 has a form

V

k3T
¼ ð2p

ffiffiffi
3

p
Þ3 � ðDxÞTðDpxÞT

h

	 
3

: ð35Þ
3.5. Comparison with the results of thermodynamics

The entropy S for the ideal gas in the thermodynamics is
given by

dS ¼ 1
T
dEþ P

T
dV ; E ¼ 3

2
NkBT;

P ¼ NkB
V

T; T ¼ hp2i
3mkB

;

ð36Þ



Fig. 2. The magnitude of the thermal uncertainty relation as a function of
temperature.
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where hp2i is the average of momentum of particle. The entropy
change between two states (T, V, N) and (T0, V0, N) in constant N is
given by

S� S0 ¼ NkB
3
2
ln

T
T0

þ NkBln
V
V0

;

¼ STðmomentumÞ þ SV ðpositionÞ:
ð37Þ

The key point is that the entropy can be decomposed into two
contributions, coming from the information of momentum and
position. The value of ST shows the change of entropy from one
momentum distribution to another, in the process of a constant
volume. On the other hand, SV indicates the entropy change from
the volume change at constant temperature. Rearrangement of
Eq. (37) leads a form

S� S0
NkB

¼ln
T3=2V

T3=2
0 V0

( )
; ð38Þ

¼constantþ lnðT3=2VÞ; ð39Þ
which corresponds with Eqs. (23) and (28) for the case of constant
N. Consequently a relation between the thermodynamic quantities
V, T and the thermal uncertainty relation can be written as

ðVT3=2Þ ¼ C3½ðDxÞTðDpxÞT �3; C3 ¼ constant: ð40Þ
The number 2 in the power of T3=2 is originated from the kinetic
energy (1/2) m v2 of particle, while the number 3 in both side spec-
ifies 3-dimension in model. It is emphasized that Eq. (40) is a kind of
bridge equation between macroscopic world in the thermodynam-
ics and microscopic world in the quantum mechanics. The entropy
connects clearly to the uncertainty relation from the view point of
the thermodynamic aspect.

Fig. 2 shows the variation of the thermal uncertainty relation as
a function of temperature.

4. Conclusion

The thermal average of the uncertainty ðDxÞTðDpxÞT has been
introduced and given. A new alternative expression for the entropy
of a monoatomic classical gas can be written as

S ¼ S0 þ NkB ln
½ðDxÞTðDpxÞT �3

Nh3

( )
; S0 ¼ constant:

The essential point is to introduce the concept of the thermal uncer-
tainty relation. A bridge between the microscopic Heisenberg
uncertainty relation and the entropy in macroscopic world has been
provided. Even in thermal equilibrium state, fluctuation, random
motion or disorder could originate from the uncertainty relation,
giving a deeper insight into the entropy. The author would like to
dedicate this expression to O. Sackur and H. Tetrode, for celebrating
100th anniversary of Sackur-Tetrode equation.
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